Chip-Hong Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6653125/publications.pdf

Version: 2024-02-01

288 papers 4,803 citations

33 h-index 149698 56 g-index

292 all docs 292 docs citations

times ranked

292

2185 citing authors

#	Article	IF	CITATIONS
1	A New Energy-Efficient and High Throughput Two-Phase Multi-Bit per Cycle Ring Oscillator-Based True Random Number Generator. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 272-283.	5.4	27
2	An Efficient Full Hardware Implementation of Extended Merkle Signature Scheme. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 682-693.	5.4	6
3	A New PUF Based Lock and Key Solution for Secure In-Field Testing of Cryptographic Chips. IEEE Transactions on Emerging Topics in Computing, 2021, 9, 1095-1105.	4.6	25
4	Stealthy and Robust Glitch Injection Attack on Deep Learning Accelerator for Target With Variational Viewpoint. IEEE Transactions on Information Forensics and Security, 2021, 16, 1928-1942.	6.9	5
5	Live Demonstration: Event-Driven Physical Unclonable Function for Proactive Monitoring System by Dynamic Vision Sensor., 2021,,.		O
6	Secure Mutual Authentication and Key-Exchange Protocol between PUF-Embedded IoT Endpoints. , 2021, , .		19
7	Fingerprinting Deep Neural Networks - a DeepFool Approach. , 2021, , .		12
8	Two Sides of the Same Coin: Boons and Banes of Machine Learning in Hardware Security. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 228-251.	3.6	4
9	An Overview of Hardware Security and Trust: Threats, Countermeasures, and Design Tools. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 1010-1038.	2.7	56
10	A New Lightweight <i>In Situ</i> Adversarial Sample Detector for Edge Deep Neural Network. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 252-266.	3.6	4
11	Hardware Security in Emerging Technologies: Vulnerabilities, Attacks, and Solutions. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 223-227.	3.6	2
12	A Modeling Attack Resistant Deception Technique for Securing Lightweight-PUF-Based Authentication. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 1183-1196.	2.7	34
13	Halide perovskite memristors as flexible and reconfigurable physical unclonable functions. Nature Communications, 2021, 12, 3681.	12.8	107
14	The ASHES 2019 special issue at JCEN. Journal of Cryptographic Engineering, 2021, 11, 199-200.	1.8	0
15	A large-scale comprehensive evaluation of single-slice ring oscillator and PicoPUF bit cells on 28-nm Xilinx FPGAs. Journal of Cryptographic Engineering, 2021, 11, 227-238.	1.8	14
16	A Forward Error Compensation Approach for Fault Resilient Deep Neural Network Accelerator Design. , 2021, , .		1
17	Identification of FSM State Registers by Analytics of Scan-Dump Data. IEEE Transactions on Information Forensics and Security, 2021, 16, 5138-5153.	6.9	O
18	An Ultra-Low Power 3-T Chaotic Map based True Random Number Generator. , 2021, , .		1

#	Article	IF	Citations
19	A PUF-Based Data-Device Hash for Tampered Image Detection and Source Camera Identification. IEEE Transactions on Information Forensics and Security, 2020, 15, 620-634.	6.9	34
20	Fired Neuron Rate Based Decision Tree for Detection of Adversarial Examples in DNNs., 2020,,.		3
21	Imperceptible Misclassification Attack on Deep Learning Accelerator by Glitch Injection. , 2020, , .		22
22	Reducing Temperature Induced Unreliability in Sub-Threshold Strong PUFs through Circuit Modeling. , 2020, , .		0
23	A New Polarization Image Demosaicking Algorithm by Exploiting Inter-Channel Correlations With Guided Filtering. IEEE Transactions on Image Processing, 2020, 29, 7076-7089.	9.8	26
24	Ed-PUF: Event-Driven Physical Unclonable Function for Camera Authentication in Reactive Monitoring System. IEEE Transactions on Information Forensics and Security, 2020, 15, 2824-2839.	6.9	14
25	A 1036-F ² /Bit High Reliability Temperature Compensated Cross-Coupled Comparator-Based PUF. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 1449-1460.	3.1	17
26	Analysis of Circuit Aging on Accuracy Degradation of Deep Neural Network Accelerator. , 2019, , .		2
27	An Energy-Efficient Current-Starved Inverter Based Strong Physical Unclonable Function With Enhanced Temperature Stability. IEEE Access, 2019, 7, 105287-105297.	4.2	18
28	An In-Pixel Gain Amplifier Based Event-Driven Physical Unclonable Function for CMOS Dynamic Vision Sensors. , 2019, , .		3
29	ASHES 2019., 2019,,.		0
30	A Reliable Physical Unclonable Function Based on Differential Charging Capacitors. , 2019, , .		0
31	UDhashing: Physical Unclonable Function-Based User-Device Hash for Endpoint Authentication. IEEE Transactions on Industrial Electronics, 2019, 66, 9559-9570.	7.9	21
32	Editorial TVLSI Positioningâ€"Continuing and Accelerating an Upward Trajectory. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 253-280.	3.1	6
33	High-Speed True Random Number Generator Based on Differential Current Starved Ring Oscillators with Improved Thermal Stability. , 2019, , .		8
34	Emerging Attacks and Solutions for Secure Hardware in the Internet of Things. IEEE Transactions on Dependable and Secure Computing, 2019, 16, 373-375.	5.4	2
35	Area- and Power-Efficient Nearly-Linear Phase Response IIR Filter by Iterative Convex Optimization. IEEE Access, 2019, 7, 22952-22965.	4.2	5
36	Identification of State Registers of FSM Through Full Scan by Data Analytics. , 2019, , .		2

