Alina P Sergeeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6647742/publications.pdf

Version: 2024-02-01

304743 395702 2,949 31 22 33 h-index citations g-index papers 37 37 37 1736 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Affinity requirements for control of synaptic targeting and neuronal cell survival by heterophilic IgSF cell adhesion molecules. Cell Reports, 2022, 39, 110618.	6.4	9
2	Sorting of cadherin–catenin-associated proteins into individual clusters. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
3	DIP/Dpr interactions and the evolutionary design of specificity in protein families. Nature Communications, 2020, 11, 2125.	12.8	26
4	Trans-endocytosis elicited by nectins transfers cytoplasmic cargo including infectious material between cells. Journal of Cell Science, 2019, 132, .	2.0	25
5	Neuron-Subtype-Specific Expression, Interaction Affinities, and Specificity Determinants of DIP/Dpr Cell Recognition Proteins. Neuron, 2018, 100, 1385-1400.e6.	8.1	65
6	Interactions between the Ig-Superfamily Proteins DIP- \hat{l}_{\pm} and Dpr6/10 Regulate Assembly of Neural Circuits. Neuron, 2018, 100, 1369-1384.e6.	8.1	64
7	Molecular basis of sidekick-mediated cell-cell adhesion and specificity. ELife, 2016, 5, .	6.0	36
8	α-Catenin–mediated cadherin clustering couples cadherin and actin dynamics. Journal of Cell Biology, 2015, 210, 647-661.	5.2	42
9	Understanding Boron through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality. Accounts of Chemical Research, 2014, 47, 1349-1358.	15.6	474
10	B ₁₃ ⁺ : A Photodriven Molecular Wankel Engine. Angewandte Chemie - International Edition, 2012, 51, 8512-8515.	13.8	72
11	A photoelectron spectroscopy and <i>ab initio</i> study of B21 \hat{a} °: Negatively charged boron clusters continue to be planar at 21. Journal of Chemical Physics, 2012, 136, 104310.	3.0	127
12	Experimental and computational evidence of octa- and nona-coordinated planar iron-doped boron clusters: Fe©B8â~' and Fe©B9â~'. Journal of Organometallic Chemistry, 2012, 721-722, 148-154.	1.8	85
13	Theoretical study of the Si5â^'n(BH)n2â^' and Na(Si5â^'n(BH)n)â^' (n = 0–5) systems. Physical Chemistry Chemical Physics, 2012, 14, 16326.	2.8	8
14	B ₂₂ ^{â€"} and B ₂₃ ^{â€"} : All-Boron Analogues of Anthracene and Phenanthrene. Journal of the American Chemical Society, 2012, 134, 18065-18073.	13.7	198
15	Planarization of B ₇ ^{â^'} and B ₁₂ ^{â^'} Clusters by Isoelectronic Substitution: AlB ₆ ^{â^'} and AlB ₁₁ ^{â^'} . Journal of the American Chemical Society, 2011, 133, 8646-8653.	13.7	73
16	Unravelling phenomenon of internal rotation in B13+ through chemical bonding analysis. Chemical Communications, 2011, 47, 6242.	4.1	120
17	Deciphering the mystery of hexagon holes in an all-boron graphene α-sheet. Physical Chemistry Chemical Physics, 2011, 13, 11575.	2.8	136
18	All-boron analogues of aromatic hydrocarbons: B17â^' and B18â^'. Journal of Chemical Physics, 2011, 134, 224304.	3.0	283

#	Article	IF	CITATIONS
19	Chemical Bonding and Aromaticity in Trinuclear Transition-Metal Halide Clusters. Inorganic Chemistry, 2011, 50, 1039-1046.	4.0	24
20	Rational Design of Small 3D Gold Clusters. Journal of Cluster Science, 2011, 22, 321-329.	3.3	15
21	Flattening a puckered cyclohexasilane ring by suppression of the pseudo-Jahn–Teller effect. Journal of Chemical Physics, 2011, 134, 014105.	3.0	41
22	A concentric planar doubly Ï€-aromatic B19â^' cluster. Nature Chemistry, 2010, 2, 202-206.	13.6	481
23	THE CHEMICAL BONDING OF Re ₃ Cl ₉ AND REVEALED BY THE ADAPTIVE NATURAL DENSITY PARTITIONING ANALYSES. Comments on Inorganic Chemistry, 2010, 31, 2-12.	5.2	55
24	Combined Experimental and Theoretical Investigation of Three-Dimensional, Nitrogen-Doped, Gallium Cluster Anions. Journal of Physical Chemistry A, 2010, 114, 11070-11077.	2.5	17
25	Flattening a Puckered Pentasilacyclopentadienide Ring by Suppression of the Pseudo Jahnâ^Teller Effect. Organometallics, 2010, 29, 3951-3954.	2.3	37
26	Î-Bonding in the [Pd4(μ4-C9H9)(μ4-C8H8)]+ sandwich complex. Physical Chemistry Chemical Physics, 2010, 12, 12050.	2.8	36
27	All-Transition Metal Aromaticity and Antiaromaticity. Structure and Bonding, 2010, , 275-305.	1.0	35
28	Photoelectron Spectroscopy of Cold Hydrated Sulfate Clusters, SO ₄ ^{2â^'} (H ₂ O) _{<i>n</i>>} (<i>n</i> >= 4â^'7): Temperature-Dependent Isomer Populations. Journal of Physical Chemistry A, 2009, 113, 5567-5576.	2.5	47
29	Probing the Electronic Stability of Multiply Charged Anions: Sulfonated Pyrene Tri- and Tetraanions. Journal of the American Chemical Society, 2009, 131, 9836-9842.	13.7	15
30	A Photoelectron Spectroscopic and Theoretical Study of B ₁₆ ^{â^'} and B ₁₆ ^{2â^'} : An All-Boron Naphthalene. Journal of the American Chemical Society, 2008, 130, 7244-7246.	13.7	264
31	Negative electron binding energies observed in a triply charged anion: Photoelectron spectroscopy of 1-hydroxy-3,6,8-pyrene-trisulfonate. Journal of Chemical Physics, 2008, 128, 091102.	3.0	13