Jitsuo Ohta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6650864/publications.pdf

Version: 2024-02-01

133 papers	2,431 citations	27 h-index	276875 41 g-index
135	135	135	1519
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fabrication of full-color InGaN-based light-emitting diodes on amorphous substrates by pulsed sputtering. Scientific Reports, 2014, 4, 5325.	3.3	115
2	Room-temperature epitaxial growth of AlN films. Applied Physics Letters, 2002, 81, 2373-2375.	3.3	84
3	Room Temperature Layer by Layer Growth of GaN on Atomically Flat ZnO. Japanese Journal of Applied Physics, 2004, 43, L53-L55.	1.5	76
4	Room temperature epitaxial growth of m-plane GaN on lattice-matched ZnO substrates. Applied Physics Letters, 2007, 90, 041908.	3.3	71
5	Polarity control of GaN grown on ZnO (0001¯) surfaces. Applied Physics Letters, 2006, 88, 181907.	3.3	69
6	Experimental and theoretical investigation on the structural properties of GaN grown on sapphire. Applied Physics Letters, 2003, 83, 3075-3077.	3.3	62
7	Low temperature epitaxial growth of In0.25Ga0.75N on lattice-matched ZnO by pulsed laser deposition. Journal of Applied Physics, 2006, 99, 123513.	2.5	61
8	Room-temperature epitaxial growth of GaN on lattice-matched ZrB2 substrates by pulsed-laser deposition. Applied Physics Letters, 2005, 87, 221907.	3.3	57
9	Room-Temperature Epitaxial Growth of High Quality AlN on SiC by Pulsed Sputtering Deposition. Applied Physics Express, 2009, 2, 011003.	2.4	57
10	Electrical properties of Si-doped GaN prepared using pulsed sputtering. Applied Physics Letters, 2017, 110 , .	3.3	56
11	Room-temperature epitaxial growth of GaN on conductive substrates. Applied Physics Letters, 2003, 83, 3060-3062.	3.3	55
12	High hole mobility p-type GaN with low residual hydrogen concentration prepared by pulsed sputtering. APL Materials, 2016, 4, 086103.	5.1	55
13	Epitaxial growth of AlN on (La,Sr)(Al,Ta)O3 substrate by laser MBE. Journal of Crystal Growth, 2001, 225, 73-78.	1.5	54
14	Dramatic reduction in process temperature of InGaN-based light-emitting diodes by pulsed sputtering growth technique. Applied Physics Letters, 2014, 104, 051121.	3.3	45
15	RHEED and XPS study of GaN on Si(111) grown by pulsed laser deposition. Journal of Crystal Growth, 2001, 233, 779-784.	1.5	41
16	Field-effect transistors based on cubic indium nitride. Scientific Reports, 2015, 4, 3951.	3.3	40
17	Growth of GaN on NdGaO3 substrates by pulsed laser deposition. Thin Solid Films, 2002, 407, 114-117.	1.8	38
18	Investigation of the initial stage of GaN epitaxial growth on 6H-SiC (0001) at room temperature. Applied Physics Letters, 2006, 89, 031916.	3.3	36

#	Article	IF	CITATIONS
19	Electron transport properties of degenerate $\langle i \rangle n \langle i \rangle$ -type GaN prepared by pulsed sputtering. APL Materials, 2017, 5, .	5.1	34
20	Low temperature epitaxial growth of GaN films on LiGaO2 substrates. Applied Physics Letters, 2007, 90, 211913.	3.3	33
21	Epitaxial growth of semiconductors on SrTiO3 substrates. Journal of Crystal Growth, 2001, 229, 137-141.	1.5	31
22	Structural properties of GaN films grown on multilayer graphene films by pulsed sputtering. Applied Physics Express, 2014, 7, 085502.	2.4	30
23	Characterization of hetero-interfaces between group III nitrides formed by PLD and various substrates. Applied Surface Science, 2002, 190, 352-355.	6.1	29
