Qing Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6646685/publications.pdf

Version: 2024-02-01

		47006	27406
174	12,341	47	106
papers	citations	h-index	g-index
180	180	180	15052
all docs	docs citations	times ranked	citing authors
			J

#	Article	lF	CITATIONS
1	Graphene-Based Antibacterial Paper. ACS Nano, 2010, 4, 4317-4323.	14.6	1,771
2	Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nature Nanotechnology, 2013, 8, 594-601.	31.5	1,260
3	A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nature Materials, 2020, 19, 894-899.	27.5	870
4	Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. Journal of the American Chemical Society, 2019, 141, 4730-4737.	13.7	811
5	Designed Diblock Oligonucleotide for the Synthesis of Spatially Isolated and Highly Hybridizable Functionalization of DNA–Gold Nanoparticle Nanoconjugates. Journal of the American Chemical Society, 2012, 134, 11876-11879.	13.7	452
6	A Hierarchically Ordered Array of Silverâ€Nanorod Bundles for Surfaceâ€Enhanced Raman Scattering Detection of Phenolic Pollutants. Advanced Materials, 2016, 28, 4871-4876.	21.0	333
7	Arrays of Coneâ€Shaped ZnO Nanorods Decorated with Ag Nanoparticles as 3D Surfaceâ€Enhanced Raman Scattering Substrates for Rapid Detection of Trace Polychlorinated Biphenyls. Advanced Functional Materials, 2012, 22, 218-224.	14.9	312
8	Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene. RSC Advances, 2017, 7, 20494-20501.	3.6	242
9	Improved SERS Performance from Au Nanopillar Arrays by Abridging the Pillar Tip Spacing by Ag Sputtering. Advanced Materials, 2010, 22, 4136-4139.	21.0	217
10	Loading Actinides in Multilayered Structures for Nuclear Waste Treatment: The First Case Study of Uranium Capture with Vanadium Carbide MXene. ACS Applied Materials & Diterfaces, 2016, 8, 16396-16403.	8.0	214
11	Facile preparation of in situ coated Ti ₃ C ₂ T _X /Ni _{0.5} Zn _{0.5} Fe ₂ O _{4<and 2017,="" 24698-24708.<="" 7,="" advances,="" electromagnetic="" performance.="" rsc="" td="" their=""><td>:/s8.l6>com</td><td>iposites</td></and>}	:/s 8.l 6>com	ip osit es
12	Promising electron mobility and high thermal conductivity in Sc ₂ CT ₂ (T = F,) Tj ETQq0	0 0 rgBT /0	Overlock 10 To 205
13	Halogenated Ti ₃ C ₂ MXenes with Electrochemically Active Terminals for High-Performance Zinc Ion Batteries. ACS Nano, 2021, 15, 1077-1085.	14.6	183
14	The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Scientific Reports, 2016, 6, 27971.	3.3	178
15	Effect of pH, ionic strength, foreign ions and temperature on the adsorption of Cu(II) from aqueous solution to GMZ bentonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 349, 195-201.	4.7	169
16	Hexavalent chromium removal from aqueous solution by algal bloom residue derived activated carbon: Equilibrium and kinetic studies. Journal of Hazardous Materials, 2010, 181, 801-808.	12.4	153
17	Assessment of Polysaccharides from Mycelia of genus Ganoderma by Mid-Infrared and Near-Infrared Spectroscopy. Scientific Reports, 2018, 8, 10.	3.3	139
18	Largeâ€erea Ag nanorod array substrates for SERS: AAO templateâ€essisted fabrication, functionalization, and application in detection PCBs. Journal of Raman Spectroscopy, 2013, 44, 240-246.	2.5	119

#	Article	IF	CITATIONS
19	Reduction and Removal of Aqueous Cr(VI) by Glow Discharge Plasma at the Gas–Solution Interface. Environmental Science & Env	10.0	113
20	Ag Nanoparticleâ€Grafted PANâ€Nanohump Array Films with 3D Highâ€Density Hot Spots as Flexible and Reliable SERS Substrates. Small, 2015, 11, 5452-5459.	10.0	112
21	Ag nanosheet-assembled micro-hemispheres as effective SERS substrates. Chemical Communications, 2011, 47, 2709-2711.	4.1	101
22	Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale, 2014, 6, 4781.	5.6	92
