
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6651386/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts. Nano Research, 2022, 15, 2773-2809.	10.4	69
2	Engineering vacancy and hydrophobicity of two-dimensional TaTe2 for efficient and stable electrocatalytic N2 reduction. Innovation(China), 2022, 3, 100190.	9.1	16
3	Cadmium-based metalâ^'organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range. Chinese Journal of Chemical Engineering, 2022, 43, 143-151.	3.5	12
4	Design of Porous Core–Shell Manganese Oxides to Boost Electrocatalytic Dinitrogen Reduction. ACS Sustainable Chemistry and Engineering, 2022, 10, 1316-1322.	6.7	14
5	Crystal structure dependent cation exchange reactions in Cu _{2â^'<i>x</i>} S nanoparticles. Nanoscale, 2022, 14, 3907-3916.	5.6	4
6	Facile Synthesis of Fe@C Loaded on <i>g</i> -C ₃ N ₄ for CO ₂ Electrochemical Reduction to CO with Low Overpotential. ACS Omega, 2022, 7, 11158-11165.	3.5	4
7	Integration of ultrafine CuO nanoparticles with two-dimensional MOFs for enhanced electrochemical CO2 reduction to ethylene. Chinese Journal of Catalysis, 2022, 43, 1049-1057.	14.0	39
8	Interface engineered Sb2O3/W18O49 heterostructure for enhanced visible-light-driven photocatalytic N2 reduction. Chemical Engineering Journal, 2022, 438, 135485.	12.7	21
9	Effects of Chlorella vulgaris Enhancement on Endogenous Microbial Degradation of Marine Oil Spills and Community Diversity. Microorganisms, 2022, 10, 905.	3.6	4
10	Label-Free ZnIn2S4/UiO-66-NH2 Modified Glassy Carbon Electrode for Electrochemically Assessing Fish Freshness by Monitoring Xanthine and Hypoxanthine. Chemosensors, 2022, 10, 158.	3.6	4
11	Selective Electroreduction of CO ₂ and CO to C ₂ H ₄ by Synergistically Tuning Nanocavities and the Surface Charge of Copper Oxide. ACS Sustainable Chemistry and Engineering, 2022, 10, 6466-6475.	6.7	13
12	Mechanical properties of <scp>in situ</scp> modified graphene <scp>nanosheetsâ€reinforced</scp> polypropylene. Polymer Composites, 2022, 43, 4687-4699.	4.6	10
13	Engineering the CuO–HfO ₂ interface toward enhanced CO ₂ electroreduction to C ₂ H ₄ . Chemical Communications, 2022, 58, 7412-7415.	4.1	12
14	Manipulating Cation Exchange Reactions in Cu _{2–<i>x</i>} S Nanoparticles via Crystal Structure Transformation. Inorganic Chemistry, 2022, 61, 9063-9072.	4.0	3
15	Electrocatalytic coupling of CO2 and N2 for urea synthesis. Current Opinion in Green and Sustainable Chemistry, 2022, 37, 100648.	5.9	11
16	Single Nb atom modified anatase TiO2(110) for efficient electrocatalytic nitrogen reduction reaction. Chem Catalysis, 2022, 2, 2275-2288.	6.1	18
17	Earth-abundant coal-derived carbon nanotube/carbon composites as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Journal of Energy Chemistry, 2021, 56, 87-97.	12.9	32
18	Effective Visible Light-Driven Photocatalytic Degradation of Ciprofloxacin over Flower-like Fe ₃ O ₄ /Bi ₂ WO ₆ Composites. ACS Omega, 2021, 6, 1647-1656.	3.5	57

#	Article	IF	CITATIONS
19	Enhanced electrochemical CO2 reduction to ethylene over CuO by synergistically tuning oxygen vacancies and metal doping. Cell Reports Physical Science, 2021, 2, 100356.	5.6	39
20	Facile synthesis of two-dimensional copper terephthalate for efficient electrocatalytic CO ₂ reduction to ethylene. Journal of Experimental Nanoscience, 2021, 16, 246-254.	2.4	7