#	Article	IF	CITATIONS
37	Vulnerability Analysis on Noise-Injection Based Hardware Attack on Deep Neural Networks., 2019,,.		3
38	A Modeling Attack Resistant Deception Technique for Securing PUF based Authentication. , 2019, , .		18
39	Detecting Adversarial Examples for Deep Neural Networks via Layer Directed Discriminative Noise Injection. , 2019, , .		5
40	A Large Scale Comprehensive Evaluation of Single-Slice Ring Oscillator and PicoPUF Bit Cells on 28nm Xilinx FPGAs. , 2019, , .		1
41	Reliable and Modeling Attack Resistant Authentication of Arbiter PUF in FPGA Implementation With Trinary Quadruple Response. IEEE Transactions on Information Forensics and Security, 2019, 14, 1109-1123.	6.9	75
42	Facial biohashing based user-device physical unclonable function for bring your own device security. , $2018, , .$		12
43	Current Mirror Array: A Novel Circuit Topology for Combining Physical Unclonable Function and Machine Learning. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 1314-1326.	5.4	36
44	New Hardware and Power Efficient Sporadic Logarithmic Shifters for DSP Applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37, 896-900.	2.7	6
45	Securing IoT Monitoring Device using PUF and Physical Layer Authentication. , 2018, , .		13
46	A New Accurate and Fast Homography Computation Algorithm for Sports and Traffic Video Analysis. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28, 2993-3006.	8.3	10
47	A Current Comparator Based Physical Unclonable Function with High Reliability and Energy Efficiency. , 2018, , .		4
48	A Low-power Reliability Enhanced Arbiter Physical Unclonable Function Based on Current Starved Multiplexers. , 2018, , .		3
49	ASHES 2018- Workshop on Attacks and Solutions in Hardware Security. , 2018, , .		1
50	Towards Ideal Lattice-Based Cryptography on ASIC: A Custom Implementation of Number Theoretic Transform. , 2018, , .		2
51	A Fully Digital Physical Unclonable Function Based Temperature Sensor for Secure Remote Sensing. , 2018, , .		3
52	Active IC Metering of Digital Signal Processing Subsystem with Two-Tier Activation for Secure Split Test. , 2018, , .		0
53	A Low Power Diode-Clamped Inverter-Based Strong Physical Unclonable Function for Robust and Lightweight Authentication. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 3864-3873.	5.4	44
54	A Sub-pico Joules Per Bit Robust Physical Unclonable Function Based on Subthreshold Voltage References. , 2018, , .		6

#	Article	IF	Citations
55	Tap Delay-and-Accumulate Cost Aware Coefficient Synthesis Algorithm for the Design of Area-Power Efficient FIR Filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 712-722.	5.4	13
56	Cyclic resistance change in perpendicularly magnetized Co/Ni nanowire induced by alternating current pulse injection. Current Applied Physics, 2017, 17, 98-102.	2.4	2
57	FPGA implementation of modeling attack resistant arbiter PUF with enhanced reliability. , 2017, , .		10
58	Asymmetrical domain wall propagation in bifurcated PMA wire structure due to the Dzyaloshinskii-Moriya interaction. Applied Physics Letters, 2017, 110, 232402.	3.3	4
59	Double-Base Number System and Its Application in FIR Filter Design. , 2017, , 277-310.		1
60	Design and Evaluation of Booth-Encoded Multipliers in Redundant Binary Representation. , 2017, , 113-147.		4
61	A Retrospective and a Look Forward: Fifteen Years of Physical Unclonable Function Advancement. IEEE Circuits and Systems Magazine, 2017, 17, 32-62.	2.3	125
62	A Scaling-Assisted Signed Integer Comparator for the Balanced Five-Moduli Set RNS $\{2^{n}-1, 2^{n}, 2^{n}+1, 2^{n}+1, 2^{n}-1, 2^{n}+1, 2^{n}-1, 2$	3.1	4
63	ACRO-PUF: A Low-power, Reliable and Aging-Resilient Current Starved Inverter-Based Ring Oscillator Physical Unclonable Function. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 3138-3149.	5.4	60
64	Low-cost fortification of arbiter PUF against modeling attack. , 2017, , .		12
65	New Algorithm for Signed Integer Comparison in $\{2^{n+k},2^{n}-1,2^{n}+1,2^{n}+1,2^{n}\}$ and Its Efficient Hardware Implementation. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 1481-1493.	5.4	11
66	Static and Dynamic Obfuscations of Scan Data Against Scan-Based Side-Channel Attacks. IEEE Transactions on Information Forensics and Security, 2017, 12, 363-376.	6.9	55
67	A New Cost-Aware Sensitivity-Driven Algorithm for the Design of FIR Filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 1588-1598.	5.4	15
68	20 Years of research on intellectual property protection., 2017,,.		9
69	ASHES 2017., 2017, , .		0
70	Current mirror array: A novel lightweight strong PUF topology with enhanced reliability. , 2017, , .		7
71	A novel scheme for information hiding at physical layer of wireless communications. , 2017, , .		1
72	An energy-efficient true random number generator based on current starved ring oscillators. , 2017, , .		12