23	Lattice Matching and Halogen Regulation for Synergistically Induced Uniform Zinc Electrodeposition by Halogenated Ti ₃ C ₂ MXenes. ACS Nano, 2022, 16, 813-822.	14.6	90
24	Inactivation of Horseradish Peroxidase by Phenoxyl Radical Attack. Journal of the American Chemical Society, 2005, 127, 1431-1437.	13.7	87
25	Multielemental single–atom-thick <i>A</i> layers in nanolaminated V ₂ (Sn, <i>A</i>) C () Tj ETQq Sciences of the United States of America, 2020, 117, 820-825.	1 1 0.784 7.1	314 rgBT /C 84
26	Degradation of microcystin-LR in water by glow discharge plasma oxidation at the gas–solution interface and its safety evaluation. Water Research, 2012, 46, 6554-6562.	11.3	83
27	Degradation of norfloxacin in aqueous solution by atmospheric-pressure non-thermal plasma: Mechanism and degradation pathways. Chemosphere, 2018, 210, 433-439.	8.2	81
28	A review of aptamer-based SERS biosensors: Design strategies and applications. Talanta, 2021, 227, 122188.	5.5	76
29	Cytocompatibility of Ti ₃ AlC ₂ , Ti ₃ SiC ₂ , and Ti ₂ AlN: <i>In Vitro</i> Tests and First-Principles Calculations. ACS Biomaterials Science and Engineering, 2017, 3, 2293-2301.	5.2	75
30	Highly Sensitive and Selective Surface-Enhanced Raman Spectroscopy Label-free Detection of 3,3′,4,4′-Tetrachlorobiphenyl Using DNA Aptamer-Modified Ag-Nanorod Arrays. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 5723-5728.	8.0	74
31	A label-free SERS approach to quantitative and selective detection of mercury (II) based on DNA aptamer-modified SiO2@Au core/shell nanoparticles. Sensors and Actuators B: Chemical, 2018, 258, 365-372.	7.8	74
32	Vertically aligned Ag nanoplate-assembled film as a sensitive and reproducible SERS substrate for the detection of PCB-77. Journal of Hazardous Materials, 2012, 211-212, 389-395.	12.4	73
33	Highly effective removal of malachite green from aqueous solution by hydrochar derived from phycocyanin-extracted algal bloom residues through hydrothermal carbonization. RSC Advances, 2017, 7, 5790-5799.	3.6	70
34	Structures and Mechanical and Electronic Properties of the Ti2CO2 MXene Incorporated with Neighboring Elements (Sc, V, B and N). Journal of Electronic Materials, 2017, 46, 2460-2466.	2.2	68
35	ZnO-nanotaper array sacrificial templated synthesis of noble-metal building-block assembled nanotube arrays as 3D SERS-substrates. Nano Research, 2015, 8, 957-966.	10.4	62
36	Improved adsorptive capacity of pine wood decayed by fungi Poria cocos for removal of malachite green from aqueous solutions. Desalination, 2011, 274, 97-104.	8.2	61

#	Article	IF	Citations
37	Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-Î ² -CD as effective SERS substrates for trace detection of PCBs. Journal of Materials Chemistry, 2012, 22, 2271-2278.	6.7	59
38	Single-Atom-Thick Active Layers Realized in Nanolaminated Ti ₃ (Al _{<i>x</i>} Cl>sub>1â€" <i>x</i>)C ₂ and Its Artificial Enzyme Behavior. ACS Nano, 2019, 13, 9198-9205.	14.6	59
39	Synthesis of MAX phases Nb ₂ CuC and Ti ₂ (Al _{0.1} Cu _{0.9})N by A-site replacement reaction in molten salts. Materials Research Letters, 2019, 7, 510-516.	8.7	58
40	Isolation, identification and characterization of phytoplankton-lytic bacterium CH-22 against Microcystis aeruginosa. Limnologica, 2011, 41, 70-77.	1.5	55
41	Inactivation of Microcystis aeruginosa by DC glow discharge plasma: Impacts on cell integrity, pigment contents and microcystins degradation. Journal of Hazardous Materials, 2014, 268, 33-42.	12.4	55
42	Gap-tunable Ag-nanorod arrays on alumina nanotip arrays as effective SERS substrates. Journal of Materials Chemistry C , 2013 , 1 , 5015 .	5.5	53
43	Inactivation and Heme Degradation of Horseradish Peroxidase Induced by Discharge Plasma. Plasma Processes and Polymers, 2013, 10, 731-739.	3.0	52