21	Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design. CheM, 2021, 7, 1708-1754.	11.7	253
22	Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives. Chinese Journal of Catalysis, 2021, 42, 1903-1920.	14.0	45
23	Enhanced durability of nitric oxide removal on TiO2 (P25) under visible light: Enabled by the direct Z-scheme mechanism and enhanced structure defects through coupling with C3N5. Applied Catalysis B: Environmental, 2021, 296, 120372.	20.2	96
24	Encapsulated Ni@La2O3/SiO2 Catalyst with a One-Pot Method for the Dry Reforming of Methane. Catalysts, 2020, 10, 38.	3.5	14
25	Activation of Ni Particles into Single Ni–N Atoms for Efficient Electrochemical Reduction of CO ₂ . Advanced Energy Materials, 2020, 10, 1903068.	19.5	210
26	Reduced graphene oxides with engineered defects enable efficient electrochemical reduction of dinitrogen to ammonia in wide pH range. Nano Energy, 2020, 68, 104323.	16.0	64
27	Surface-engineered oxidized two-dimensional Sb for efficient visible light-driven N2 fixation. Nano Energy, 2020, 78, 105368.	16.0	37
28	One-Step Synthesis of Highly Dispersed and Stable Ni Nanoparticles Confined by CeO2 on SiO2 for Dry Reforming of Methane. Energies, 2020, 13, 5956.	3.1	9
29	Recent Advances in Electrode Materials for Electrochemical CO2Reduction. ACS Symposium Series, 2020, , 49-91.	0.5	1
30	Single yttrium sites on carbon-coated TiO ₂ for efficient electrocatalytic N ₂ reduction. Chemical Communications, 2020, 56, 10910-10913.	4.1	31
31	Facile Synthesis of the Amorphous Carbon Coated Fe-N-C Nanocatalyst with Efficient Activity for Oxygen Reduction Reaction in Acidic and Alkaline Media. Materials, 2020, 13, 4551.	2.9	8
32	Stabilization of Cu ⁺ by tuning a CuO–CeO ₂ interface for selective electrochemical CO ₂ reduction to ethylene. Green Chemistry, 2020, 22, 6540-6546.	9.0	98
33	Three-Dimensional Mesoporous Ni-CeO2 Catalysts with Ni Embedded in the Pore Walls for CO2 Methanation. Catalysts, 2020, 10, 523.	3.5	19
34	Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2. Applied Catalysis B: Environmental, 2020, 277, 119241.	20.2	109
35	Application of two-dimensional materials for electrochemical carbon dioxide reduction. , 2020, , 289-326.		1
36	An efficient pH-universal electrocatalyst for oxygen reduction: defect-rich graphitized carbon shell wrapped cobalt within hierarchical porous N-doped carbon aerogel. Materials Today Energy, 2020, 17, 100452.	4.7	17

#	Article	IF	CITATIONS
37	Achieving Highly Selective Electrocatalytic CO ₂ Reduction by Tuning CuO-Sb ₂ O ₃ Nanocomposites. ACS Sustainable Chemistry and Engineering, 2020, 8, 4948-4954.	6.7	33
38	Two-dimensional materials for energy conversion and storage. Progress in Materials Science, 2020, 111, 100637.	32.8	134
39	Photocatalytic Reduction of CO ₂ by Metalâ€Freeâ€Based Materials: Recent Advances and Future Perspective. Solar Rrl, 2020, 4, 1900546.	5.8	177
40	Metal-Tuned W ₁₈ O ₄₉ for Efficient Electrocatalytic N ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 2957-2963.	6.7	39
41	Trace metals dramatically boost oxygen electrocatalysis of N-doped coal-derived carbon for zinc–air batteries. Nanoscale, 2020, 12, 9628-9639.	5.6	24
42	Efficient Electrochemical Reduction of CO ₂ by Ni–N Catalysts with Tunable Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 15030-15035.	6.7	40
