J Stephen Daly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/665409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Grenville Orogenic Cycle (ca. 1350-1000 Ma): an Adirondack perspective. Tectonophysics, 1996, 265, 1-28.	2.2	209
2	The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. Geological Society Memoir, 2006, 32, 579-598.	1.7	128
3	Provenance and Terrane Evolution of the Kalak Nappe Complex, Norwegian Caledonides: Implications for Neoproterozoic Paleogeography and Tectonics. Journal of Geology, 2007, 115, 21-41.	1.4	128
4	Juvenile Middle Proterozoic crust in the Adirondack Highlands, Grenville province, northeastern North America. Geology, 1991, 19, 119.	4.4	111
5	Granitic magmatism of Grenvillian and late Neoproterozoic age in Finnmark, Arctic Norway—Constraining pre-Scandian deformation in the Kalak Nappe Complex. Precambrian Research, 2006, 145, 24-52.	2.7	108
6	lon microprobe Uî—,Pb zircon geochronology and isotopic evidence for a trans-crustal suture in the Lapland–Kola Orogen, northern Fennoscandian Shield. Precambrian Research, 2001, 105, 289-314.	2.7	106
7	Microchemical and Sr Isotopic Investigation of Zoned K-feldspar Megacrysts: Insights into the Petrogenesis of a Granitic System and Disequilibrium Crystal Growth. Journal of Petrology, 2005, 46, 1689-1724.	2.8	98
8	Timing of ophiolite obduction in the Grampian orogen. Bulletin of the Geological Society of America, 2010, 122, 1787-1799.	3.3	97
9	Cr-spinel Seam Petrogenesis in the Rum Layered Suite, NW Scotland: Cumulate Assimilation and in situ Crystallization in a Deforming Crystal Mush. Journal of Petrology, 2010, 51, 1171-1201.	2.8	95
10	Geochronological evidence from discordant plutons for a late Proterozoic orogen in the Caledonides of Finnmark, northern Norway. Journal of the Geological Society, 1991, 148, 29-40.	2.1	78
11	Chemical heterogeneity in the upper mantle recorded by peridotites and chromitites from the Shetland Ophiolite Complex, Scotland. Earth and Planetary Science Letters, 2012, 333-334, 226-237.	4.4	77
12	Pb isotopic zoning of K-feldspar megacrysts determined by Laser Ablation Multi-Collector ICP-MS: Insights into granite petrogenesis. Geochimica Et Cosmochimica Acta, 2005, 69, 1899-1915.	3.9	75
13	Basement–cover relationships of the Kalak Nappe Complex, Arctic Norwegian Caledonides and constraints on Neoproterozoic terrane assembly in the North Atlantic region. Precambrian Research, 2008, 160, 245-276.	2.7	73
14	Zircon texture and chemical composition as a guide to magmatic processes and mixing in a granitic environment and coeval volcanic system. Contributions To Mineralogy and Petrology, 2010, 159, 579-596.	3.1	73
15	The Use of the Common Pb Isotope Composition of Detrital K-Feldspar Grains as a Provenance Tool and Its Application to Upper Carboniferous Paleodrainage, Northern England. Journal of Sedimentary Research, 2006, 76, 324-345.	1.6	72
16	Sm-Nd and U-Pb Isotopic Evidence of Juvenile Crust in the Adirondack Lowlands and Implications for the Adirondack Mts Journal of Geology, 1993, 101, 97-105.	1.4	68
17	Western Grenville Province holds key to midcontinental Graniteâ€Rhyolite Province enigma. Terra Nova, 2009, 21, 181-187.	2.1	67
18	In-situ zircon U–Pb, oxygen and hafnium isotopic evidence for magma mixing and mantle metasomatism in the Tuscan Magmatic Province, Italy. Earth and Planetary Science Letters, 2011, 305, 45-56.	4.4	67

#	Article	IF	CITATIONS
19	Smî—,Nd evidence for late Archaean crust formation in the Lapland-Kola Mobile Belt, Kola Peninsula, Russia and Norway. Precambrian Research, 1995, 72, 97-107.	2.7	65
20	Contrasting magmatic arcs in the Palaeoproterozoic of the south-western Baltic Shield. Precambrian Research, 1998, 92, 297-315.	2.7	63
21	Baltica in the Cryogenian, 850–630Ma. Precambrian Research, 2008, 160, 46-65.	2.7	63
22	The roles of melt infiltration and cumulate assimilation in the formation of anorthosite and a Cr-spinel seam in the Rum Eastern Layered Intrusion, NW Scotland. Lithos, 2009, 111, 6-20.	1.4	58