44	Degradation of 2, 4-dichlorophenol in aqueous solution by dielectric barrier discharge: Effects of plasma-working gases, degradation pathways and toxicity assessment. Chemosphere, 2018, 204, 351-358.	8.2	52
45	DFT and SERS Study of <scp>I</scp> -Cysteine Adsorption on the Surface of Gold Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 15241-15251.	3.1	52
46	Surface-Enhanced Raman Spectroscopy for Trace Detection of Tetracycline and Dicyandiamide in Milk Using Transparent Substrate of Ag Nanoparticle Arrays. ACS Applied Nano Materials, 2020, 3, 7066-7075.	5.0	52
47	Aptamer-functionalized Au nanoparticles array as the effective SERS biosensor for label-free detection of interleukin-6 in serum. Sensors and Actuators B: Chemical, 2021, 334, 129607.	7.8	51
48	Label-free selective SERS detection of PCB-77 based on DNA aptamer modified SiO2@Au core/shell nanoparticles. Analyst, The, 2014, 139, 3083.	3.5	50
49	A Simple Surface-Enhanced Raman Spectroscopic Method for on-Site Screening of Tetracycline Residue in Whole Milk. Sensors, 2018, 18, 424.	3.8	49
50	Tuning the Electrical Conductivity of Ti ₂ CO ₂ MXene by Varying the Layer Thickness and Applying Strains. Journal of Physical Chemistry C, 2019, 123, 6802-6811.	3.1	49
51	Electronic and Transport Properties of Ti ₂ CO ₂ MXene Nanoribbons. Journal of Physical Chemistry C, 2016, 120, 17143-17152.	3.1	46
52	β-Cyclodextrin coated SiO ₂ @Au@Ag core–shell nanoparticles for SERS detection of PCBs. Physical Chemistry Chemical Physics, 2015, 17, 21149-21157.	2.8	45
53	DFT and SERS Study of ¹⁵ N Full-Labeled Adenine Adsorption on Silver and Gold Surfaces. Journal of Physical Chemistry C, 2017, 121, 9869-9878.	3.1	45
54	In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210. Enzyme and Microbial Technology, 2016, 95, 185-191.	3.2	44

#	Article	lF	Citations
55	Mutagenicity of ZnO nanoparticles in mammalian cells: Role of physicochemical transformations under the aging process. Nanotoxicology, 2015, 9, 972-982.	3.0	42
56	Nonplanar Heme Deformations and Excited State Displacements in Nickel Porphyrins Detected by Raman Spectroscopy at Soret Excitation. Journal of Physical Chemistry A, 2005, 109, 10493-10502.	2.5	39
57	Ag-nanoparticles-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates. Physical Chemistry Chemical Physics, 2014, 16, 3686.	2.8	39
58	Two-Dimensional Lamellar Mo ₂ C for Electrochemical Hydrogen Production: Insights into the Origin of Hydrogen Evolution Reaction Activity in Acidic and Alkaline Electrolytes. ACS Applied Materials & Diterfaces, 2018, 10, 40500-40508.	8.0	38
59	Mo ₂ B, an MBene member with high electrical and thermal conductivities, and satisfactory performances in lithium ion batteries. Nanoscale Advances, 2020, 2, 347-355.	4.6	38
60	Ordered arrays of Au-nanobowls loaded with Ag-nanoparticles as effective SERS substrates for rapid detection of PCBs. Nanotechnology, 2014, 25, 145605.	2.6	36
61	Haem-assisted dityrosine-cross-linking of fibrinogen under non-thermal plasma exposure: one important mechanism of facilitated blood coagulation. Scientific Reports, 2016, 6, 26982.	3.3	36
62	Assessment of norfloxacin degradation induced by plasma-produced ozone using surface-enhanced Raman spectroscopy. Chemosphere, 2020, 238, 124618.	8.2	36
63	Spectroscopic probe to contribution of physicochemical transformations in the toxicity of aged ZnO NPs to <i>Chlorella vulgaris</i> : new insight into the variation of toxicity of ZnO NPs under aging process. Nanotoxicology, 2016, 10, 1177-1187.	3.0	35
64	A facile and label-free SERS approach for inspection of fipronil in chicken eggs using SiO2@Au core/shell nanoparticles. Talanta, 2020, 207, 120324.	5 . 5	34
65	Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2film as sensitive and reproducible SERS substrates. Nanotechnology, 2012, 23, 385705.	2.6	33