24	Growth of epitaxial AlN films on (Mn,Zn)Fe2O4 substrates by pulsed laser deposition. Applied Surface Science, 2002, 197-198, 486-489.	6.1	29
25	InN epitaxial growths on Yttria stabilized zirconia (111) step substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 2487-2489.	2.1	29
26	AlGaN/GaN heterostructure prepared on a Si (110) substrate <i>via</i> pulsed sputtering. Applied Physics Letters, 2014, 104, .	3.3	29
27	Highly conductive Ge-doped GaN epitaxial layers prepared by pulsed sputtering. Applied Physics Express, 2017, 10, 101002.	2.4	29
28	Room temperature epitaxial growth of AlGaN on ZnO by pulsed laser deposition. Applied Physics Letters, 2006, 89, 111918.	3.3	27
29	Epitaxial growth of nonpolar AlN films on ZnO substrates using room temperature grown GaN buffer layers. Applied Physics Letters, 2007, 91, 081915.	3.3	25
30	Epitaxial growth of GaN films grown on single crystal Fe substrates. Applied Physics Letters, 2008, 93, 251906.	3.3	25
31	CAICISS characterization of GaN films grown by pulsed laser deposition. Journal of Crystal Growth, 2002, 237-239, 1153-1157.	1.5	24
32	Characteristics of Single Crystal ZnO Annealed in a Ceramic ZnO Box and Its Application for Epitaxial Growth of GaN. Japanese Journal of Applied Physics, 2006, 45, 5724-5727.	1.5	24
33	Growth of single crystalline GaN on silver mirrors. Applied Physics Letters, 2007, 91, 201920.	3.3	24
34	Band offsets of polar and nonpolar GaN/ZnO heterostructures determined by synchrotron radiation photoemission spectroscopy. Physica Status Solidi (B): Basic Research, 2011, 248, 956-959.	1.5	24
35	Growth of GaN on nearly lattice matched MnO substrates by pulsed laser deposition. Applied Surface Science, 2002, 197-198, 384-386.	6.1	23
36	Growth temperature dependence of structural properties for AlN films grown on (Mn,Zn)Fe2O4 substrates. Thin Solid Films, 2003, 435, 218-221.	1.8	23

#	Article	IF	Citations
37	Growth of a-plane GaN on lattice-matched ZnO substrates using a room-temperature buffer layer. Applied Physics Letters, 2007, 91, .	3.3	22
38	Epitaxial growth mechanisms of AlN on SiC substrates at room temperature. Applied Physics Letters, 2007, 91, 151903.	3.3	22
39	Characterization of strain distribution in quantum dots by X-ray diffraction. Journal of Crystal Growth, 2002, 234, 197-201.	1.5	21
40	Growth of AlN on lattice-matched MnO substrates by pulsed laser deposition. Thin Solid Films, 2003, 435, 215-217.	1.8	20
41	Epitaxial growth of AlN on single-crystal Ni(111) substrates. Applied Physics Letters, 2006, 88, 121916.	3.3	20
42	Epitaxial growth of GaN on single-crystal Mo substrates using HfN buffer layers. Journal of Crystal Growth, 2009, 311, 1311-1315.	1.5	20
43	InN thin-film transistors fabricated on polymer sheets using pulsed sputtering deposition at room temperature. Applied Physics Letters, 2016, 109, 032106.	3.3	20
44	Epitaxial Growth of GaN Film on (La,Sr)(Al,Ta)O3(111) Substrate by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2002, 41, 5038-5041.	1.5	19
45	Layer-by-Layer Growth of AlN on ZnO(000\$ar{1}\$) Substrates at Room Temperature. Japanese Journal of Applied Physics, 2006, 45, L1139-L1141.	1.5	19
46	Fabrication of full-color GaN-based light-emitting diodes on nearly lattice-matched flexible metal foils. Scientific Reports, 2017, 7, 2112.	3.3	19