23	Petrographic, geochemical and isotopic constraints on magma dynamics and mixing in the Miocene Monte Capanne monzogranite (Elba Island, Italy). Lithos, 2004, 78, 157-195.	1.4	57
24	Age, tectonic setting and provenance of Östfold-Marstrand Belt Supracrustals: Westward crustal growth of the Baltic Shield at 1760 Ma. Precambrian Research, 1989, 45, 45-61.	2.7	56
25	Drainage reorganization during breakup of Pangea revealed by in-situ Pb isotopic analysis of detrital K-feldspar. Geology, 2007, 35, 971.	4.4	53
26	Age and composition of crystalline basement rocks on the Norwegian continental margin: offshore extension and continuity of the Caledonian–Appalachian orogenic belt. Journal of the Geological Society, 2011, 168, 1167-1185.	2.1	53
27	The tectonothermal evolution and provenance of the Tyrone Central Inlier, Ireland: Grampian imbrication of an outboard Laurentian microcontinent?. Journal of the Geological Society, 2008, 165, 675-685.	2.1	52
28	Grampian orogenesis and the development of blueschist-facies metamorphism in western Ireland. Journal of the Geological Society, 2003, 160, 911-924.	2.1	48
29	Late Proterozoic High-pressure granulite facies meta-morphism in the north-east Ox inlier, north-west Ireland. Journal of Metamorphic Geology, 1987, 5, 69-85.	3.4	47
30	A precise U-Pb zircon age for the Inishtrahull syenitic gneiss, County Donegal, Ireland. Journal of the Geological Society, 1991, 148, 639-642.	2.1	43
31	Rhenium–osmium isotopes and platinum-group elements in the Rum Layered Suite, Scotland: Implications for Cr-spinel seam formation and the composition of the Iceland mantle anomaly. Earth and Planetary Science Letters, 2009, 286, 41-51.	4.4	41
32	Kâ€feldspar sandâ€grain provenance in the Triassic, west of Shetland: distinguishing firstâ€cycle and recycled sediment sources?. Geological Journal, 2009, 44, 692-710.	1.3	40
33	The Finnmarkian Orogeny revisited: An isotopic investigation in eastern Finnmark, Arctic Norway. Tectonophysics, 2008, 460, 158-177.	2.2	39
34	Detrital zircon, detrital titanite and igneous clast U–Pb geochronology and basement–cover relationships of the Colonsay Group, SW Scotland: Laurentian provenance and correlation with the Neoproterozoic Dalradian Supergroup. Precambrian Research, 2010, 181, 21-42.	2.7	39
35	Practical guidelines and recent advances in the Itrax XRF core-scanning procedure. Quaternary International, 2019, 514, 16-29.	1.5	39
36	Early Silurian magmatism and the Scandian evolution of the Kalak Nappe Complex, Finnmark, Arctic Norway. Journal of the Geological Society, 2005, 162, 985-1003.	2.1	36

#	Article	IF	CITATIONS
37	The structure and timing of lateral escape during the Scandian Orogeny: A combined strain and geochronological investigation in Finnmark, Arctic Norwegian Caledonides. Tectonophysics, 2006, 425, 159-189.	2.2	36
38	Generations of Melt Extraction, Melt–Rock Interaction and High-Temperature Metasomatism Preserved in Peridotites of the â^1⁄4497 Ma Leka Ophiolite Complex, Norway. Journal of Petrology, 2015, 56, 1797-1828.	2.8	35
39	470 Ma granitoid magmatism associated with the Grampian Orogeny in the Slishwood Division, NW Ireland. Journal of the Geological Society, 2005, 162, 563-575.	2.1	34
40	Isotopic dating of overthrusting, collapse and related granitoid intrusion in the Grampian orogenic belt, northwestern Ireland. Geological Magazine, 2000, 137, 419-435.	1.5	33
41	Pb isotope compositions of detrital Kâ€feldspar grains in the upperâ€middle Yangtze River system: Implications for sediment provenance and drainage evolution. Geochemistry, Geophysics, Geosystems, 2014, 15, 2765-2779.	2.5	33
42	Ultrapotassic magmatism in the heyday of the Variscan Orogeny: the story of the TÅ™ebÃä•Pluton, the largest durbachitic body in the Bohemian Massif. International Journal of Earth Sciences, 2020, 109, 1767-1810.	1.8	30
43	Large-scale, linked drainage systems in the NW European Triassic: insights from the Pb isotopic composition of detrital K-feldspar. Journal of the Geological Society, 2012, 169, 279-295.	2.1	29