#	Article	IF	Citations
73	A new write-contention based dual-port SRAM PUF with multiple response bits per cell., 2017,,.		8
74	A new watermarking scheme on scan chain ordering for hard IP protection. , 2017, , .		6
75	Sizing of SRAM Cell with Voltage Biasing Techniques for Reliability Enhancement of Memory and PUF Functions. Journal of Low Power Electronics and Applications, 2016, 6, 16.	2.0	8
76	A new scheme for secret-hiding in DSP circuits. , 2016, , .		0
77	Low-power, lightweight and reliability-enhanced current starved inverter based RO PUFs., 2016,,.		5
78	Accelerating residue-to-binary conversion of very high cardinality moduli set for fully homomorphic encryption. , $2016, , .$		0
79	Using image sensor PUF as root of trust for birthmarking of perceptual image hash. , 2016, , .		9
80	A new event-driven Dynamic Vision Sensor based Physical Unclonable Function for camera authentication in reactive monitoring system. , 2016, , .		12
81	Multi-valued Arbiters for quality enhancement of PUF responses on FPGA implementation. , 2016, , .		27
82	A VLSI-efficient signed magnitude comparator for $\{2n-1, 2n, 2n +2n+1-1\}$ RNS. , $2016, , .$		2
83	A low-voltage, low power STDP synapse implementation using domain-wall magnets for spiking neural networks. , 2016, , .		6
84	DW-AES: A Domain-Wall Nanowire-Based AES for High Throughput and Energy-Efficient Data Encryption in Non-Volatile Memory. IEEE Transactions on Information Forensics and Security, 2016, 11, 2426-2440.	6.9	40
85	A non-iterative multiple residue digit error detection and correction algorithm in RRNS. IEEE Transactions on Computers, 2016, 65, 396-408.	3.4	28
86	A New Fast and Area-Efficient Adder-Based Sign Detector for RNS $\{$ \sinline-formula \sim \tex-math notation="LaTeX" \sinline-formula \}. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24, 2608-2612.	3.1	23
87	A New Paradigm of Common Subexpression Elimination by Unification of Addition and Subtraction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35, 1605-1617.	2.7	21
88	Hypergraph Based Minimum Arborescence Algorithm for the Optimization and Reoptimization of Multiple Constant Multiplications. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 233-244.	5.4	16
89	Erratum to "Efficient VLSI Implementation of Scaling of Signed Integer in RNS {}―[Oct 13 1936-1940]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24, 1612-1612.	3.1	0
90	Secure Licensing of IP Cores on SRAM-Based FPGAs. , 2016, , 391-418.		1

#	Article	IF	Citations
91	Hardware IP Watermarking and Fingerprinting. , 2016, , 329-368.		17
92	Design and Implementation of High-Quality Physical Unclonable Functions for Hardware-Oriented Cryptography., 2016,, 39-81.		14
93	A high-speed and area-efficient sign detector for three moduli set RNS {2n, 2n-1, 2n+1}. , 2015, , .		1
94	Low field domain wall dynamics in artificial spin-ice basis structure. Journal of Applied Physics, 2015, 118, .	2.5	3
95	Design of Optimal Scan Tree Based on Compact Test Patterns for Test Time Reduction. IEEE Transactions on Computers, 2015, 64, 3417-3429.	3.4	11
96	A Low-Power Hybrid RO PUF With Improved Thermal Stability for Lightweight Applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34, 1143-1147.	2.7	96
97	Highly Reliable Spin-Transfer Torque Magnetic RAM-Based Physical Unclonable Function With Multi-Response-Bits Per Cell. IEEE Transactions on Information Forensics and Security, 2015, 10, 1630-1642.	6.9	27
98	Optimizating Emerging Nonvolatile Memories for Dual-Mode Applications: Data Storage and Key Generator. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34, 1176-1187.	2.7	30
99	Efficient structural adder pipelining in transposed form FIR filters. , 2015, , .		8
100	CMOS Image Sensor Based Physical Unclonable Function for Coherent Sensor-Level Authentication. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62, 2629-2640.	5.4	65
101	A new unified modular adder/subtractor for arbitrary moduli. , 2015, , .		1
102	Statistical analysis and design of 6T SRAM cell for physical unclonable function with dual application modes. , $2015, , .$		8
103	Public key protocol for usage-based licensing of FPGA IP cores. , 2015, , .		4
104	Base Transformation With Injective Residue Mapping for Dynamic Range Reduction in RNS. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62, 2248-2259.	5 . 4	5
105	Residue Number Systems: A New Paradigm to Datapath Optimization for Low-Power and High-Performance Digital Signal Processing Applications. IEEE Circuits and Systems Magazine, 2015, 15, 26-44.	2.3	114
106	Novel Design Algorithm for Low Complexity Programmable FIR Filters Based on Extended Double Base Number System. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62, 224-233.	5 . 4	36
107	New algorithm for signed integer comparison in four-moduli superset {2 ⁿ , 2 ⁿ −1, 2 ⁿ +1, 2 ⁿ⁺¹ −1}., 2014,,.		6
108	A Pragmatic Per-Device Licensing Scheme for Hardware IP Cores on SRAM-Based FPGAs. IEEE Transactions on Information Forensics and Security, 2014, 9, 1893-1905.	6.9	21