47	Room-temperature epitaxial growth of AlN on atomically flat MgAl2O4 substrates. Applied Physics Letters, 2006, 89, 182104.	3.3	18
48	Structural properties of GaN grown on Zn-face ZnO at room temperature. Journal of Crystal Growth, 2007, 305, 70-73.	1.5	18
49	Lowâ€temperature growth of high quality AlN films on carbon face 6Hâ€SiC. Physica Status Solidi - Rapid Research Letters, 2008, 2, 13-15.	2.4	17
50	Electron mobility of ultrathin InN on yttria-stabilized zirconia with two-dimensionally grown initial layers. Applied Physics Letters, 2013, 102, 022103.	3.3	17
51	N-polar InGaN-based LEDs fabricated on sapphire via pulsed sputtering. APL Materials, 2017, 5, .	5.1	17
52	GaN heteroepitaxial growth on LiNbO3(0001) step substrates with AlN buffer layers. Physica Status Solidi A, 2005, 202, R145-R147.	1.7	16
53	Characteristics of InGaN with High In Concentrations Grown on ZnO at Low Temperatures. Japanese Journal of Applied Physics, 2006, 45, L611-L613.	1.5	15
54	Room-Temperature Epitaxial Growth of GaN on Atomically Flat MgAl2O4Substrates by Pulsed-Laser Deposition. Japanese Journal of Applied Physics, 2006, 45, L457-L459.	1.5	15

#	Article	IF	CITATIONS
55	Characteristics of InN grown directly on Al2O3 (0001) substrates by pulsed laser deposition. Journal of Crystal Growth, 2009, 311, 1316-1320.	1.5	15
56	Investigation on the conversion efficiency of InGaN solar cells fabricated on GaN and ZnO substrates. Physica Status Solidi - Rapid Research Letters, 2010, 4, 88-90.	2.4	15
57	Electrical properties of amorphous-Al2O3/single-crystal ZnO heterointerfaces. Applied Physics Letters, 2013, 103, 172101.	3.3	15
58	Fabrication of InGaN thin-film transistors using pulsed sputtering deposition. Scientific Reports, 2016, 6, 29500.	3.3	15
59	Growth temperature dependence of structural properties of AlN films on ZnO (0001 \hat{A}) substrates. Applied Physics Letters, 2007, 90, 141908.	3.3	14
60	Room-temperature epitaxial growth of high-qualitym-plane InGaN films on ZnO substrates. Physica Status Solidi - Rapid Research Letters, 2009, 3, 124-126.	2.4	14
61	Structural properties of GaN grown on LiGaO2 by PLD. Journal of Crystal Growth, 2003, 259, 36-39.	1.5	13
62	Epitaxial growth of InN on c-plane sapphire by pulsed laser deposition with r.f. nitrogen radical source. Thin Solid Films, 2004, 457, 109-113.	1.8	13
63	Room temperature growth of semipolar AlN (1\$ ar 1 \$02) films on ZnO (1\$ ar 1 \$02) substrates by pulsed laser deposition. Physica Status Solidi - Rapid Research Letters, 2009, 3, 58-60.	2.4	13
64	Layer-by-Layer Growth of InAlN Films on ZnO(000ar1) Substrates at Room Temperature. Applied Physics Express, 2010, 3, 021001.	2.4	13
65	Effect of growth stoichiometry on the structural properties of AlN films on thermally nitrided sapphire \$(11ar 20)\$. Physica Status Solidi - Rapid Research Letters, 2014, 8, 256-259.	2.4	13
66	Epitaxial growth of InN on nearly lattice-matched (Mn,Zn)Fe2O4. Solid State Communications, 2006, 137, 208-211.	1.9	12
67	Fabrication and Characterization of AlN/InN Heterostructures. Applied Physics Express, 2009, 2, 011002.	2.4	12
68	Electronic structures of c-plane and a-plane AlN/ZnO heterointerfaces determined by synchrotron radiation photoemission spectroscopy. Applied Physics Letters, 2010, 97, 252111.	3.3	12
69	Room-Temperature Epitaxial Growth of High-Quality m-Plane InAlN Films on Nearly Lattice-Matched ZnO Substrates. Japanese Journal of Applied Physics, 2010, 49, 070202.	1.5	12