66	Galvanicâ€Cellâ€Induced Growth of Ag Nanosheetâ€Assembled Structures as Sensitive and Reproducible SERS Substrates. Chemistry - A European Journal, 2012, 18, 14948-14953.	3.3	33
67	Screening of Astaxanthin-Hyperproducing <i>Haematococcus pluvialis</i> Using Fourier Transform Infrared (FT-IR) and Raman Microspectroscopy. Applied Spectroscopy, 2016, 70, 1639-1648.	2.2	33
68	Au Hierarchical Micro/Nanotower Arrays and Their Improved SERS Effect by Ag Nanoparticle Decoration. Crystal Growth and Design, 2011, 11, 748-752.	3.0	32
69	Degradation of 3,3′,4,4′-tetrachlorobiphenyl (PCB77) by dielectric barrier discharge (DBD) non-thermal plasma: Degradation mechanism and toxicity evaluation. Science of the Total Environment, 2020, 739, 139926.	8.0	32
70	Fluorescence detection of trace PCB101 based on PITC immobilized on porous AAO membrane. Analyst, The, 2011, 136, 278-281.	3.5	30
71	Ag-nanoparticle-decorated Au-fractal patterns on bowl-like-dimple arrays on Al foil as an effective SERS substrate for the rapid detection of PCBs. Chemical Communications, 2014, 50, 569-571.	4.1	30
72	Exploring the potential of exfoliated ternary ultrathin Ti ₄ AlN ₃ nanosheets for fabricating hybrid patterned polymer brushes. RSC Advances, 2015, 5, 70339-70344.	3 . 6	30

#	Article	IF	CITATIONS
73	Two-Dimensional Hydroxyl-Functionalized and Carbon-Deficient Scandium Carbide, ScC _{<i>x</i>} OH, a Direct Band Gap Semiconductor. ACS Nano, 2019, 13, 1195-1203.	14.6	30
74	Two-dimensional semiconducting Lu $<$ sub $>$ 2 $<$ /sub $>$ CT $<$ sub $>$ 2 $<$ /sub $>$ (T = F, OH) MXene with low work function and high carrier mobility. Nanoscale, 2020, 12, 3795-3802.	5.6	30
75	Raman and IR spectroscopic modality for authentication of turmeric powder. Food Chemistry, 2020, 320, 126567.	8.2	30
76	Polyacrylic acid sodium salt film entrapped Ag-nanocubes as molecule traps for SERS detection. Nano Research, 2014, 7, 1177-1187.	10.4	29
77	Effect of N2/O2 composition on inactivation efficiency of Escherichia coli by discharge plasma at the gas-solution interface. Clinical Plasma Medicine, 2017, 7-8, 1-8.	3.2	29
78	Label-free selective detection of coralyne due to aptamer–coralyne interaction using DNA modified SiO2@Au core–shell nanoparticles as an effective SERS substrate. Analytical Methods, 2013, 5, 3927.	2.7	28
79	Assessment of Damage of Glutathione by Glow Discharge Plasma at the Gas–Solution Interface through Raman Spectroscopy. Plasma Processes and Polymers, 2013, 10, 181-188.	3.0	28
80	Uptake of silver nanoparticles by DHA-treated cancer cells examined by surface-enhanced Raman spectroscopy in a microfluidic chip. Lab on A Chip, 2017, 17, 1306-1313.	6.0	28
81	Fabrication of a Novel Transparent SERS Substrate Comprised of Ag-nanoparticle Arrays and its Application in Rapid Detection of Ractopamine on Meat. Food Analytical Methods, 2018, 11, 2329-2335.	2.6	28
82	Degradation of tetracycline by atmospheric-pressure non-thermal plasma: Enhanced performance, degradation mechanism, and toxicity evaluation. Science of the Total Environment, 2022, 812, 152455.	8.0	28
83	New insight into the helium-induced damage in MAX phase Ti3AlC2 by first-principles studies. Journal of Chemical Physics, 2015, 143, 114707.	3.0	26
84	SERS Approach to Probe the Adsorption Process of Trace Volatile Benzaldehyde on Layered Double Hydroxide Material. Analytical Chemistry, 2021, 93, 8228-8237.	6.5	26
85	Uranyl Carboxyphosphonates Derived from Hydrothermal in Situ Ligand Reaction: Syntheses, Structures, and Computational Investigations. Inorganic Chemistry, 2015, 54, 8617-8624.	4.0	24
86	Histone Acetylation Induced Transformation of B-DNA to Z-DNA in Cells Probed through FT-IR Spectroscopy. Analytical Chemistry, 2016, 88, 4179-4182.	6.5	24
87	First-principles study on the electrical and thermal properties of the semiconducting Sc ₃ (CN)F ₂ MXene. RSC Advances, 2018, 8, 22452-22459.	3.6	24