#	Article	IF	CITATIONS
109	A Cluster-Based Distributed Active Current Sensing Circuit for Hardware Trojan Detection. IEEE Transactions on Information Forensics and Security, 2014, 9, 2220-2231.	6.9	41
110	A modular design of elliptic-curve point multiplication for resource constrained devices. , 2014, , .		1
111	Leakage-resilient memory-based physical unclonable function using phase change material. , 2014, , .		7
112	Obfuscation and watermarking of FPGA designs based on constant value generators. , 2014, , .		3
113	Hardware Trojan detection with linear regression based gate-level characterization. , 2014, , .		7
114	Highly reliable memory-based Physical Unclonable Function using Spin-Transfer Torque MRAM. , 2014, , .		49
115	Feasibility study of emerging non-volatilememory based physical unclonable functions. , 2014, , .		13
116	Area-efficient and fast sign detection for four-moduli set RNS & amp; #x007B; 2< sup> n< /sup> & amp; #x2212; 1,2< sup> n< /sup> +1,22< sup> n< /sup> +1& #x007D; . , 2014, , .		0
117	Design of programmable FIR filters using Canonical Double Based Number Representation. , 2014, , .		4
118	CMOS image sensor based physical unclonable function for smart phone security applications. , 2014, , .		7
119	A 0.7V low-power fully programmable Gaussian function generator for brain-inspired Gaussian correlation associative memory. Neurocomputing, 2014, 138, 69-77.	5.9	10
120	A Blind Dynamic Fingerprinting Technique for Sequential Circuit Intellectual Property Protection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2014, 33, 76-89.	2.7	29
121	Exploiting Process Variations and Programming Sensitivity of Phase Change Memory for Reconfigurable Physical Unclonable Functions. IEEE Transactions on Information Forensics and Security, 2014, 9, 921-932.	6.9	80
122	A new algorithm for single residue digit error correction in Redundant Residue Number System. , 2014, , .		22
123	A signed integer programmable power-of-two scaler for {2 ⁿ -1, 2 ⁿ , 2 ⁿ +1} RNS., 2013,,.		0
124	A New Approach to the Design of Efficient Residue Generators for Arbitrary Moduli. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60, 2366-2374.	5.4	23
125	Thermal simulator of 3D-IC with modeling of anisotropic TSV conductance and microchannel entrance effects., 2013,,.		7
126	Efficient VLSI Implementation of 2^{n} Scaling of Signed Integer in RNS $\{2^{n}-1, 2^{n}, 2^{n}+1\}$. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2013, 21, 1936-1940.	3.1	21

