Guobin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6653495/publications.pdf

Version: 2024-02-01

35 papers

4,100 citations

257450 24 h-index 35 g-index

36 all docs

36 does citations

36 times ranked 4275 citing authors

#	Article	IF	CITATIONS
1	Layered VS ₂ Nanosheetâ€Based Aqueous Zn Ion Battery Cathode. Advanced Energy Materials, 2017, 7, 1601920.	19.5	961
2	Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for Highâ€Performance Zincâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1702463.	19.5	650
3	Graphene Scrollâ€Coated αâ€MnO ₂ Nanowires as Highâ€Performance Cathode Materials for Aqueous Znâ€Ion Battery. Small, 2018, 14, e1703850.	10.0	563
4	Ultrastable and High-Performance Zn/VO ₂ Battery Based on a Reversible Single-Phase Reaction. Chemistry of Materials, 2019, 31, 699-706.	6.7	227
5	Vanadium Oxide Pillared by Interlayer Mg2+ Ions and Water as Ultralong-Life Cathodes for Magnesium-Ion Batteries. CheM, 2019, 5, 1194-1209.	11.7	180
6	Nanowires in Energy Storage Devices: Structures, Synthesis, and Applications. Advanced Energy Materials, 2018, 8, 1802369.	19.5	169
7	Identification of Phase Control of Carbonâ€Confined Nb ₂ O ₅ Nanoparticles toward Highâ€Performance Lithium Storage. Advanced Energy Materials, 2019, 9, 1802695.	19.5	161
8	Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy, 2016, 28, 224-231.	16.0	139
9	\hat{l}_{\pm} -MoO3- by plasma etching with improved capacity and stabilized structure for lithium storage. Nano Energy, 2018, 49, 555-563.	16.0	133
10	Li3V(MoO4)3 as a novel electrode material with good lithium storage properties and improved initial coulombic efficiency. Nano Energy, 2018, 44, 272-278.	16.0	125
11	Carbon dioxide directly induced oxygen vacancy in the surface of lithium-rich layered oxides for high-energy lithium storage. Journal of Power Sources, 2019, 432, 8-15.	7.8	81
12	1D Carbonâ€Based Nanocomposites for Electrochemical Energy Storage. Small, 2019, 15, e1902348.	10.0	73
13	A synergistic effect between layer surface configurations and K ions of potassium vanadate nanowires for enhanced energy storage performance. Journal of Materials Chemistry A, 2016, 4, 4893-4899.	10.3	65
14	Three dimensional V2O5/NaV6O15 hierarchical heterostructures: Controlled synthesis and synergistic effect investigated by in situ X-ray diffraction. Nano Energy, 2016, 27, 147-156.	16.0	61
15	Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries. Nano Energy, 2016, 24, 130-138.	16.0	57
16	Three-dimensional graphene frameworks wrapped Li3V2(PO4)3 with reversible topotactic sodium-ion storage. Nano Energy, 2017, 32, 347-352.	16.0	50
17	A mechanism of calcium fluoride-enhanced vanadium leaching from stone coal. International Journal of Mineral Processing, 2015, 145, 87-93.	2.6	47
18	Novel Charging-Optimized Cathode for a Fast and High-Capacity Zinc-Ion Battery. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 10420-10427.	8.0	43

#	Article	IF	CITATIONS
19	Pyrolyzed carbon with embedded NiO/Ni nanospheres for applications in microelectrodes. RSC Advances, 2016, 6, 43436-43441.	3.6	37
20	Electrochemical in situ X-ray probing in lithium-ion and sodium-ion batteries. Journal of Materials Science, 2017, 52, 3697-3718.	3.7	36
21	Strongly Coupled Pyridineâ€V ₂ O ₅ Â <i>n</i> H ₂ O Nanowires with Intercalation Pseudocapacitance and Stabilized Layer for High Energy Sodium Ion Capacitors. Small, 2019, 15, e1900379.	10.0	35
22	High-Performance Na–O ₂ Batteries Enabled by Oriented NaO ₂ Nanowires as Discharge Products. Nano Letters, 2018, 18, 3934-3942.	9.1	33
23	In operando observation of temperature-dependent phase evolution in lithium-incorporation olivine cathode. Nano Energy, 2016, 22, 406-413.	16.0	31
24	Selective vanadium extraction from vanadium bearing ferro-phosphorus via roasting and pressure hydrogen reduction. Separation and Purification Technology, 2019, 220, 293-299.	7.9	31
25	A Novel Eco-Friendly Vanadium Precipitation Method by Hydrothermal Hydrogen Reduction Technology. Minerals (Basel, Switzerland), 2017, 7, 182.	2.0	19
26	New anatase phase VTi _{2.6} O _{7.2} ultrafine nanocrystals for high-performance rechargeable magnesium-based batteries. Journal of Materials Chemistry A, 2018, 6, 13901-13907.	10.3	19
27	The Capturing of Ionized Oxygen in Sodium Vanadium Oxide Nanorods Cathodes under Operando Conditions. Advanced Functional Materials, 2016, 26, 6555-6562.	14.9	18
28	In Operando Probing of Sodium-Incorporation in NASICON Nanomaterial: Asymmetric Reaction and Electrochemical Phase Diagram. Chemistry of Materials, 2017, 29, 8057-8064.	6.7	18
29	Illumining phase transformation dynamics of vanadium oxide cathode by multimodal techniques under operando conditions. Nano Research, 2019, 12, 905-910.	10.4	12
30	Eco-friendly synthesis of VO ₂ with stripped pentavalent vanadium solution extracted from vanadium-bearing shale by hydrothermal process in high conversion rate. Royal Society Open Science, 2019, 6, 181116.	2.4	10
31	The Effects of Sodium Ions, Phosphorus, and Silicon on the Eco-Friendly Process of Vanadium Precipitation by Hydrothermal Hydrogen Reduction. Minerals (Basel, Switzerland), 2018, 8, 294.	2.0	8
32	A Novel Process for the Synthesis of NaV2O5 Mesocrystals from Alkaline-Stripped Vanadium Solution via the Hydrothermal Hydrogen Reduction Method. Minerals (Basel, Switzerland), 2019, 9, 271.	2.0	1
33	In SituObservation and Mechanism Investigation of Lattice Breathing in Vanadium Oxide Cathode. Acta Chimica Sinica, 2016, 74, 582.	1.4	1
34	Effects of different alkalis on the behaviour of vanadium loss in the pretreatment of vanadium-bearing acid leaching solution. ScienceAsia, 2019, 45, 43.	0.5	1
35	Cycling-Stable Cathodes: The Capturing of Ionized Oxygen in Sodium Vanadium Oxide Nanorods Cathodes under Operando Conditions (Adv. Funct. Mater. 36/2016). Advanced Functional Materials, 2016, 26, 6498-6498.	14.9	0

3