88	Transcriptomic and metabolic analysis of an astaxanthin-hyperproducing Haematococcus pluvialis mutant obtained by low-temperature plasma (LTP) mutagenesis under high light irradiation. Algal Research, 2020, 45, 101746.	4.6	24
89	Exogenous \hat{I}^3 -aminobutyric acid promotes biomass and astaxanthin production in Haematococcus pluvialis. Algal Research, 2020, 52, 102089.	4.6	24
90	Nano-petri-dish Array Assisted Glancing Angle Sputtering for Ag-NP Assembled Bi-nanoring Arrays as Effective SERS Substrates. ACS Applied Materials & Samp; Interfaces, 2014, 6, 7991-7995.	8.0	23

#	Article	IF	Citations
91	Assessment of the Effect of Trichostatin A on HeLa Cells through FT-IR Spectroscopy. Analytical Chemistry, 2015, 87, 2511-2517.	6.5	23
92	Electrochemical Lithium Storage Performance of Molten Salt Derived V2SnC MAX Phase. Nano-Micro Letters, 2021, 13, 158.	27.0	23
93	Non-planar heme deformations and excited state displacements in horseradish peroxidase detected by Raman spectroscopy at Soret excitation. Journal of Raman Spectroscopy, 2005, 36, 363-375.	2.5	21
94	Electronic structures and mechanical properties of Al(111)/ZrB $<$ sub $>$ 2 $<$ /sub $>$ (0001) heterojunctions from first-principles calculation. Molecular Physics, 2015, 113, 1794-1801.	1.7	21
95	An ordered array of hierarchical spheres for surface-enhanced Raman scattering detection of traces of pesticide. Nanotechnology, 2016, 27, 384001.	2.6	21
96	Detection of Azo Dyes in Curry Powder Using a 1064-nm Dispersive Point-Scan Raman System. Applied Sciences (Switzerland), 2018, 8, 564.	2.5	21
97	New insight into the residual inactivation of Microcystis aeruginosa by dielectric barrier discharge. Scientific Reports, 2015, 5, 13683.	3.3	20
98	Effect of \hat{I}^3 -irradiation on rice seed vigor assessed by near-infrared spectroscopy. Journal of Stored Products Research, 2015, 62, 46-51.	2.6	20
99	Improved production of polysaccharides in Ganoderma lingzhi mycelia by plasma mutagenesis and rapid screening of mutated strains through infrared spectroscopy. PLoS ONE, 2018, 13, e0204266.	2.5	20
100	Improved sensitivity of polychlorinated-biphenyl-orientated porous-ZnO surface photovoltage sensors from chemisorption-formed ZnO-CuPc composites. Scientific Reports, 2014, 4, 4284.	3.3	19
101	A Surface-Enhanced Raman Scattering Sensor Integrated with Battery-Controlled Fluidic Device for Capture and Detection of Trace Small Molecules. Scientific Reports, 2015, 5, 12865.	3.3	19
102	Conformational and vibrational analyses of meta-tyrosine: An experimental and theoretical study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 111-123.	3.9	19
103	Plasma synthesis of highly dispersed Pt nanoparticles on reduced graphene oxide-molybdenum disulfide nanosheets as efficient electrocatalysts for methanol oxidation reaction. Materials Letters, 2020, 276, 128258.	2.6	19
104	A green and facile approach to a graphene-based peroxidase-like nanozyme and its application in sensitive colorimetric detection of l-cysteine. Analytical and Bioanalytical Chemistry, 2021, 413, 4013-4022.	3.7	19
105	Label-free SERS diagnostics of radiation-induced injury via detecting the biomarker Raman signal in the serum and urine bio-samples based on Au-NPs array substrates. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117282.	3.9	18
106	A silica xerogel thin film based fluorescent sensor for pentachlorophenol rapid trace detection. Sensors and Actuators B: Chemical, 2012, 171-172, 332-337.	7.8	17
107	lodeosin-based fluorescent and colorimetric sensing for Ag ⁺ , Hg ²⁺ , Fe ³⁺ , and further for halide ions in aqueous solution. RSC Advances, 2014, 4, 8055-8058.	3.6	17
108	Residual thermal stress of SiC/Ti ₃ SiC ₂ /SiC joints calculation and relaxed by postannealing. International Journal of Applied Ceramic Technology, 2018, 15, 1157-1165.	2.1	17

