
David D Boehr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6647684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conformational Transitions in Yeast Chorismate Mutase Important for Allosteric Regulation as Identified by Nuclear Magnetic Resonance Spectroscopy. Journal of Molecular Biology, 2022, 434, 167531.	4.2	4
2	Catalyst-Based Biomolecular Logic Gates. Catalysts, 2022, 12, 712.	3.5	2
3	Distinct conformational dynamics and allosteric networks in alpha tryptophan synthase during active catalysis. Protein Science, 2021, 30, 543-557.	7.6	7
4	The Picornavirus Precursor 3CD Has Different Conformational Dynamics Compared to 3Cpro and 3Dpol in Functionally Relevant Regions. Viruses, 2021, 13, 442.	3.3	9
5	Substitution of a Surface-Exposed Residue Involved in an Allosteric Network Enhances Tryptophan Synthase Function in Cells. Frontiers in Molecular Biosciences, 2021, 8, 679915.	3.5	7
6	Allosteric and dynamic control of RNA-dependent RNA polymerase function and fidelity. The Enzymes, 2021, 49, 149-193.	1.7	0
7	Driving Protein Conformational Cycles in Physiology and Disease: "Frustrated―Amino Acid Interaction Networks Define Dynamic Energy Landscapes. BioEssays, 2020, 42, 2000092.	2.5	2
8	Different Solvent and Conformational Entropy Contributions to the Allosteric Activation and Inhibition Mechanisms of Yeast Chorismate Mutase. Biochemistry, 2020, 59, 2528-2540.	2.5	6
9	Rational Control of Poliovirus RNA-Dependent RNA Polymerase Fidelity by Modulating Motif-D Loop Conformational Dynamics. Biochemistry, 2019, 58, 3735-3743.	2.5	14
10	Coordinated Network Changes across the Catalytic Cycle of Alpha Tryptophan Synthase. Structure, 2019, 27, 1405-1415.e5.	3.3	9
11	Energy and Enzyme Activity Landscapes of Yeast Chorismate Mutase at Cellular Concentrations of Allosteric Effectors. Biochemistry, 2019, 58, 4058-4069.	2.5	7
12	2′-C-methylated nucleotides terminate virus RNA synthesis by preventing active site closure of the viral RNA-dependent RNA polymerase. Journal of Biological Chemistry, 2019, 294, 16897-16907.	3.4	12
13	Engineering Allostery into Proteins. Advances in Experimental Medicine and Biology, 2019, 1163, 359-384.	1.6	12
14	Engineered control of enzyme structural dynamics and function. Protein Science, 2018, 27, 825-838.	7.6	30
15	Millisecond Timescale Motions Connect Amino Acid Interaction Networks in Alpha Tryptophan Synthase. Frontiers in Molecular Biosciences, 2018, 5, 92.	3.5	6
16	NMR Methods of Characterizing Biomolecular Structural Dynamics and Conformational Ensembles. Methods, 2018, 148, 1-3.	3.8	2
17	Assigning methyl resonances for protein solution-state NMR studies. Methods, 2018, 148, 88-99.	3.8	18
18	The evolution of dynamic amino acid interaction networks around the catalytic cycle of α tryptophan synthase. FASEB Journal, 2018, 32, 527.6.	0.5	0

