
Wojciech Domagala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6647419/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical overoxidation of poly(3,4-ethylenedioxythiophene)—PEDOT studied by means of in situ ESR spectroelectrochemistry. Electrochimica Acta, 2005, 50, 1625-1633.	5.2	86
2	In situ EPR spectroelectrochemical studies of paramagnetic centres in poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-butylenedioxythiophene) (PBuDOT) films. Chemical Physics, 2003, 292, 31-45.	1.9	63
3	Quantitative in-situ EPR spectroelectrochemical studies of doping processes in poly(3,4-alkylenedioxythiophene)s. Electrochimica Acta, 2008, 53, 4580-4590.	5.2	54
4	ESR spectroelectrochemistry of poly(3,4-ethylenedioxythiophene) (PEDOT). Electrochemistry Communications, 2003, 5, 603-608.	4.7	51
5	Electrochemical and spectroelectrochemical comparison of alternated monomers and their copolymers based on carbazole and thiophene derivatives. Electrochimica Acta, 2014, 122, 118-129.	5.2	44
6	Transparent to Black Electrochromism—The "Holy Grail―of Organic Optoelectronics. Polymers, 2019, 11, 273.	4.5	35
7	Symmetrically Disubstituted Bithiophene Derivatives of 1,3,4-Oxadiazole, 1,3,4-Thiadiazole, and 1,2,4-Triazole – Spectroscopic, Electrochemical, and Spectroelectrochemical Properties. Journal of Physical Chemistry C, 2014, 118, 25176-25189.	3.1	33
8	The role of structural and electronic factors in shaping the ambipolar properties of donor–acceptor polymers of thiophene and benzothiadiazole. RSC Advances, 2015, 5, 77303-77315.	3.6	33
9	Synthesis of new, highly luminescent bis(2,2'-bithiophen-5-yl) substituted 1,3,4-oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole. Beilstein Journal of Organic Chemistry, 2014, 10, 1596-1602.	2.2	29
10	In-situ ESR spectroelectrochemical studies of overoxidation behaviour of poly(3,4-butylenedioxythiophene). Electrochimica Acta, 2006, 51, 2135-2144.	5.2	25
11	Electrochemical studies of selected regioregular oligooctylthiophenes in solution and in thin film solid state. Electrochimica Acta, 2003, 48, 2379-2388.	5.2	24
12	Insight into the properties and redox states of n-dopable conjugated polymers based on naphtalene diimide units. Electrochimica Acta, 2019, 307, 525-535.	5.2	21
13	Effect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives. Physical Chemistry Chemical Physics, 2017, 19, 30261-30276.	2.8	20
14	Effect of the electron-accepting centre and solubilising substituents on the redox, spectroscopic and electroluminescent properties of four oxadiazoles and a triazole disubstituted with bithiophene. Journal of Materials Science, 2016, 51, 2274-2282.	3.7	19
15	Redox doping behaviour of poly(3,4-ethylenedithiothiophene) – The counterion effect. Optical Materials, 2011, 33, 1405-1409.	3.6	18
16	Systematic elongation of thienyl linkers and their effect on optical and electrochemical properties in carbazole–BODIPY donor–acceptor systems. RSC Advances, 2016, 6, 36500-36509.	3.6	18
17	Multielectrochromism of redox states of thin electropolymerised films of poly(3-dodecylpyrrole) involving a black coloured state. Electrochimica Acta, 2014, 137, 595-601.	5.2	17
18	Synthesis and optical properties of new 5'-aryl-substituted 2,5-bis(3-decyl-2,2'-bithiophen-5-yl)-1,3,4-oxadiazoles. Beilstein Journal of Organic Chemistry, 2017, 13, 313-322.	2.2	16

#	Article	IF	CITATIONS
19	Fused H-shaped tetrathiafulvalene–oligothiophenes as charge transport materials for OFETs and OPVs. Journal of Materials Chemistry C, 2014, 2, 2674-2683.	5.5	15