#	Article	IF	Citations
109	Ganoderic acid D induces synergistic autophagic cell death except for apoptosis in ESCC cells. Journal of Ethnopharmacology, 2020, 262, 113213.	4.1	17
110	Regulating the synthesis rate and yield of bio-assembled FeS nanoparticles for efficient cancer therapy. Nanoscale, 2021, 13, 18977-18986.	5.6	17
111	Study of the synergistic effect of singlet oxygen with other plasma-generated ROS in fungi inactivation during water disinfection. Science of the Total Environment, 2022, 838, 156576.	8.0	17
112	A study of low-energy ion induced radiolysis of thiol-containing amino acid cysteine in the solid and aqueous solution states. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 2729-2734.	1.4	16
113	Large-scale uniform Ag-NW tip array with enriched sub-10-nm gaps as SERS substrate for rapid determination of trace PCB77. Applied Surface Science, 2013, 271, 125-130.	6.1	16
114	CNTs-anchored egg shell membrane decorated with Ag-NPs as cheap but effective SERS substrates. Science China Materials, 2015, 58, 198-203.	6.3	16
115	Fluorophore-modified Fe3O4-magnetic-nanoparticles for determination of heavy metal ions in water. Sensors and Actuators B: Chemical, 2013, 185, 47-52.	7.8	15
116	Ostwaldâ€Ripeningâ€Induced Growth of Parallel Faceâ€Exposed Ag Nanoplates on Microâ€Hemispheres for High SERS Activity. Chemistry - A European Journal, 2013, 19, 9211-9217.	3.3	15
117	Urchin-like Au-nanoparticles@Ag-nanohemisphere arrays as active SERS-substrates for recognition of PCBs. RSC Advances, 2014, 4, 19654-19657.	3.6	15
118	Green synthesis of broccoli-derived carbon quantum dots as effective photosensitizers for the PDT effect testified in the model of mutant <i>Caenorhabditis elegans</i> . Biomaterials Science, 2022, 10, 2857-2864.	5.4	15
119	A SERS study of oxidation of glutathione under plasma irradiation. RSC Advances, 2015, 5, 57847-57852.	3.6	14
120	Isolation and characterization of astaxanthin-hyperproducing mutants of <i>Haematococcus pluvialis</i> (Chlorophyceae) produced by dielectric barrier discharge plasma. Phycologia, 2016, 55, 650-658.	1.4	14
121	A microfluidic surface-enhanced Raman spectroscopy approach for assessing the particle number effect of AgNPs on cytotoxicity. Ecotoxicology and Environmental Safety, 2018, 162, 529-535.	6.0	14
122	Raman micro-spectroscopy monitoring of cytochrome c redox state in <i>Candida utilis</i> during cell death under low-temperature plasma-induced oxidative stress. Analyst, The, 2020, 145, 3922-3930.	3.5	14
123	Near-room temperature ferromagnetic behavior of single-atom-thick 2D iron in nanolaminated ternary MAX phases. Applied Physics Reviews, 2021, 8, .	11.3	14
124	Study of detoxification of methyl parathion by dielectric barrier discharge (DBD) non-thermal plasma at gas-liquid interfaceï ¼ šmechanism and bio-toxicity evaluation. Chemosphere, 2022, 307, 135620.	8.2	14
125	Distinguish the Role of DBD-Accompanying UV-Radiation in the Degradation of Bisphenol A. Plasma Chemistry and Plasma Processing, 2016, 36, 585-598.	2.4	13
126	Non-thermal hydrogen plasma processing effectively increases the antibacterial activity of graphene oxide. Applied Physics Letters, 2018, 112 , .	3.3	13

#	Article	IF	CITATIONS
127	Mutual Identification between the Pressure-Induced Superlubricity and the Image Contrast Inversion of Carbon Nanostructures from AFM Technology. Journal of Physical Chemistry Letters, 2019, 10, 1498-1504.	4.6	13
128	Ganoderic acid T improves the radiosensitivity of HeLa cells via converting apoptosis to necroptosis. Toxicology Research, 2021, 10, 531-541.	2.1	13
129	Highly Sensitive Detection of Elevated Exosomal miR-122 Levels in Radiation Injury and Hepatic Inflammation Using an Aptamer-Functionalized SERS-Sandwich Assay. ACS Applied Bio Materials, 2021, 4, 8386-8395.	4.6	13