DAVID D BOEHR

#	Article	IF	CITATIONS
19	Triphosphate Reorientation of the Incoming Nucleotide as a Fidelity Checkpoint in Viral RNA-dependent RNA Polymerases. Journal of Biological Chemistry, 2017, 292, 3810-3826.	3.4	16
20	The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain. Structure, 2017, 25, 1875-1886.e7.	3.3	20
21	Controlling Active Site Loop Dynamics in the (β/α)8 Barrel Enzyme Indole-3-Glycerol Phosphate Synthase. Catalysts, 2016, 6, 129.	3.5	8
22	Biophysical and computational methods to analyze amino acid interaction networks in proteins. Computational and Structural Biotechnology Journal, 2016, 14, 245-251.	4.1	55
23	Long-Range Communication between Different Functional Sites in the Picornaviral 3C Protein. Structure, 2016, 24, 509-517.	3.3	10
24	Nucleobase but not Sugar Fidelity is Maintained in the Sabin I RNA-Dependent RNA Polymerase. Viruses, 2015, 7, 5571-5586.	3.3	4
25	The RNA Template Channel of the RNA-Dependent RNA Polymerase as a Target for Development of Antiviral Therapy of Multiple Genera within a Virus Family. PLoS Pathogens, 2015, 11, e1004733.	4.7	55
26	Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase. Protein Science, 2015, 24, 484-494.	7.6	19
27	Triphosphate Reâ€orientation of the Incoming Nucleotide as A Fidelity Checkpoint in Viral RNAâ€dependent RNA Polymerases. FASEB Journal, 2015, 29, 572.14.	O.5	0
28	Structural Dynamics as a Contributor to Error-prone Replication by an RNA-dependent RNA Polymerase. Journal of Biological Chemistry, 2014, 289, 36229-36248.	3.4	31
29	Loopâ€loop interactions govern multiple steps in indoleâ€3â€glycerol phosphate synthase catalysis. Protein Science, 2014, 23, 302-311.	7.6	11
30	Amino Acid Networks in a (β/α) ₈ Barrel Enzyme Change during Catalytic Turnover. Journal of the American Chemical Society, 2014, 136, 6818-6821.	13.7	41
31	The Ins and Outs of Viral RNA Polymerase Translocation. Journal of Molecular Biology, 2014, 426, 1373-1376.	4.2	2
32	Targeting structural dynamics of the RNA-dependent RNA polymerase for anti-viral strategies. Current Opinion in Virology, 2014, 9, 194-200.	5.4	10
33	Structure, Dynamics, and Fidelity of RNA-Dependent RNA Polymerases. Nucleic Acids and Molecular Biology, 2014, , 309-333.	0.2	9
34	Vaccine-derived Mutation in Motif D of Poliovirus RNA-dependent RNA Polymerase Lowers Nucleotide Incorporation Fidelity. Journal of Biological Chemistry, 2013, 288, 32753-32765.	3.4	35
35	Long-Range Interactions in the Alpha Subunit of Tryptophan Synthase Help to Coordinate Ligand Binding, Catalysis, and Substrate Channeling. Journal of Molecular Biology, 2013, 425, 1527-1545.	4.2	36
36	A Distal Mutation Perturbs Dynamic Amino Acid Networks in Dihydrofolate Reductase. Biochemistry, 2013, 52, 4605-4619.	2.5	77

DAVID D BOEHR

#	Article	IF	CITATIONS
37	Functional Identification of the General Acid and Base in the Dehydration Step of Indole-3-glycerol Phosphate Synthase Catalysis. Journal of Biological Chemistry, 2013, 288, 26350-26356.	3.4	8
38	Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures. Biochemical and Biophysical Research Communications, 2012, 418, 324-329.	2.1	14
39	Motif D of Viral RNA-Dependent RNA Polymerases Determines Efficiency and Fidelity of Nucleotide Addition. Structure, 2012, 20, 1519-1527.	3.3	80
40	Conformational selection and induced changes along the catalytic cycle of <i>Escherichia coli</i> dihydrofolate reductase. Proteins: Structure, Function and Bioinformatics, 2012, 80, 2369-2383.	2.6	20
41	Promiscuity in proteinâ€RNA interactions: Conformational ensembles facilitate molecular recognition in the spliceosome. BioEssays, 2012, 34, 174-180.	2.5	13
42	Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1373-1378.	7.1	133
43	Long-Range Interaction Networks in the Function and Fidelity of Poliovirus RNA-Dependent RNA Polymerase Studied by Nuclear Magnetic Resonance. Biochemistry, 2010, 49, 9361-9371.	2.5	46
44	The role of dynamic conformational ensembles in biomolecular recognition. Nature Chemical Biology, 2009, 5, 789-796.	8.0	1,649
45	During Transitions Proteins Make Fleeting Bonds. Cell, 2009, 139, 1049-1051.	28.9	10
46	How Do Proteins Interact?. Science, 2008, 320, 1429-1430.	12.6	174
47	Conformational Relaxation following Hydride Transfer Plays a Limiting Role in Dihydrofolate Reductase Catalysisâ€. Biochemistry, 2008, 47, 9227-9233.	2.5	53
48	The Dynamic Energy Landscape of Dihydrofolate Reductase Catalysis. Science, 2006, 313, 1638-1642.	12.6	877
49	An NMR Perspective on Enzyme Dynamics. Chemical Reviews, 2006, 106, 3055-3079.	47.7	424