70	Sputter synthesis of wafer-scale hexagonal boron nitride films via interface segregation. APL Materials, 2017, 5, .	5.1	12
71	G-GIXD characterization of GaN grown by laser MBE. Journal of Crystal Growth, 2002, 237-239, 1158-1162.	1.5	11
72	Structural properties of semipolar AlxGa1â^'xN(\$1ar {1}03\$) films grown on ZnO substrates using room temperature epitaxial buffer layers. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2149-2152.	1.8	11

#	Article	IF	CITATIONS
73	Characteristics of AlN Films Grown on Thermally-Nitrided Sapphire Substrates. Applied Physics Express, 2011, 4, 015501.	2.4	11
74	Coherent growth of <i>r</i> â€plane GaN films on ZnO substrates at room temperature. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 834-837.	1.8	11
75	Low-temperature growth of AlN on nearly lattice-matched MnO substrates. Applied Surface Science, 2003, 216, 508-511.	6.1	10
76	Growth temperature dependence of structural properties for single crystalline GaN films on MgAl2O4substrates by pulsed laser deposition. Semiconductor Science and Technology, 2006, 21, 1026-1029.	2.0	10
77	Growth and magnetic properties of zb-type MnAs films on GaAs substrates by high-temperature MBE. Journal of Crystal Growth, 2008, 310, 4535-4538.	1.5	10
78	High-current-density indium nitride ultrathin-film transistors on glass substrates. Applied Physics Letters, 2016, 109, 142104.	3.3	10
79	Heteroepitaxial growth of gallium nitride on muscovite mica plates by pulsed laser deposition. Solid State Communications, 2005, 136, 338-341.	1.9	9
80	Epitaxial growth of AlN films on Rh ultraviolet mirrors. Applied Physics Letters, 2007, 91, 131910.	3.3	9
81	Polarity Dependence of Structural and Electronic Properties of Al\$_{2}\$O\$_{3}\$/InN Interfaces. Applied Physics Express, 2011, 4, 091002.	2.4	9
82	Characteristics of GaN/ZrB2Heterointerfaces Prepared by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2006, 45, 6893-6896.	1.5	8
83	Epitaxial growth of InN films on lattice-matched EuN buffer layers. Journal of Crystal Growth, 2009, 311, 4483-4485.	1.5	8
84	Growth of cubic InN films with high phase purity by pulsed laser deposition. Journal of Crystal Growth, 2009, 311, 3130-3132.	1.5	8
85	Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition. Applied Physics Express, 2010, 3, 021003.	2.4	8
86	Dependence on composition of the optical polarization properties of m-plane InxGa1â^'xN commensurately grown on ZnO. Applied Physics Letters, 2011, 99, 061912.	3.3	8
87	Epitaxial growth of GaN films on nearly lattice-matched hafnium substrates using a low-temperature growth technique. APL Materials, 2016, 4, .	5.1	8
88	Pulsed sputtering epitaxial growth of m-plane InGaN lattice-matched to ZnO. Scientific Reports, 2017, 7, 12820.	3.3	8
89	Epitaxial growth of AlN films on single-crystalline Ta substrates. Journal of Solid State Chemistry, 2007, 180, 2335-2339.	2.9	7
90	Polarity control and growth mode of InN on yttriaâ€stabilized zirconia (111) surfaces. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2251-2254.	1.8	7

#	Article	IF	CITATIONS
91	Structural Properties ofm-Plane InAlN Films Grown on ZnO Substrates with Room-Temperature GaN Buffer Layers. Applied Physics Express, 2013, 6, 021003.	2.4	7
