List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6647587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science, 1993, 259, 100-103.	12.6	533
2	Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nature Neuroscience, 2000, 3, 1153-1159.	14.8	483
3	Attention activates winner-take-all competition among visual filters. Nature Neuroscience, 1999, 2, 375-381.	14.8	403
4	On the Plurality of (Methodological) Worlds: Estimating the Analytic Flexibility of fMRI Experiments. Frontiers in Neuroscience, 2012, 6, 149.	2.8	305
5	Gender differences in the functional organization of the brain for working memory. NeuroReport, 2000, 11, 2581-2585.	1.2	258
6	Improved fluorescent compounds for tracing cell lineage. Developmental Biology, 1985, 109, 509-514.	2.0	237
7	Vision outside the focus of attention. Perception & Psychophysics, 1990, 48, 45-58.	2.3	197
8	Brain Areas Specific for Attentional Load in a Motion-Tracking Task. Journal of Cognitive Neuroscience, 2001, 13, 1048-1058.	2.3	183
9	Withdrawing attention at little or no cost: Detection and discrimination tasks. Perception & Psychophysics, 1998, 60, 1-23.	2.3	180
10	Blindsight in normal observers. Nature, 1995, 377, 336-338.	27.8	173
11	Rare but precious: Microsaccades are highly informative about attentional allocation. Vision Research, 2010, 50, 1173-1184.	1.4	126
12	Visual attention and perceptual grouping. Perception & Psychophysics, 1992, 52, 277-294.	2.3	107
13	Attractors and noise: Twin drivers of decisions and multistability. NeuroImage, 2010, 52, 740-751.	4.2	107
14	Vision and attention: the role of training. Nature, 1998, 393, 424-425.	27.8	101
15	Spatial vision thresholds in the near absence of attention. Vision Research, 1997, 37, 2409-2418.	1.4	93
16	On the detection of salient contours. Spatial Vision, 1999, 12, 211-225.	1.4	84
17	Revisiting spatial vision: toward a unifying model. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2000, 17, 1899.	1.5	79
18	Bistable Perception Modeled as Competing Stochastic Integrations at Two Levels. PLoS Computational Biology, 2009, 5, e1000430.	3.2	75

#	Article	IF	CITATIONS
19	Towards the neuronal correlate of visual awareness. Current Opinion in Neurobiology, 1996, 6, 158-164.	4.2	69
20	Attentional capacity is undifferentiated: Concurrent discrimination of form, color, and motion. Perception & Psychophysics, 1999, 61, 1241-1255.	2.3	63
21	Lateral interactions among membrane proteins. Implications for the organization of gap junctions. Biophysical Journal, 1987, 52, 441-454.	0.5	62
22	Perceptual reversals need no prompting by attention. Journal of Vision, 2007, 7, 5.	0.3	62
23	Texture-Based Tasks are Little Affected by Second Tasks Requiring Peripheral or Central Attentive Fixation. Perception, 1991, 20, 483-500.	1.2	57
24	A short-term memory of multi-stable perception. Journal of Vision, 2008, 8, 7-7.	0.3	56
25	How a gap junction maintains its structure. Nature, 1984, 310, 316-318.	27.8	51
26	Attentional effects on contrast detection in the presence of surround masks. Vision Research, 2000, 40, 3717-3724.	1.4	51
27	Collective Activity of Many Bistable Assemblies Reproduces Characteristic Dynamics of Multistable Perception. Journal of Neuroscience, 2016, 36, 6957-6972.	3.6	49
28	Multi-stable perception balances stability and sensitivity. Frontiers in Computational Neuroscience, 2013, 7, 17.	2.1	45
29	Shape-from-shading is independent of visual attention and may be a 'texton'. Spatial Vision, 1993, 7, 311-322.	1.4	44
30	Cumulative history quantifies the role of neural adaptation in multistable perception. Journal of Vision, 2011, 11, 12-12.	0.3	44
31	Robust Working Memory in an Asynchronously Spiking Neural Network Realized with Neuromorphic VLSI. Frontiers in Neuroscience, 2012, 5, 149.	2.8	43
32	Axon outgrowth along segmental nerves in the leech. Developmental Biology, 1989, 132, 471-485.	2.0	40
33	Natural scenes upset the visual applecart. Trends in Cognitive Sciences, 2003, 7, 7-9.	7.8	38
34	Visual attention is a single, integrated resource. Vision Research, 2009, 49, 1166-1173.	1.4	35
35	Lateral interactions among membrane proteins. Valid estimates based on freeze-fracture electron microscopy. Biophysical Journal, 1987, 52, 427-439.	0.5	30
36	Believable change: Bistable reversals are governed by physical plausibility. Journal of Vision, 2012, 12, 17-17.	0.3	29