43	ZIF-67-Derived Cobalt/Nitrogen-Doped Carbon Composites for Efficient Electrocatalytic N ₂ Reduction. ACS Applied Energy Materials, 2019, 2, 6071-6077.	5.1	67
44	Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction. Applied Catalysis B: Environmental, 2019, 257, 117896.	20.2	220
45	Efficient bifunctional Co/N dual-doped carbon electrocatalysts for oxygen reduction and evolution reaction. Carbon, 2019, 153, 575-584.	10.3	59
46	Supercritical Fluidâ€Facilitated Exfoliation and Processing of 2D Materials. Advanced Science, 2019, 6, 1901084.	11.2	65
47	Single Sb sites for efficient electrochemical CO ₂ reduction. Chemical Communications, 2019, 55, 12024-12027.	4.1	65
48	Efficient visible-light driven N ₂ fixation over two-dimensional Sb/TiO ₂ composites. Chemical Communications, 2019, 55, 7171-7174.	4.1	46
49	Oxygen vacancy enables electrochemical N2 fixation over WO3 with tailored structure. Nano Energy, 2019, 62, 869-875.	16.0	150
50	Synthesis of Fe2O3 loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia. Chemical Engineering Journal, 2019, 373, 572-579.	12.7	181
51	High-yield production of few-layer boron nanosheets for efficient electrocatalytic N ₂ reduction. Chemical Communications, 2019, 55, 4246-4249.	4.1	96
52	Liquid Exfoliation of Two-Dimensional PbI ₂ Nanosheets for Ultrafast Photonics. ACS Photonics, 2019, 6, 1051-1057.	6.6	28
53	Graphene-based materials for electrochemical CO2 reduction. Journal of CO2 Utilization, 2019, 30, 168-182.	6.8	87
54	Graphene and its Hybrids for Photocatalysis. Current Graphene Science, 2019, 2, 79-96.	0.5	1

#	Article	IF	CITATIONS
55	Photocatalytic Fixation of Nitrogen to Ammonia by Single Ru Atom Decorated TiO ₂ Nanosheets. ACS Sustainable Chemistry and Engineering, 2019, 7, 6813-6820.	6.7	142
56	Synergistic catalysis of CuO/In ₂ O ₃ composites for highly selective electrochemical CO ₂ reduction to CO. Chemical Communications, 2019, 55, 12380-12383.	4.1	32
57	Atomically Dispersed Nickel Sites for Selective Electroreduction of CO ₂ . ACS Applied Energy Materials, 2019, 2, 8836-8842.	5.1	16
58	The complete mitochondrial genome of <i>ostorhinchus fleurieu</i> (kurtiformes: Apogonidae) and phylogenetic studies of apogoninae. Mitochondrial DNA Part B: Resources, 2019, 4, 3691-3692.	0.4	5
59	Ultrasound-Assisted Nitrogen and Boron Codoping of Graphene Oxide for Efficient Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 3434-3442.	6.7	49
60	Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction. CheM, 2019, 5, 204-214.	11.7	739
61	Single-atom catalysis for electrochemical CO2 reduction. Current Opinion in Green and Sustainable Chemistry, 2019, 16, 1-6.	5.9	65
62	Supercritical diethylamine facilitated loading of ultrafine Ru particles on few-layer graphene for solvent-free hydrogenation of levulinic acid to <i>γ</i> -valerolactone. Nanotechnology, 2018, 29, 075708.	2.6	6
63	Nitrogen-doped and nanostructured carbons with high surface area for enhanced oxygen reduction reaction. Carbon, 2018, 126, 111-118.	10.3	63
64	Katalyse der Kohlenstoffdioxidâ€₽hotoreduktion an Nanoschichten: Grundlagen und Herausforderungen. Angewandte Chemie, 2018, 130, 7734-7752.	2.0	27
65	Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges. Angewandte Chemie - International Edition, 2018, 57, 7610-7627.	13.8	361