130	Assessment of the antioxidant activities of representative optical and geometric isomers of astaxanthin against singlet oxygen in solution by a spectroscopic approach. Food Chemistry, 2022, 395, 133584.	8.2	13
131	SERS study of transformation of phenylalanine to tyrosine under particle irradiation. Journal of Molecular Structure, 2014, 1072, 195-202.	3.6	12
132	Effect of chloride on bacterial inactivation by discharge plasma at the gasâ€solution interface: Potentiation or attenuation?. Plasma Processes and Polymers, 2018, 15, 1700153.	3.0	12
133	Dielectric Barrier Discharge Plasma Activates Persulfate to Degrade Norfloxacin: Mechanism and Degradation Pathways. Plasma Medicine, 2018, 8, 321-333.	0.6	12
134	Study of the toxicity of ZnO nanoparticles to <i>Chlorella sorokiniana</i> under the influence of phosphate: spectroscopic quantification, photosynthetic efficiency and gene expression analysis. Environmental Science: Nano, 2020, 7, 1431-1443.	4.3	12
135	A paradigm study for assessment of phenylalanine's damage under arc-discharge irradiation. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 1618-1625.	1.4	11
136	Plasmonic nanorod arrays for enhancement of single-molecule detection. Chemical Communications, 2013, 49, 11743.	4.1	11
137	In situ observation of mitochondrial biogenesis as the early event of apoptosis. IScience, 2021, 24, 103038.	4.1	11
138	Low-temperature plasma promotes growth of Haematococcus pluvialis and accumulation of astaxanthin by regulating histone H3 lysine 4 tri-methylation. Bioresource Technology, 2022, 343, 126095.	9.6	11
139	First-principles study of magnetism in some novel MXene materials. RSC Advances, 2020, 10, 44430-44436.	3.6	11
140	Adsorption Behaviors and Phase Equilibria for Clathrate Hydrates of Sulfur- and Nitrogen-Containing Small Molecules. Journal of Physical Chemistry C, 2019, 123, 2691-2702.	3.1	10
141	Theoretical exploration on the vibrational and mechanical properties of M ₃ C ₂ MXenes. International Journal of Quantum Chemistry, 2020, 120, e26409.	2.0	10
142	Electric Field Effect on the Reactivity of Solid State Materials: The Case of Single Layer Graphene. Advanced Functional Materials, 2020, 30, 1909269.	14.9	10
143	Spectroscopic assessment of argon gas discharge induced radiolysis of aqueous adenine and thymine. Radiation Physics and Chemistry, 2011, 80, 1343-1351.	2.8	9
144	A GBI@PPyNWs-based prototype of reusable fluorescence sensor for the detection of Fe3+ in aqueous solution. Analytical Methods, 2012, 4, 2653.	2.7	9

#	Article	IF	CITATIONS
145	R6G/8-AQ co-functionalized Fe3O4@SiO2 nanoparticles for fluorescence detection of trace Hg2+ and Zn2+ in aqueous solution. Science China Materials, 2015, 58, 550-558.	6.3	9
146	The Pros and Cons of Soybean Bioactive Compounds: An Overview. Food Reviews International, 2023, 39, 5104-5131.	8.4	9
147	Silver-Nanorod Bundles: A Hierarchically Ordered Array of Silver-Nanorod Bundles for Surface-Enhanced Raman Scattering Detection of Phenolic Pollutants (Adv. Mater. 24/2016). Advanced Materials, 2016, 28, 4870-4870.	21.0	8
148	Remodeling Chromatin Induces Z-DNA Conformation Detected through Fourier Transform Infrared Spectroscopy. Analytical Chemistry, 2020, 92, 14452-14458.	6.5	8
149	Stimulation of biomass and astaxanthin accumulation in Haematococcus pluvialis using low-temperature plasma (LTP). Bioresource Technology Reports, 2020, 9, 100385.	2.7	8
150	Low Dose of Trichostatin A Improves Radiation Resistance by Activating Akt/Nrf2-Dependent Antioxidation Pathway in Cancer Cells. Radiation Research, 2021, 195, 366-377.	1.5	8
151	DFT and Raman study of all-trans astaxanthin optical isomers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 262, 120143.	3.9	8