#	Article	IF	Citations
127	An efficient channel clustering and flow rate allocation algorithm for non-uniform microfluidic cooling of 3D integrated circuits. The Integration VLSI Journal, 2013, 46, 57-68.	2.1	12
128	Radix-4 and Radix-8 Booth Encoded Multi-Modulus Multipliers. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60, 2940-2952.	5.4	31
129	Cluster-based distributed active current timer for hardware Trojan detection. , 2013, , .		11
130	PCKGen: A Phase Change Memory based cryptographic key generator., 2013,,.		34
131	Microchannel splitting and scaling for thermal balancing of liquid-cooled 3DIC., 2013,,.		2
132	A post-processing scan-chain watermarking scheme for VLSI intellectual property protection. , 2012, , .		7
133	State encoding watermarking for field authentication of sequential circuit intellectual property. , 2012, , .		12
134	Pipelined adder graph optimization for high speed multiple constant multiplication., 2012,,.		38
135	A unified {2 ⁿ −1, 2 ⁿ , 2 ⁿ +1} RNS scaler with dual scaling constants., 2012,,.		0
136	Guest Editorial Special Section on the 2011 IEEE Custom Integrated Circuits Conference (CICC 2011). IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59, 1601-1603.	5.4	0
137	A fast and compact circuit for integer square root computation based on Mitchell logarithmic method. , 2012, , .		3
138	An Area and Energy Efficient Inner-Product Processor for Serial-Link Bus Architecture. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59, 2945-2955.	5.4	3
139	Dynamical Systems Guided Design and Analysis of Silicon Oscillators for Central Pattern Generators. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59, 3046-3059.	5.4	8
140	A VLSI Efficient Programmable Power-of-Two Scaler for $\{2^{n}-1,2^{n},2^{n}+1\}$ RNS. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59, 2911-2919.	5.4	16
141	Area-Power Efficient Modulo $2^{n}-1$ and Modulo $2^{n}+1$ Multipliers for $2^{n}-1$, 2^{n} , $2^{n}+1$ Based RNS. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59, 2263-2274.	5.4	42
142	A compact 16-bit dual-slope integrating circuit for direct analog-to-residue conversion. , 2012, , .		1
143	Radix-8 Booth Encoded Modulo $2^{n} -1$ Multipliers With Adaptive Delay for High Dynamic Range Residue Number System. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58, 982-993.	5.4	34
144	Low error bit width reduction for structural adders of FIR filters. , 2011, , .		5

#	Article	IF	CITATIONS
145	Simple, Fast, and Exact RNS Scaler for the Three-Moduli Set $\{2^n\}$ - 1, $2^n\}$, $2^n\}$ + 1}\$. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58, 2686-2697.	5.4	35
146	Bit-parallel Multiple Constant Multiplication using Look-Up Tables on FPGA., 2011,,.		14
147	A High Bit Rate Serial-Serial Multiplier With On-the-Fly Accumulation by Asynchronous Counters. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2011, 19, 1733-1745.	3.1	16
148	A Robust FSM Watermarking Scheme for IP Protection of Sequential Circuit Design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2011, 30, 678-690.	2.7	81
149	Bayesian Separation With Sparsity Promotion in Perceptual Wavelet Domain for Speech Enhancement and Hybrid Speech Recognition. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2011, 41, 284-293.	2.9	22
150	Sign-Extension Avoidance and Word-Length Optimization by Positive-Offset Representation for FIR Filter Design. IEEE Transactions on Circuits and Systems II: Express Briefs, 2011, 58, 916-920.	3.0	5
151	A hybrid watermarking scheme for sequential functions. , 2011, , .		19
152	A simple radix-4 Booth encoded modulo 2 ⁿ +1 multiplier., 2011,,.		3
153	A new RNS scaler for {2 ⁿ − 1, 2 ⁿ , 2 ⁿ		0
154	Dynamical systems: A tool for analysis and design of silicon half center oscillators., 2011,,.		1
155	Fast and VLSI efficient binary-to-CSD encoder using bypass signal. Electronics Letters, 2011, 47, 18.	1.0	14
156	Cyber-Physical Thermal Management of 3D Multi-Core Cache-Processor System with Microfluidic Cooling. Journal of Low Power Electronics, 2011, 7, 110-121.	0.6	30
157	Fast hard multiple generators for radix-8 Booth encoded modulo 2 ⁿ −1 and modulo 2 ⁿ +1 multipliers., 2010, , .		4
158	Reconfigurable multiple constant multiplication using minimum adder depth. , 2010, , .		9
159	A novel counter-based low complexity inner-product architecture for high speed inputs. , 2010, , .		4
160	Real-time thermal management of 3D multi-core system with fine-grained cooling control. , 2010, , .		1
161	A very low power 0.7 V subthreshold fully programmable Gaussian function generator. , 2010, , .		6
162	A Low Error and High Performance Multiplexer-Based Truncated Multiplier. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2010, 18, 1767-1771.	3.1	37