44	Tectonic evolution of the Arctic Norwegian Caledonides from a texturally- and structurally-constrained multi-isotopic (Ar-Ar, Rb-Sr, Sm-Nd, U-Pb) study. Numerische Mathematik, 2007, 307, 459-526.	1.4	28
45	Sedimentary provenance constraints on drainage evolution models for SE Tibet: Evidence from detrital Kâ€feldspar. Geophysical Research Letters, 2017, 44, 4064-4073.	4.0	28
46	Interrogating the provenance of large river systems: multi-proxy <i>in situ</i> analyses in the Millstone Grit, Yorkshire. Journal of the Geological Society, 2017, 174, 75-87.	2.1	27
47	Age and provenance of early Precambrian metasedimentary rocks in the Lapland-Kola Belt, Russia: evidence from Pb and Nd isotopic data. Terra Nova, 2001, 13, 32-37.	2.1	26
48	Grampian and late Grenville events recorded by mineral geochronology near a basement–cover contact in north Mayo, Ireland. Journal of the Geological Society, 2005, 162, 163-174.	2.1	26
49	Evolution of the Tyrone ophiolite, Northern Ireland, during the Grampian–Taconic orogeny: a correlative of the Annieopsquotch Ophiolite Belt of central Newfoundland?. Journal of the Geological Society, 2013, 170, 861-876.	2.1	26
50	A-type magmatism in a syn-collisional setting: The case of the Pan-African Hook Batholith in Central Zambia. Lithos, 2015, 216-217, 48-72.	1.4	26
51	Constraints on crustal structure and composition within a continental suture zone in the Irish Caledonides from shear wave wide-angle reflection data and lower crustal xenoliths. Geophysical Journal International, 2008, 175, 1254-1272.	2.4	24
52	Hidden Archaean and Palaeoproterozoic crust in NW Ireland? Evidence from zircon Hf isotopic data from granitoid intrusions. Geological Magazine, 2009, 146, 903-916.	1.5	24
53	Seismic velocities of granulite-facies xenoliths from Central Ireland: Implications for lower crustal composition and anisotropy. Tectonophysics, 2005, 407, 81-99.	2.2	23
54	Insights into magmatic evolution and recharge history in Capraia Volcano (Italy) from chemical and isotopic zoning in plagioclase phenocrysts. Journal of Volcanology and Geothermal Research, 2007, 168, 28-54.	2.1	23

#	Article	IF	CITATIONS
55	Sedimentology, sandstone provenance and palaeodrainage on the eastern Rockall Basin margin: evidence from the Pb isotopic composition of detrital K-feldspar. Petroleum Geology Conference Proceedings, 2010, 7, 937-952.	0.7	23
56	Rbî—,Sr isotopic equilibrium during Sveconorwegian (= Grenville) deformation and metamorphism of the Orust dykes, S.W. Sweden. Lithos, 1983, 16, 307-318.	1.4	22
57	Insights into granite petrogenesis from quantitative assessment of the field distribution of enclaves, xenoliths and K-feldspar megacrysts in the Monte Capanne pluton, Italy. Mineralogical Magazine, 2008, 72, 925-940.	1.4	22
58	Andean sinistral transpression and kinematic partitioning in South Georgia. Journal of Structural Geology, 2010, 32, 464-477.	2.3	22
59	Provenance of detrital K-feldspar in Jianghan Basin sheds new light on the Pliocene–Pleistocene evolution of the Yangtze River. Bulletin of the Geological Society of America, 2016, 128, 1339-1351.	3.3	22
60	Assessing mineral fertility and bias in sedimentary provenance studies: examples from the Barents Shelf. Geological Society Special Publication, 2020, 484, 255-274.	1.3	21
61	Formation of the Three Gorges (Yangtze River) no earlier than 10ÂMa. Earth-Science Reviews, 2021, 216, 103601.	9.1	21
62	A Laurentian provenance for the Dalradian rocks of north Mayo, Ireland, and evidence for an original basement–cover contact with the underlying Annagh Gneiss Complex. Journal of the Geological Society, 2010, 167, 1033-1048.	2.1	19
63	An integrated study of Permo-Triassic basins along the North Atlantic passive margin: implication for future exploration. Petroleum Geology Conference Proceedings, 2010, 7, 921-936.	0.7	18
64	Linking In Situ Crystallization and Magma Replenishment via Sill Intrusion in the Rum Western Layered Intrusion, NW Scotland. Journal of Petrology, 2018, 59, 1605-1642.	2.8	18