66	Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO ₂ to CO. Chemical Science, 2018, 9, 483-487.	7.4	93
67	Carbon-supported Ni nanoparticles for efficient CO ₂ electroreduction. Chemical Science, 2018, 9, 8775-8780.	7.4	179
68	Simple synthesis of two-dimensional MoP2 nanosheets for efficient electrocatalytic hydrogen evolution. Electrochemistry Communications, 2018, 97, 27-31.	4.7	9
69	Electrochemical CO2 reduction to C2+ species: Heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Materials Today Energy, 2018, 10, 280-301.	4.7	188
70	Lignosulfonate biomass derived N and S co-doped porous carbon for efficient oxygen reduction reaction. Sustainable Energy and Fuels, 2018, 2, 1820-1827.	4.9	37
71	Tuning the Pd-catalyzed electroreduction of CO ₂ to CO with reduced overpotential. Catalysis Science and Technology, 2018, 8, 3894-3900.	4.1	24
72	New solvent-stabilized few-layer black phosphorus for antibacterial applications. Nanoscale, 2018, 10, 12543-12553.	5.6	74

#	Article	IF	CITATIONS
73	Heterogeneous Catalysis of CO ₂ Hydrogenation to C ₂₊ Products. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 858-872.	4.9	41
74	N-Doping of graphene oxide at low temperature for the oxygen reduction reaction. Chemical Communications, 2017, 53, 873-876.	4.1	121
75	Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. Journal of Materials Chemistry A, 2017, 5, 7257-7284.	10.3	220
76	Heterogeneous electrochemical CO ₂ reduction using nonmetallic carbon-based catalysts: current status and future challenges. Nanotechnology, 2017, 28, 472001.	2.6	87
77	Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials. CheM, 2017, 3, 560-587.	11.7	815
78	Nonlinear Absorption Induced Transparency and Optical Limiting of Black Phosphorus Nanosheets. ACS Photonics, 2017, 4, 3063-3070.	6.6	92
79	Exfoliation of Stable 2D Black Phosphorus for Device Fabrication. Chemistry of Materials, 2017, 29, 6445-6456.	6.7	66
80	Scalable exfoliation and dispersion of two-dimensional materials – an update. Physical Chemistry Chemical Physics, 2017, 19, 921-960.	2.8	261
81	Graphene/Porous Beta TiO2 Nanocomposites Prepared Through a Simple Hydrothermal Method. Current Graphene Science, 2017, 1, .	0.5	3
82	Hydrazineâ€Assisted Liquid Exfoliation of MoS ₂ for Catalytic Hydrodeoxygenation of 4â€Methylphenol. Chemistry - A European Journal, 2016, 22, 2910-2914.	3.3	52
83	Few-layer graphene modified with nitrogen-rich metallo-macrocyclic complexes as precursor for bifunctional oxygen electrocatalysts. Electrochimica Acta, 2016, 222, 1191-1199.	5.2	15
84	Oneâ€Pot Synthesis of Carbonâ€Coated Nanostructured Iron Oxide on Fewâ€Layer Graphene for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2015, 21, 16154-16161.	3.3	12
85	High-quality functionalized few-layer graphene: facile fabrication and doping with nitrogen as a metal-free catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 15444-15450.	10.3	53
86	Preparation of Fe3O4/MnOOH core–shell nanoparticles by a high-frequency impinging stream reactor. Chinese Journal of Chemical Engineering, 2015, 23, 727-735.	3.5	3
87	Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Current Opinion in Colloid and Interface Science, 2015, 20, 311-321.	7.4	101