#	Article	IF	Citations
163	On "A New Common Subexpression Elimination Algorithm for Realizing Low-Complexity Higher Order Digital Filters― IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2010, 29, 844-848.	2.7	20
164	Synthesis-for-Testability Watermarking for Field Authentication of VLSI Intellectual Property. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57, 1618-1630.	5.4	32
165	Low Complexity Digit Serial Systolic Montgomery Multipliers for Special Class of \${m GF}(2^{m})\$. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2010, 18, 847-852.	3.1	42
166	Minimal Logic Depth adder tree optimization for Multiple Constant Multiplication. , 2010, , .		29
167	Performance analysis of different special moduli sets for RNS-based inner product step processor. , 2010, , .		4
168	Reduction of partial product matrix for high-speed single or multiple constant multiplication. , 2010, , .		0
169	New power index model for switching power analysis from adder graph of FIR filter., 2009, , .		11
170	Time-multiplexed data flow graph for the design of configurable multiplier block. , 2009, , .		2
171	A compact current mode neuron circuit with Gaussian taper learning capability. , 2009, , .		11
172	Optimization of structural adders in fixed coefficient transposed direct form FIR filters., 2009,,.		15
173	Fixed and variable multi-modulus squarer architectures for triple moduli base of RNS. , 2009, , .		12
174	A New Redundant Binary Booth Encoding for Fast \$2^{n}\$-Bit Multiplier Design. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, 56, 1192-1201.	5.4	32
175	An improved publicly detectable watermarking scheme based on scan chain ordering. , 2009, , .		14
176	High-Level Synthesis Algorithm for the Design of Reconfigurable Constant Multiplier. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2009, 28, 1844-1856.	2.7	39
177	Information Theoretic Approach to Complexity Reduction of FIR Filter Design. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55, 2310-2321.	5.4	39
178	Contention Resolution—A New Approach to Versatile Subexpressions Sharing in Multiple Constant Multiplications. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55, 559-571.	5.4	17
179	IP Watermarking Using Incremental Technology Mapping at Logic Synthesis Level. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2008, 27, 1565-1570.	2.7	41
180	A Power-Delay Efficient Hybrid Carry-Lookahead/Carry-Select Based Redundant Binary to Two's Complement Converter. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55, 336-346.	5.4	31

#	Article	IF	CITATIONS
181	High-speed and low-power serial accumulator for serial/parallel multiplier., 2008,,.		6
182	Programmable LSB-first and MSB-first modular multipliers for ECC in GF(2 ^m)., 2008,,.		0
183	Intellectual property authentication by watermarking scan chain in design-for-testability flow. , 2008, , .		2
184	A low complexity modulo 2 ⁿ +1 squarer design., 2008,,.		3
185	Contention Resolution-A New Approach to Versatile Subexpressions Sharing in Multiple Constant Multiplications. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, , 1-1.	5.4	0
186	Watermarking for IP Protection through Template Substitution at Logic Synthesis Level., 2007,,.		11
187	A Generalized Time–Frequency Subtraction Method for Robust Speech Enhancement Based on Wavelet Filter Banks Modeling of Human Auditory System. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 37, 877-889.	5.0	38
188	Design of Low-Complexity FIR Filters Based on Signed-Powers-of-Two Coefficients With Reusable Common Subexpressions. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2007, 26, 1898-1907.	2.7	68
189	Programmable Montgomery Modular Multiplier for Trinomial Reduction Polynomials in GF(2m). , 2007, , .		0
190	A Residue-to-Binary Converter for a New Five-Moduli Set. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2007, 54, 1041-1049.	0.1	76
191	Hamming weight pyramid – A new insight into canonical signed digit representation and its applications. Computers and Electrical Engineering, 2007, 33, 195-207.	4.8	7
192	Low-power differential coefficients-based FIR filters using hardware-optimised multipliers. IET Circuits, Devices and Systems, 2007, $1,13.$	1.4	12
193	Design of High-speed, Low-power FIR Filters with Fine-grained Cost Metrics. , 2006, , .		2
194	A Reconfigurable Multi-Modulus Modulo Multiplier. , 2006, , .		21
195	Kernel Extraction for Watermarking Combinational Logic Networks. , 2006, , .		2
196	Low Power FIR Filter Realization using Minimal Difference Coefficients: Part I - Complexity Analysis. , 2006, , .		6
197	A Comparison of Pipelined RAG-n and DA FPGA-based Multiplierless Filters. , 2006, , .		18
198	Low Power FIR Filter Realization Using Minimal Difference Coefficients: Part II - Algorithm. , 2006, , .		3