65	Rapid crystallization of precious-metal-mineralized layers in mafic magmatic systems. Nature Geoscience, 2020, 13, 375-381.	12.9	18
66	Incremental Construction of the Unit 10 Peridotite, Rum Eastern Layered Intrusion, NW Scotland. Journal of Petrology, 2017, 58, 137-166.	2.8	17
67	Rb-Sr ages of intrusive plutonic rocks from the Stora Le—Marstrand belt in Orust, SW Sweden. Precambrian Research, 1979, 9, 189-198.	2.7	16
68	Multiple intrusive phases in the Leinster Batholith, Ireland: geochronology, isotope geochemistry and constraints on the deformation history. Journal of the Geological Society, 2018, 175, 229-246.	2.1	15
69	The effect of intra-crystal uranium zonation on apatite U-Pb thermochronology: A combined ID-TIMS and LA-MC-ICP-MS study. Geochimica Et Cosmochimica Acta, 2019, 251, 15-35.	3.9	15
70	Turbidites from the Clew Bay Complex, Ireland: provenance based on petrography, geochemistry and crustal residence values. Geological Journal, 1996, 31, 379-388.	1.3	13
71	Age and Origin of Deep Crustal Meta-igneous Xenoliths from the Scottish Midland Valley: Vestiges of an Early Palaeozoic Arc and â€~Newer Granite' Magmatism. Journal of Petrology, 2019, 60, 1543-1574. ————————————————————————————————————	2.8	13
72	Constraints on the timing of Scandian deformation and the nature of a buried Grampian terrane under the Caledonides of northwestern Ireland. Journal of the Geological Society, 2013, 170, 615-625.	2.1	12

#	Article	IF	CITATIONS
73	Sedimentary provenance, age and possible correlation of the Iona Group SW Scotland. Scottish Journal of Geology, 2014, 50, 143-158.	0.1	11
74	Signal-to-noise ratios, instrument parameters and repeatability of Itrax XRF core scan measurements of floodplain sediments. Quaternary International, 2019, 514, 44-54.	1.5	10
75	No connection between the Yangtze and Red rivers since the late Eocene. Marine and Petroleum Geology, 2021, 129, 105115.	3.3	9
76	Parental magma composition of the syntectonic Dawros Peridotite chromitites, NW Connemara, Ireland. Geological Magazine, 2012, 149, 590-605.	1.5	8
77	Identification of mantle peridotite as a possible Iapetan ophiolite sliver in south Shetland, Scottish Caledonides. Journal of the Geological Society, 2017, 174, 88-92.	2.1	8
78	Diffusion and fluid interaction in Itrongay pegmatite (Madagascar): Evidence from in situ 40Ar/39Ar dating of gem-quality alkali feldspar and U Pb dating of protogenetic apatite inclusions. Chemical Geology, 2020, 556, 119841.	3.3	8
79	Hf isotope evidence for effective impact melt homogenisation at the Sudbury impact crater, Ontario, Canada. Geochimica Et Cosmochimica Acta, 2017, 215, 317-336.	3.9	7
80	Cryptic Disc Structures Resembling Ediacaran Discoidal Fossils from the Lower Silurian Hellefjord Schist, Arctic Norway. PLoS ONE, 2016, 11, e0164071.	2.5	7
81	Age relations of Sveconorwegian granitoid rocks in the Stora Le-Marstrand belt, Orust area, Sweden. Gff, 1982, 104, 11-16.	0.4	6
82	Southeastern Tibetan Plateau serves as the dominant sand contributor to the Yangtze River: Evidence from Pb isotopic compositions of detrital Kâ€feldspar. Terra Nova, 2021, 33, 195-207.	2.1	6
83	Cenozoic reorganization of fluvial systems in eastern China: Sedimentary provenance of detrital K-feldspar in Taiwan. Chemical Geology, 2022, 592, 120740.	3.3	6
84	Meter-Scale Chemical and Isotopic Heterogeneities in the Oceanic Mantle, Leka Ophiolite Complex, Norway. Journal of Petrology, 2021, 62, .	2.8	5
85	Dalradian Grampian Group affinity for the Bowmore Sandstone Group, Islay, SW Scotland. Scottish Journal of Geology, 2010, 46, 97-111.	0.1	4
86	Uranium–lead phosphate chronostratigraphy: A proof of concept from the mid-Carboniferous boundary. Sedimentary Geology, 2021, 422, 105961.	2.1	4
87	Peri-Gondwanan Ordovician arc magmatism in southeastern Ireland and the Isle of Man: Constraints on the timing of Caledonian deformation in Ganderia. Bulletin of the Geological Society of America, 2018, , .	3.3	3
88	Crustal growth in SW Sweden. Gff, 1992, 114, 452-452.	0.4	1