92	Epitaxial Growth of Thick Polar and Semipolar InN Films on Yttriaâ€Stabilized Zirconia Using Pulsed Sputtering Deposition. Physica Status Solidi (B): Basic Research, 2018, 255, 1700320.	1.5	7
93	Growth of Si-doped AlN on sapphire (0001) via pulsed sputtering. APL Materials, 2018, 6, .	5.1	7
94	Heteroepitaxial growth of GaN on atomically flat LiTaO3 (0001) using low-temperature AIN buffer layers. Journal of Crystal Growth, 2006, 293, 22-26.	1.5	6
95	Growth of group III nitride films by pulsed electron beam deposition. Journal of Solid State Chemistry, 2009, 182, 1241-1244.	2.9	6
96	Structural and Optical Properties of Nonpolar AlN(1120) Films Grown on ZnO(1120) Substrates with a Room-Temperature GaN Buffer Layer. Japanese Journal of Applied Physics, 2010, 49, 060213.	1.5	6
97	Theoretical study of the initial stage of InN growth on cubic zirconia (111) substrates. Physica Status Solidi - Rapid Research Letters, 2013, 7, 207-210.	2.4	6
98	Experimental and theoretical investigation on the structural properties of InN grown on sapphire. Thin Solid Films, 2004, 464-465, 112-115.	1.8	5
99	Characteristics of AlN/Ni(111) Heterostructures and their Application to Epitaxial Growth of GaN. Japanese Journal of Applied Physics, 2006, 45, L396-L398.	1.5	5
100	Epitaxial growth of high purity cubic InN films on MgO substrates using HfN buffer layers by pulsed laser deposition. Journal of Solid State Chemistry, 2009, 182, 2887-2889.	2.9	5
101	Characteristics of Thickm-Plane InGaN Films Grown on ZnO Substrates Using Room Temperature Epitaxial Buffer Layers. Applied Physics Express, 2010, 3, 061001.	2.4	5
102	Growth Orientation Control of Semipolar InN Films Using Yttria-Stabilized Zirconia Substrates. Japanese Journal of Applied Physics, 2010, 49, 080204.	1.5	5
103	Atomic scattering spectroscopy for determination of the polarity of semipolar AlN grown on ZnO. Applied Physics Letters, 2013, 103, .	3.3	5
104	Low-temperature pulsed sputtering growth of InGaN multiple quantum wells for photovoltaic devices. Japanese Journal of Applied Physics, 2017, 56, 031002.	1.5	5
105	GaN Heteroepitaxial Growth on LiTaO3(0001) Step Substrates by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2005, 44, L1522-L1524.	1.5	4
106	Effects of low-temperature-grown buffers on pulsed-laser deposition of GaN on LiNbO3. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 2021-2024.	2.1	4
107	Structural characteristics of semipolar InN (112 <i>l< i>) films grown on yttria stabilized zirconia substrates. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2269-2271.</i>	1.8	4
108	Improvement in the Crystalline Quality of Semipolar AlN(1ar102) Films by Using ZnO Substrates with Self-Organized Nanostripes. Applied Physics Express, 2010, 3, 041002.	2.4	4

#	Article	IF	CITATIONS
109	Polarity replication across m-plane GaN/ZnO interfaces. Applied Physics Letters, 2011, 99, 181910.	3.3	4
110	Theoretical Investigation of the Polarity Determination for <i>c</i> Plane InN Grown on Yttria-Stabilized Zirconia (111) Substrates with Yttrium Surface Segregation. Applied Physics Express, 2013, 6, 021002.	2.4	4
111	Characteristics of AlN buffer layers for GaAs epitaxial growths on MnZn ferrite substrates. Thin Solid Films, 2003, 435, 131-134.	1.8	3
112	Structural characterization of group III nitrides grown by pulsed laser deposition. Thin Solid Films, 2004, 457, 114-117.	1.8	3
