
David Alonso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6648601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological Microbial Interactions from Cooccurrence Networks in a High Mountain Lacustrine District. MSphere, 2022, 7, .	2.9	1
2	The characteristic time of ecological communities. Ecology, 2021, 102, e03247.	3.2	11
3	The Stochastic Nature of Functional Responses. Entropy, 2021, 23, 575.	2.2	4
4	Modelling Functional Shifts in Two-Species Hypercycles. Mathematics, 2021, 9, 1809.	2.2	0
5	A signal of competitive dominance in mid-latitude herbaceous plant communities. Royal Society Open Science, 2021, 8, 201361.	2.4	2
6	General decline in the diversity of the airborne microbiota under future climatic scenarios. Scientific Reports, 2021, 11, 20223.	3.3	8
7	Describing properties of littoral habitats from NW Mediterranean rocky shores through co-occurrence network analysis. Estuarine, Coastal and Shelf Science, 2021, 262, 107623.	2.1	0
8	Competitive dominance in plant communities: Modeling approaches and theoretical predictions. Journal of Theoretical Biology, 2020, 502, 110349.	1.7	4
9	Dynamics and ecological distributions of the Archaea microbiome from inland saline lakes (Monegros) Tj ETQq1	1 0,78431 2.7	4 rgBT /Overl
10	A Randomized Trait Community Clustering approach to unveil consistent environmental thresholds in community assembly. ISME Journal, 2019, 13, 2681-2689.	9.8	17
11	Critical transitions in malaria transmission models are consistently generated by superinfection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180275.	4.0	17
12	Colonization and extinction rates estimated from temporal dynamics of ecological communities: The island r package. Methods in Ecology and Evolution, 2019, 10, 1108-1117.	5.2	12
13	Evidence of Critical Transitions and Coexistence of Alternative States in Nature: The Case of Malaria Transmission. Trends in Mathematics, 2019, , 73-79.	0.1	1
14	Stochastic competitive exclusion leads to a cascade of species extinctions. Journal of Theoretical Biology, 2017, 419, 137-151.	1.7	12
15	Immanent conditions determine imminent collapses: nutrient regimes define the resilience of macroalgal communities. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162814.	2.6	37
16	Plant–mycorrhizal fungus coâ€occurrence network lacks substantial structure. Oikos, 2016, 125, 457-467.	2.7	24
17	Latitudinal regionalization of epibenthic macroinvertebrate communities on rocky reefs in the Gulf of California. Marine Biology Research, 2016, 12, 389-401.	0.7	20
18	When Can Species Abundance Data Reveal Non-neutrality?. PLoS Computational Biology, 2015, 11, e1004134.	3.2	20

DAVID ALONSO

#	Article	IF	CITATIONS
19	Fish community reassembly after a coral mass mortality: higher trophic groups are subject to increased rates of extinction. Ecology Letters, 2015, 18, 451-461.	6.4	33
20	How similar can co-occurring species be in the presence of competition and ecological drift?. Journal of the Royal Society Interface, 2015, 12, 20150604.	3.4	27
21	Climate change and infectious diseases: Can we meet the needs for better prediction?. Climatic Change, 2013, 118, 625-640.	3.6	88
22	Does Sex Speed Up Evolutionary Rate and Increase Biodiversity?. PLoS Computational Biology, 2012, 8, e1002414.	3.2	17
23	A Simple Stochastic Model with Environmental Transmission Explains Multi-Year Periodicity in Outbreaks of Avian Flu. PLoS ONE, 2012, 7, e28873.	2.5	33
24	Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1661-1669.	2.6	135
25	Frequency-Dependent Selection Predicts Patterns of Radiations and Biodiversity. PLoS Computational Biology, 2010, 6, e1000892.	3.2	20
26	Spatial self-organization in a multi-strain host–pathogen system. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P05017.	2.3	4
27	Transmission Intensity and Drug Resistance in Malaria Population Dynamics: Implications for Climate Change. PLoS ONE, 2010, 5, e13588.	2.5	36
28	Frequency-dependent selection predicts patterns of radiations and biodiversity. Nature Precedings, 2009, , .	0.1	0
29	Parallel ecological networks in ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1755-1779.	4.0	136
30	Taking species abundance distributions beyond individuals. Ecology Letters, 2009, 12, 488-501.	6.4	80
31	The implicit assumption of symmetry and the species abundance distribution. Ecology Letters, 2008, 11, 93-105.	6.4	63
32	A General Model for Food Web Structure. Science, 2008, 320, 658-661.	12.6	217
33	Response to Benedetti-Cecchi: Neutrality and environmental fluctuations. Trends in Ecology and Evolution, 2007, 22, 232.	8.7	11
34	Stochastic amplification in epidemics. Journal of the Royal Society Interface, 2007, 4, 575-582.	3.4	221
35	The zero-sum assumption in neutral biodiversity theory. Journal of Theoretical Biology, 2007, 248, 522-536.	1.7	100
36	Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 2007, 10, 995-1015.	6.4	1,124