88	Mn _{<i>x</i>} O _{<i>y</i>} /NC and Co _{<i>x</i>} O _{<i>y</i>} /NC Nanoparticles Embedded in a Nitrogenâ€Đoped Carbon Matrix for Highâ€Performance Bifunctional Oxygen Electrodes. Angewandte Chemie - International Edition, 2014, 53, 8508-8512.	13.8	482
89	Hollow and Yolkâ€5hell Iron Oxide Nanostructures on Few‣ayer Graphene in Liâ€Ion Batteries. Chemistry - A European Journal, 2014, 20, 2022-2030.	3.3	37
90	A carbon-coated TiO2(B) nanosheet composite for lithium ion batteries. Chemical Communications, 2014, 50, 5506.	4.1	45

#	Article	IF	CITATIONS
91	High oncentration Graphene Dispersions with Minimal Stabilizer: A Scaffold for Enzyme Immobilization for Glucose Oxidation. Chemistry - A European Journal, 2014, 20, 5752-5761.	3.3	43
92	Amine-based solvents for exfoliating graphite to graphene outperform the dispersing capacity of N-methyl-pyrrolidone and surfactants. Chemical Communications, 2014, 50, 10382-10385.	4.1	35
93	High-yield exfoliation of graphite in acrylate polymers: A stable few-layer graphene nanofluid with enhanced thermal conductivity. Carbon, 2013, 64, 288-294.	10.3	71
94	Trace metal residues promote the activity of supposedly metal-free nitrogen-modified carbon catalysts for the oxygen reduction reaction. Electrochemistry Communications, 2013, 34, 113-116.	4.7	124
95	Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications. Carbon, 2013, 62, 182-192.	10.3	39
96	Nanostructured Few-Layer Graphene with Superior Optical Limiting Properties Fabricated by a Catalytic Steam Etching Process. Journal of Physical Chemistry C, 2013, 117, 11811-11817.	3.1	29
97	Rapid and Surfactant-Free Synthesis of Bimetallic Pt–Cu Nanoparticles Simply via Ultrasound-Assisted Redox Replacement. ACS Catalysis, 2012, 2, 1647-1653.	11.2	54
98	Ionic liquid-stabilized graphene and its use in immobilizing a metal nanocatalyst. RSC Advances, 2012, 2, 8189.	3.6	32
99	Highly Concentrated Aqueous Dispersions of Graphene Exfoliated by Sodium Taurodeoxycholate: Dispersion Behavior and Potential Application as a Catalyst Support for the Oxygenâ€Reduction Reaction. Chemistry - A European Journal, 2012, 18, 6972-6978.	3.3	76
100	Thermal-Stable Carbon Nanotube-Supported Metal Nanocatalysts by Mesoporous Silica Coating. Langmuir, 2011, 27, 6244-6251.	3.5	28
101	Ptâ^'Ru/CeO ₂ /Carbon Nanotube Nanocomposites: An Efficient Electrocatalyst for Direct Methanol Fuel Cells. Langmuir, 2010, 26, 12383-12389.	3.5	86
102	New Solvents for Nanotubes: Approaching the Dispersibility of Surfactants. Journal of Physical Chemistry C, 2010, 114, 231-237.	3.1	108
103	Supercritical CO2-facilitating large-scale synthesis of CeO2 nanowires and their application for solvent-free selective hydrogenation of nitroarenes. Journal of Materials Chemistry, 2010, 20, 1947.	6.7	49
104	In Situ Controllable Loading of Ultrafine Noble Metal Particles on Titania. Journal of the American Chemical Society, 2009, 131, 6648-6649.	13.7	135
105	High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008, 3, 563-568.	31.5	5,431
106	Synthesis of ZrO2â^'Carbon Nanotube Composites and Their Application as Chemiluminescent Sensor Material for Ethanol. Journal of Physical Chemistry B, 2006, 110, 13410-13414.	2.6	97
107	Decoration carbon nanotubes with Pd and Ru nanocrystals via an inorganic reaction route in supercritical carbon dioxide–methanol solution. Journal of Colloid and Interface Science, 2006, 304, 323-328.	9.4	68