113	Analysis of ITO/Mg:GaN interfaces by synchrotron radiation hard X-ray photoemission spectroscopy and their electrical characteristics. Applied Surface Science, 2008, 255, 2149-2152.	6.1	3
114	Characteristics ofm-Plane InN Films Grown on ZnO Substrates at Room Temperature by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2010, 49, 080202.	1.5	3
115	Band Configuration of SiO ₂ /m-Plane ZnO Heterointerface Correlated with Electrical Properties of Al/SiO ₂ /ZnO Structures. Japanese Journal of Applied Physics, 2013, 52, 011101.	1.5	3
116	Characterization of GaN films grown on hafnium foils by pulsed sputtering deposition. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700244.	1.8	3
117	GaN-Based Light-Emitting Diodes with Graphene Buffers for Their Application to Large-Area Flexible Devices. IEICE Transactions on Electronics, 2017, E100.C, 161-165.	0.6	3
118	Optical polarization characteristics of <i>m</i> â€plane InGaN films coherently grown on ZnO substrates. Physica Status Solidi - Rapid Research Letters, 2010, 4, 188-190.	2.4	2
119	Investigation of anisotropic wafer bending curvature in a-plane GaN films grown on r-plane sapphire substrates. Journal of Crystal Growth, 2015, 424, 11-13.	1.5	2
120	Epitaxial growth of In-rich InGaN on yttria-stabilized zirconia and its application to metal–insulator–semiconductor field-effect transistors. Journal of Applied Physics, 2016, 120, 085709.	2.5	2
121	AlN/InAlN thin-film transistors fabricated on glass substrates at room temperature. Scientific Reports, 2019, 9, 6254.	3.3	2
122	Effect of ambient gas on pulsed laser deposition of group III nitrides. Thin Solid Films, 2004, 457, 118-121.	1.8	1
123	Growth of InN films on spinel substrates by pulsed laser deposition. Physica Status Solidi - Rapid Research Letters, 2007, 1, 211-213.	2.4	1
124	Demonstration of enhanced optical polarization for improved deep ultraviolet light extraction in coherently grown semipolar Al0.83Ga0.17N/AlN on ZnO substrates. Applied Physics Letters, 2011, 99, 121906.	3.3	1
125	Fabrication of densely packed arrays of GaN nanostructures on nano-imprinted substrates. Journal of Crystal Growth, 2011, 319, 102-105.	1.5	1
126	Epitaxial growth of semipolar InAlN films on yttria-stabilized zirconia. Physica Status Solidi (B): Basic Research, 2017, 254, 1700211.	1.5	1

#	Article	IF	Citations
127	Improvements in Optical Properties of Semipolarr-Plane GaN Films Grown Using Atomically Flat ZnO Substrates and Room-Temperature Epitaxial Buffer Layers. Japanese Journal of Applied Physics, 2010, 49, 100202.	1.5	O
128	Xâ€ray reciprocal space mapping study on semipolar InAlN films coherently grown on ZnO substrates. Physica Status Solidi - Rapid Research Letters, 2011, 5, 400-402.	2.4	0
129	Growth of group III nitride nanostructures on nano-imprinted sapphire substrates. Thin Solid Films, 2011, 519, 6534-6537.	1.8	O
130	Solidâ€phase epitaxy of InO <i>_x</i> N <i>_y</i> alloys via thermal oxidation of InN films on yttriaâ€stabilized zirconia. Physica Status Solidi - Rapid Research Letters, 2014, 8, 362-366.	2.4	0
131	Theoretical study of InN growth on Mn-stabilized zirconia (111) substrates. Thin Solid Films, 2014, 551, 110-113.	1.8	O
132	Feasibility of Fabricating Large-Area Inorganic Crystalline Semiconductor Devices., 2016,, 249-275.		0
133	Crystal Growth of GaN on (Mn,Zn)Fe2O4 Substrates. Physica Status Solidi A, 2001, 188, 497-500.	1.7	0