#	Article	IF	CITATIONS
199	Self Organizing Feature Map for Color Quantization on FPGA. , 2006, , 225-245.		9
200	Design of an area-efficient CMOS multiple-valued current comparator circuit. IET Circuits, Devices and Systems, 2005, 152, 151.	0.6	3
201	Efficient reverse converters for four-moduli sets { 2nâ^'1, 2n, 2n+1, 2n+1â^'1} and {2nâ^'1, 2n, 2n+1, 2nâ^'1â^'1}. IEE Proceedings: Computers and Digital Techniques, 2005, 152, 687.	1.6	63
202	AN ULTRA LOW-POWER CURRENT-MODE SENSE AMPLIFIER FOR SRAM APPLICATIONS. Journal of Circuits, Systems and Computers, 2005, 14, 939-951.	1.5	14
203	Fuzzy-ART based adaptive digital watermarking scheme. IEEE Transactions on Circuits and Systems for Video Technology, 2005, 15, 65-81.	8.3	45
204	Self-Organizing Topological Tree for Online Vector Quantization and Data Clustering. IEEE Transactions on Systems, Man, and Cybernetics, 2005, 35, 515-526.	5.0	24
205	Modified reduced adder graph algorithm for multiplierless FIR filters. Electronics Letters, 2005, 41, 302.	1.0	11
206	A review of 0.18-/spl mu/m full adder performances for tree structured arithmetic circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2005, 13, 686-695.	3.1	294
207	New Adaptive Color Quantization Method Based on Self-Organizing Maps. IEEE Transactions on Neural Networks, 2005, 16, 237-249.	4.2	89
208	Contention resolution algorithm for common subexpression elimination in digital filter design. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2005, 52, 695-700.	2.2	47
209	VLSI Performance Evaluation and Analysis of Systolic and Semisystolic Finite Field Multipliers. Lecture Notes in Computer Science, 2005, , 693-706.	1.3	2
210	Algorithm and architecture for a high density, low power scalar product macrocell. IEE Proceedings: Computers and Digital Techniques, 2004, 151, 161.	1.6	4
211	Ultra Low-Voltage Low-Power CMOS 4-2 and 5-2 Compressors for Fast Arithmetic Circuits. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2004, 51, 1985-1997.	0.1	296
212	An efficient reverse converter for the 4-moduli set $[2/\sup n/-1, 2/\sup n, 2/\sup n + 1, 2/\sup 2n/+1]$ based on the new chinese remainder theorem. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2003, 50, 1296-1303.	0.1	98
213	Field programable gate array based architecture for real time image segmentation by region growing algorithm. Journal of Electronic Imaging, 2002, 11, 469.	0.9	1
214	Boolean Matching Filters Based on Row and Column Weights of Reed–Muller Polarity Coefficient Matrix. VLSI Design, 2002, 14, 259-271.	0.5	2
215	Generalised k-variable-mixed-polarity Reed–Muller expansions for system of Boolean functions and their minimisation. IET Circuits, Devices and Systems, 2000, 147, 201.	0.6	6
216	Minimization of k-Variable-Mixed-Polarity Reed-Muller Expansions. VLSI Design, 2000, 11, 311-320.	0.5	4

#	Article	IF	Citations
217	An Efficient Algorithm for the Calculation of Generalized Adding and Arithmetic Transforms From Disjoint Cubes of Boolean Functions. VLSI Design, 1999, 9, 135-146.	0.5	3
218	NPN classification using weight and literal vectors of Reed-Muller expansion. Electronics Letters, 1999, 35, 798.	1.0	5
219	Hadamard–Walsh spectral characterization of Reed–Muller expansions. Computers and Electrical Engineering, 1999, 25, 111-134.	4.8	8
220	Paired Haar spectra computation through operations on disjoint cubes. IET Circuits, Devices and Systems, 1999, 146, 117.	0.6	12
221	Haar spectra-based entropy approach to quasi-minimisation of FBDDs. IEE Proceedings: Computers and Digital Techniques, 1999, 146, 41.	1.6	5
222	Mutual conversions between generalised arithmetic expansions and free binary decision diagrams. IET Circuits, Devices and Systems, 1998, 145, 219.	0.6	9
223	Logical manipulations and design of tributary networks in the arithmetic spectral domain. IEE Proceedings: Computers and Digital Techniques, 1998, 145, 347.	1.6	1
224	Adaptive exact optimisation of minimally testable FPRM expansions. IEE Proceedings: Computers and Digital Techniques, 1998, 145, 385.	1.6	11
225	Efficient calculation of Gray code-ordered Walsh spectra through algebraic decision diagrams. Electronics Letters, 1998, 34, 848.	1.0	1
226	Efficient symbolic computation of generalised spectra. Electronics Letters, 1997, 33, 1837.	1.0	2
227	Forward and inverse transformations between Haar spectra and ordered binary decision diagrams of Boolean functions. IEEE Transactions on Computers, 1997, 46, 1272-1279.	3.4	25
228	Properties and methods of calculating generalised arithmetic and adding transforms. IET Circuits, Devices and Systems, 1997, 144, 249.	0.6	13
229	An exact minimizer of fixed polarity Reed-Muller expansions. International Journal of Electronics, 1995, 79, 389-409.	1.4	14
230	Flexible optimization of fixed polarity Reed-Muller expansions for multiple output completely and incompletely specified Boolean functions. , 1995 , , .		10
231	DESIGN AND PERFORMANCE OF A NEW MULTI-LANE AVI SYSTEM. I V H S Journal, 1993, 1, 151-166.	0.2	3
232	A novel low power low voltage full adder cell. , 0, , .		6
233	FPGA implementation of a frequency adaptive learning SOFM for digital color still imaging. , 0, , .		1
234	An effective computer algorithm for the calculation of disjoint cube representation of Boolean functions. , 0 , , .		8