20	Long alkyl chain bearing derivatives of poly(3,4-ethylenedioxythiophene) studied by in situ EPR spectroelectrochemistry. Synthetic Metals, 2009, 159, 2240-2244.	3.9	14
21	Solubility controlled electropolymerisation and study of the impact of regioregularity on the spectroelectrochemical properties of thin films of poly(3-octylthiophenes). Electrochimica Acta, 2014, 122, 66-71.	5.2	13
22	Spectroelectrochemistry of alternating ambipolar copolymers of 4,4′- and 2,2′-bipyridine isomers and quaterthiophene. Electrochimica Acta, 2017, 231, 437-452.	5.2	12
23	A study on the synthesis and properties of substituted EHBC-Fe(III) complexes as potential MRI contrast agents. Journal of Organometallic Chemistry, 2014, 769, 100-105.	1.8	10
24	<i>N</i> â€Oligo(3â€hydroxybutyrate)â€functionalized polypyrroles: towards bioâ€erodible conducting copolymers. Polymer International, 2016, 65, 1395-1404.	3.1	9
25	Mono and di-substituted BODIPY with electron donating carbazole, thiophene, and 3,4-ethylenedioxythiophene units. Electrochimica Acta, 2018, 271, 685-698.	5.2	9
26	Doping behaviour of electrochemically generated model bithiophene meta-substituted star shaped oligomer. Materials Chemistry and Physics, 2014, 147, 254-260.	4.0	8
27	Spectroelectrochemistry of poly(3-hexylthiophenes) in solution. Chemical Papers, 2018, 72, 251-259.	2.2	8
28	Synthesis and optical properties of 2-functionally substituted 4,5-dihydrothieno[3,2-c]quinolines. Dyes and Pigments, 2018, 159, 419-428.	3.7	8
29	Synthesis of Bis([2,2′-bithiophen]-5-yl)-Substituted Oligothiadiazoles: Effect of the Number of Acceptor Units on Electrochemical and Spectroscopic Properties. Journal of Organic Chemistry, 2019, 84, 10040-10049.	3.2	8
30	Poly(3-hexylthiophene) Grafting and Molecular Dilution: Study of a Class of Conjugated Graft Copolymers. Polymers, 2019, 11, 205.	4.5	8
31	Designing New Indene-Fullerene Derivatives as Electron-Transporting Materials for Flexible Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 27344-27353.	3.1	8
32	Investigation of charge carriers in poly(3,4-butylenedioxythiophene) (PBuDOT) by means of ESR spectroelectrochemistry. Journal of Solid State Electrochemistry, 2004, 8, 369-375.	2.5	7
33	Novel Poly(amideimide)s: Synthesis, Thermal, and Optical Characterization. High Performance Polymers, 2009, 21, 265-281.	1.8	6
34	Determination and Comparison of Ideal and Practical Selectivity Coefficients of Membranes Containing Different Conductive Polymers. Acta Physica Polonica A, 2013, 124, 563-566.	0.5	5
35	ESR spectroelectrochemistry of functionalised long side chain derivatives of poly(3,4-ethylenedioxythiophene). Synthetic Metals, 2005, 152, 189-192.	3.9	4
36	Synthesis and electropolymerisation of 3,4-alkylenedioxythiophenes. Synthetic Metals, 2003, 135-136, 27-28.	3.9	3

#	Article	IF	CITATIONS
37	Heteropolyacids dispersed within a polymer matrix as a new catalytic systems with controlled oxidative-reductive and acid-base active centers. Macromolecular Symposia, 2004, 210, 281-289.	0.7	2
38	The influence of oxygen conditioning effect on the permeation properties of polyaniline membranes. Separation Science and Technology, 2016, 51, 2667-2674.	2.5	2
39	Electrochemical and UV–Vis/ESR spectroelectrochemical properties of thienylenevinylenes substituted by a 4-cyanostyryl group. Electrochimica Acta, 2011, 56, 4445-4450.	5.2	1
40	Electrochemistry and <i>In Situ</i> EPR Spectroelectrochemistry of Poly(3,4-ethylenedithiothiophene). Key Engineering Materials, 0, 559, 121-125.	0.4	1