#	Article	IF	CITATIONS
37	Spatial and temporal attention revealed by microsaccades. Vision Research, 2013, 85, 45-57.	1.4	29
38	Axon outgrowth along segmental nerves in the leech. Developmental Biology, 1989, 132, 486-501.	2.0	26
39	A VLSI network of spiking neurons with plastic fully configurable "stop-learning" synapses. , 2008, , .		22
40	Stochastic Accumulation by Cortical Columns May Explain the Scalar Property of Multistable Perception. Physical Review Letters, 2014, 113, 098103.	7.8	21
41	Popout modulates focal attention in the primary visual cortex. NeuroImage, 2004, 22, 574-582.	4.2	20
42	Structure-from-motion: dissociating perception, neural persistence, and sensory memory of illusory depth and illusory rotation. Attention, Perception, and Psychophysics, 2013, 75, 322-340.	1.3	20
43	Sensory memory of structure-from-motion is shape-specific. Attention, Perception, and Psychophysics, 2013, 75, 1215-1229.	1.3	19
44	Binocular rivalry reveals an out-of-equilibrium neural dynamics suited for decision-making. ELife, 2021, 10, .	6.0	19
45	Increased readiness for adaptation and faster alternation rates under binocular rivalry in children. Frontiers in Human Neuroscience, 2011, 5, 128.	2.0	18
46	Disparate time-courses of adaptation and facilitation in multi-stable perception. Learning & Perception, 2013, 5, 101-118.	2.4	18
47	Perceptual adaptation to structure-from-motion depends on the size of adaptor and probe objects, but not on the similarity of their shapes. Attention, Perception, and Psychophysics, 2014, 76, 473-488.	1.3	15
48	The Role of Attention in Ambiguous Reversals of Structure-From-Motion. PLoS ONE, 2012, 7, e37734.	2.5	15
49	Contrast thresholds for component motion with full and poor attention. Journal of Vision, 2007, 7, 1.	0.3	14
50	Temporal context and conditional associative learning. BMC Neuroscience, 2010, 11, 45.	1.9	11
51	Reinforcement Learning and Attractor Neural Network Models of Associative Learning. Studies in Computational Intelligence, 2019, , 327-349.	0.9	10
52	Sensory memory of illusory depth in structure-from-motion. Attention, Perception, and Psychophysics, 2014, 76, 123-132.	1.3	9
53	Cortical Response to Task-relevant Stimuli Presented outside the Primary Focus of Attention. Journal of Cognitive Neuroscience, 2010, 22, 1980-1992.	2.3	8
54	Feature-based attention spreads preferentially in an object-specific manner. Vision Research, 2012, 54, 31-38.	1.4	8

#	Article	IF	CITATIONS
55	Does feature similarity facilitate attentional selection?. Attention, Perception, and Psychophysics, 2010, 72, 2128-2143.	1.3	7
56	Finer parcellation reveals detailed correlational structure of resting-state fMRI signals. Journal of Neuroscience Methods, 2018, 294, 15-33.	2.5	7
57	A quantitative model relating visual neuronal activity to psychophysical thresholds. Neurocomputing, 1999, 26-27, 743-748.	5.9	6
58	Intimate attention. Nature, 2000, 408, 154-155.	27.8	6
59	Visual Attention: Light Enters the Jungle. Current Biology, 2002, 12, R599-R601.	3.9	6
60	Perceptual coupling induces co-rotation and speeds up alternations in adjacent bi-stable structure-from-motion objects. Journal of Vision, 2018, 18, 21.	0.3	6
61	Neurobiologically Inspired, Multimodal Intention Recognition for Technical Communication Systems (NIMITEK). Lecture Notes in Computer Science, 2008, , 141-144.	1.3	6
62	Targeting visual motion. Nature Neuroscience, 2000, 3, 9-11.	14.8	5
63	A Neuromorphic aVLSI network chip with configurable plastic synapses. , 2007, , .		3
64	Self-sustained activity in attractor networks using neuromorphic VLSI. , 2010, , .		3
65	Transformation priming helps to disambiguate sudden changes of sensory inputs. Vision Research, 2015, 116, 36-44.	1.4	3
66	Perceptual reversals in binocular rivalry: Improved detection from OKN. Journal of Vision, 2019, 19, 5.	0.3	3
67	Unstructured network topology begets order-based representation by privileged neurons. Biological Cybernetics, 2020, 114, 113-135.	1.3	3
68	Visual object recognition is facilitated by temporal community structure. Learning and Memory, 2021, 28, 148-152.	1.3	2
69	Alternative female and male developmental trajectories in the dynamic balance of human visual perception. Scientific Reports, 2022, 12, 1674.	3.3	2
70	Vision: Attending the Invisible. Current Biology, 2007, 17, R202-R203.	3.9	1
71	A Markov Model of Conditional Associative Learning in a Cognitive Behavioural Scenario. Lecture Notes in Computer Science, 2011, , 10-19.	1.3	1
72	Vision: Attention Makes the Cup Flow Over. Current Biology, 2008, 18, R713-R715.	3.9	0

#	Article	IF	CITATIONS
73	Dynamical insights on the history-dependence during continuous presentation of rivaling stimuli. BMC Neuroscience, 2009, 10, .	1.9	0
74	Visual Perception: Tracking the Elusive Footprints of Awareness. Current Biology, 2009, 19, R30-R32.	3.9	0
75	Dynamical features of stimulus integration by interacting cortical columns. BMC Neuroscience, 2013, 14, .	1.9	0
76	Is There Parallel Binding of Distributed Objects?. Studies in Cognitive Systems, 2000, , 163-174.	0.1	0
77	No Stopping and No Slowing: Removing Visual Attention with No Effect on Reversals of Phenomenal Appearance. Lecture Notes in Computer Science, 2010, , 510-515.	1.3	0