#	Article	IF	CITATIONS
235	A novel paired Haar based transform: algorithms and interpretations in Boolean domain. , 0, , .		12
236	Efficient algorithms for the calculation of arithmetic spectrum from OBDD and synthesis of OBDD from arithmetic spectrum for incompletely specified Boolean functions. , 0, , .		21
237	Efficient algorithms for the calculation of Walsh spectrum from OBDD and synthesis of OBDD from Walsh spectrum for incompletely specified Boolean functions. , 0, , .		8
238	Efficient Algorithms for Forward and Inverse Transformations between Haar Spectrum and Binary Decisi. , 0, , .		9
239	Generation of multi-polarity arithmetic transform from reduced representation of Boolean functions. , 0, , .		12
240	Flexible optimization of fixed polarity Reed-Muller expansions for multiple output completely and incompletely specified Boolean functions. , 0 , , .		2
241	Fast generalized arithmetic and adding transforms. , 0, , .		10
242	Operations on Boolean functions and variables in spectral domain of arithmetic transform. , 0, , .		6
243	Properties and applications of paired Haar transform. , 0, , .		5
244	Calculation of arithmetic spectra from free binary decision diagrams. , 0, , .		6
245	In-place transformation of generalized and complex spectra through algebraic decision diagrams. , 0, , .		4
246	Boolean matching for generic FPGAs., 0,,.		0
247	Generation of quasi-optimal FBDDs through paired Haar spectra. , 0, , .		2
248	Calculation of paired Haar spectra for systems of incompletely specified Boolean functions. , 0, , .		5
249	Reed-Muller weight and literal vectors for NPN classification. , 0, , .		3
250	Optimization of partially-mixed-polarity Reed-Muller expansions. , 0, , .		2
251	An efficient architecture for adaptive progressive thresholding. , 0, , .		O
252	An interconnect optimized floorplanning of a scalar product macrocell. , 0, , .		1

#	Article	IF	CITATIONS
253	On the initialization and training methods for Kohonen self-organizing feature maps in color image quantization. , 0 , , .		8
254	A MSB-biased self-organizing feature map for still color image compression. , 0, , .		3
255	Ultra low voltage, low power 4-2 compressor for high speed multiplications. , 0, , .		12
256	Design of a high speed reverse converter for a new 4-moduli set residue number system., 0,,.		0
257	A novel hybrid pass logic with static CMOS output drive full-adder cell. , 0, , .		40
258	Adder based residue to binary converters for a new balanced 4-moduli set., 0,,.		7
259	An adaptive initialization technique for color quantization by self organizing feature map. , 0, , .		1
260	Low voltage, low power (5:2) compressor cell for fast arithmetic circuits. , 0, , .		7
261	A hybrid CSA tree for merged arithmetic architecture of FIR filter. , 0, , .		1
262	An alternative scheme of redundant binary multiplier. , 0, , .		1
263	Design of residue-to-binary converter for a new 5-moduli superset residue number system. , 0, , .		3
264	Frequency sensitive self-organizing maps and its application in color quantization. , 0, , .		1
265	Performance Evaluation of Direct Form FIR Filter with Merged Arithmetic Architecture. , 0, , .		2
266	Self-organizing topological tree. , 0, , .		5
267	Local Search Method for FIR Filter Coefficients Synthesis. , 0, , .		4
268	HWP: a new insight into canonical signed digit., 0,,.		6
269	A modified reduced adder graph algorithm for multiplier block minimization in digital filters. , 0, , .		2
270	Efficient algorithms for common subexpression elimination in digital filter design. , 0, , .		6

#	Article	IF	CITATIONS
271	A New Method for Eye Extraction from Facial Image. , 0, , .		8
272	A new contention resolution algorithm for the design of minimal logic depth multiplierless filters. , 0, , .		4
273	A New Formulation of Fast Diminished-One Multioperand Modulo 2>sup <n>/sup<+ 1 ADDER., 0,,.</n>		1
274	A New Design Method to Modulo 2>sup <n>/sup<-1 Squaring., 0,,.</n>		4
275	I> $\sup <2$ / $\sup <$ CRA: Contention Resolution Algorithm for Intra- and Inter-Coefficient Common Subexpression Elimination. , 0, , .		0
276	A Configurable Dual Moduli Multi-Operand Modulo Adder. , 0, , .		9
277	Wavelet Transform to Hybrid Support Vector Machine and Hidden Markov Model for Speech Recognition. , 0, , .		3
278	A Novel Covalent Redundant Binary Booth Encoder. , 0, , .		4
279	A Versatile Speech Enhancment System Based on Perceptual Wavelet Denoising. , 0, , .		8
280	An Area Efficient 64-bit Square Root Carry-select Adder for Low Power Applications. , 0, , .		51
281	A Novel Multiplexer Based Truncated Array Multiplier., 0, , .		5
282	Maximum likelihood disjunctive decomposition to reduced multirooted DAG for FIR filter design. , 0, , .		2
283	A low-power, high-speed RB-to-NB converter for fast redundant binary multiplier. , 0, , .		O
284	A new integrated approach to the design of low-complexity FIR filters. , 0, , .		1
285	A Kalman filter based on wavelet filter-bank and psychoacoustic modeling for speech enhancement. , 0,		0
286	A novel hybrid neuro-wavelet system for robust speech recognition. , 0, , .		0
287	Stego-signature at logic synthesis level for digital design IP protection. , 0, , .		10
288	Fuzzy-ART based digital watermarking scheme., 0,,.		2