152	Surface-enhanced Raman scattering from plasmonic Ag-nanocube@Au-nanospheres core@satellites. Journal of Raman Spectroscopy, 2017, 48, 217-223.	2.5	7
153	Study on removal of Microcystis aeruginosa and Cr (VI) using attapulgite-Fe3O4 magnetic composite material (MCM). Algal Research, 2021, 60, 102501.	4.6	7
154	Study of energetic-particle-irradiation induced biological effect on Rhizopus oryzae through synchrotron-FTIR micro-spectroscopy. Journal of Molecular Structure, 2013, 1031, 1-8.	3.6	6
155	Effect of protein structure and/or conformation on the dityrosine cross-linking induced by haem-hydrogen peroxide. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2232-2238.	2.4	6
156	3D Graphene Oxide Micropatterns Achieved by Rollerâ€Assisted Microcontact Printing Induced Interface Integral Peel and Transfer. Advanced Materials Interfaces, 2017, 4, 1600867.	3.7	6
157	Understanding the infrared and Raman spectra of ganoderic acid A: An experimental and DFT study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 210, 372-380.	3.9	6
158	Universal Principle for Large-Scale Production of a High-Quality Two-Dimensional Monolayer via Positive Charge-Driven Exfoliation. Journal of Physical Chemistry Letters, 2022, 13, 6597-6603.	4.6	6
159	FTIR Microspectroscopy Probes Particle-Radiation Effect on HCT116 cells (p53+/+, p53–/–). Radiation Research, 2018, 189, 156-164.	1.5	5
160	Potassium Iodide Potentiates Bacterial Killing by Helium Atmospheric Pressure Plasma Jet. ACS Omega, 2019, 4, 8365-8372.	3. 5	5
161	Application of persulfate in low-temperature atmospheric-pressure plasma jet for enhanced treatment of onychomycosis. Plasma Science and Technology, 2020, 22, 025503.	1.5	5
162	Ultrafine Pt stabilized on Ti3C2Tx/reduced graphene oxide nanocomposites for alcohol oxidation reaction (AOR). Materials Letters, 2021, 285, 129082.	2.6	4

#	Article	IF	CITATIONS
163	Theoretical and experimental study of the infrared and Raman spectra of L-lysine acetylation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 278, 121371.	3.9	4
164	Effect of electric current on diffusion of aluminum in Ti3AlC2 into zirconium alloy. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 645-649.	1.0	3
165	Is level of acetylation directly correlated to radiation sensitivity of cancer cell?. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2019, 813, 13-19.	1.0	3
166	Determination of chlorogenic acid in <i>Eucommia ulmoides</i> /i> Oliver extracts by near-infrared spectroscopy. Spectroscopy Letters, 2021, 54, 571-580.	1.0	3
167	Effect of Aâ€site atom on static corrosion behavior and irradiation damage of Ti ₂ SC phases. Journal of the American Ceramic Society, 2022, 105, 1386-1393.	3.8	2
168	DFT-based Raman spectral study of astaxanthin geometrical isomers. Food Chemistry Molecular Sciences, 2022, 4, 100103.	2.1	2
169	Study of Energetic Particle Induced Biological Effect through FTIR and Raman Micro-Spectroscopy. Biophysical Journal, 2012, 102, 589a-590a.	0.5	1
170	A fluorescence approach to the unfolding thermodynamics of horseradish peroxidase based on heme degradation by hydrogen peroxide. Chemical Physics Letters, 2016, 657, 49-52.	2.6	1
171	Single-step synthesis of AgNPs@rGO composite by e-beam from DC-plasma for wound-healing band-aids. Chemical Engineering Journal Advances, 2021, 8, 100185.	5.2	1
172	Monitoring of circulating exosomal immuno checkpoint in tumor microenvironment through ultrasensitive aptamer-functionalized SERS probes. Biosensors and Bioelectronics: X, 2022, 12, 100177.	1.7	1
173	Detection of chemical residues in food oil via surface-enhanced Raman spectroscopy. Proceedings of SPIE, $2016, , .$	0.8	0
174	Sers as an Effective Probe to Adsorption and Conformation of Biomolecules on the Metal Surfaces. Biophysical Journal, 2019, 116, 568a.	0.5	0