DAVID ALONSO

#	Article	IF	CITATIONS
37	Neutral Community Theory: How Stochasticity and Dispersal-Limitation Can Explain Species Coexistence. Journal of Statistical Physics, 2007, 128, 485-510.	1.2	90
38	The merits of neutral theory. Trends in Ecology and Evolution, 2006, 21, 451-457.	8.7	361
39	Comparing models of species abundance. Nature, 2006, 441, E1-E1.	27.8	60
40	Comment on "A Keystone Mutualism Drives Pattern in a Power Function". Science, 2006, 313, 1739b-1739b.	12.6	7
41	A dispersal-limited sampling theory for species and alleles. Ecology Letters, 2005, 8, 1147-1156.	6.4	142
42	Competition and introduction regime shape exotic bird communities in Hawaii. Biological Invasions, 2005, 7, 297-307.	2.4	17
43	Sampling Hubbell's neutral theory of biodiversity. Ecology Letters, 2004, 7, 901-910.	6.4	132
44	Habitat fragmentation and biodiversity collapse in neutral communities. Ecological Complexity, 2004, 1, 65-75.	2.9	69
45	Analytic solution of Hubbell's model of local community dynamics. Theoretical Population Biology, 2004, 65, 67-73.	1.1	91
46	Self–organized instability in complex ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 667-681.	4.0	106
47	MUTUAL INTERFERENCE BETWEEN PREDATORS CAN GIVE RISE TO TURING SPATIAL PATTERNS. Ecology, 2002, 83, 28-34.	3.2	170
48	Extinction Dynamics in Mainland–Island Metapopulations: An N-patch Stochastic Model. Bulletin of Mathematical Biology, 2002, 64, 913-958.	1.9	44
49	Self-organized spatial structures in a ratio-dependent predator–prey model. Physica A: Statistical Mechanics and Its Applications, 2001, 295, 53-57.	2.6	43
50	Control, synchrony and the persistence of chaotic populations. Chaos, Solitons and Fractals, 2001, 12, 235-249.	5.1	20
51	ON THE FRACTAL NATURE OF ECOLOGICAL AND MACROEVOLUTIONARY DYNAMICS. Fractals, 2001, 09, 1-16.	3.7	9
52	Scaling in a network model of a multispecies ecosystem. Physica A: Statistical Mechanics and Its Applications, 2000, 286, 337-344.	2.6	29
53	The DivGame Simulator: a stochastic cellular automata model of rainforest dynamics. Ecological Modelling, 2000, 133, 131-141.	2.5	41
54	Mean-field stochastic theory for species-rich assembled communities. Physical Review E, 2000, 62, 8466-8484.	2.1	70

#	Article	IF	CITATIONS
55	Random Walks, Fractals and the Origins of Rainforest Diversity. International Journal of Modeling, Simulation, and Scientific Computing, 1998, 01, 203-220.	1.4	10
56	Allee effects under the magnifying glass. Peer Community in Ecology, 0, , .	0.0	0