Francesca Bernassola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6646512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fate mapping and scRNA sequencing reveal origin and diversity of lymph node stromal precursors. Immunity, 2022, 55, 606-622.e6.	14.3	8
2	Distinct interactors define the p63 transcriptional signature in epithelial development or cancer. Biochemical Journal, 2022, 479, 1375-1392.	3.7	7
3	Emerging roles of the HECT-type E3 ubiquitin ligases in hematological malignancies. Discover Oncology, 2021, 12, 39.	2.1	2
4	The Impact of the Ubiquitin System in the Pathogenesis of Squamous Cell Carcinomas. Cancers, 2020, 12, 1595.	3.7	11
5	DHA Affects Microtubule Dynamics Through Reduction of Phospho-TCTP Levels and Enhances the Antiproliferative Effect of T-DM1 in Trastuzumab-Resistant HER2-Positive Breast Cancer Cell Lines. Cells, 2020, 9, 1260.	4.1	12
6	HECT-Type E3ÂUbiquitin Ligases in Cancer. Trends in Biochemical Sciences, 2019, 44, 1057-1075.	7.5	59
7	Emerging roles of HECTâ€ŧype E3 ubiquitin ligases in autophagy regulation. Molecular Oncology, 2019, 13, 2033-2048.	4.6	12
8	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
9	The p53 Family in Brain Disease. Antioxidants and Redox Signaling, 2018, 29, 1-14.	5.4	16
10	ΔNp63 promotes IGF1 signalling through IRS1 in squamous cell carcinoma. Aging, 2018, 10, 4224-4240.	3.1	12
11	Structural Evolution and Dynamics of the p53 Proteins. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a028308.	6.2	41
12	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
13	p63 sustains self-renewal of mammary cancer stem cells through regulation of Sonic Hedgehog signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3499-3504.	7.1	141
14	Maintaining epithelial stemness with p63. Science Signaling, 2015, 8, re9.	3.6	120
15	Screening for E3-Ubiquitin ligase inhibitors: challenges and opportunities. Oncotarget, 2014, 5, 7988-8013.	1.8	85
16	How the <i>TP53</i> Family Proteins <i>TP63</i> and <i>TP73</i> Contribute to Tumorigenesis: Regulators and Effectors. Human Mutation, 2014, 35, 702-714.	2.5	115
17	TAp73 promotes anabolism. Oncotarget, 2014, 5, 12820-12834.	1.8	40
18	p63 regulates glutaminase 2 expression. Cell Cycle, 2013, 12, 1395-1405.	2.6	72

Francesca Bernassola

#	Article	IF	CITATIONS
19	The E3 ubiquitin ligase WWP1 regulates ΔNp63-dependent transcription through Lys63 linkages. Biochemical and Biophysical Research Communications, 2010, 402, 425-430.	2.1	39
20	ltch self-polyubiquitylation occurs through lysine-63 linkages. Biochemical Pharmacology, 2008, 76, 1515-1521.	4.4	48
21	Modelling and molecular dynamics of the interaction between the E3 ubiquitin ligase Itch and the E2 UbcH7. Biochemical Pharmacology, 2008, 76, 1620-1627.	4.4	18
22	The HECT Family of E3 Ubiquitin Ligases: Multiple Players in Cancer Development. Cancer Cell, 2008, 14, 10-21.	16.8	460
23	The Nedd4-binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11280-11285.	7.1	92
24	The promyelocytic leukaemia protein tumour suppressor functions as a transcriptional regulator of p63. Oncogene, 2005, 24, 6982-6986.	5.9	40
25	Regulation of the p73 protein stability and degradation. Biochemical and Biophysical Research Communications, 2005, 331, 707-712.	2.1	62
26	Ubiquitin-dependent Degradation of p73 Is Inhibited by PML. Journal of Experimental Medicine, 2004, 199, 1545-1557.	8.5	111
27	p73 Induces Apoptosis via PUMA Transactivation and Bax Mitochondrial Translocation. Journal of Biological Chemistry, 2004, 279, 8076-8083.	3.4	321
28	Role of transglutaminase 2 in glucose tolerance: knockout mice studies and a putative mutation in a MODY patient. FASEB Journal, 2002, 16, 1371-1378.	0.5	107
29	Osmotic Resistance of High-Density Erythrocytes in Transglutaminase 2-Deficient Mice. Biochemical and Biophysical Research Communications, 2002, 291, 1123-1127.	2.1	13
30	Apoptosis in neuroblastomas induced by interferon-? involves the CD95/CD95L pathway. Medical and Pediatric Oncology, 2001, 36, 115-117.	1.0	5
31	Inactivation of multiple targets by nitric oxide in CD95-triggered apoptosis. Journal of Cellular Biochemistry, 2001, 82, 123-133.	2.6	10
32	The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal. Oncogene, 2001, 20, 4305-4316.	5.9	246
33	Distinct properties of fenretinide and CD437 lead to synergistic responses with chemotherapeutic reagents. Medical and Pediatric Oncology, 2000, 35, 663-668.	1.0	18
34	Synergistic induction of apoptosis of neuroblastoma by fenretinide or CD437 in combination with chemotherapeutic drugs. International Journal of Cancer, 2000, 88, 977-985.	5.1	55
35	Regulation of Transglutaminases by Nitric Oxide. Annals of the New York Academy of Sciences, 1999, 887, 83-91.	3.8	33
36	Induction of apoptosis by IFNÎ ³ in human neuroblastoma cell lines through the CD95/CD95L autocrine circuit. Cell Death and Differentiation, 1999, 6, 652-660.	11.2	40

0

#	Article	IF	CITATIONS
37	S-nitrosylation regulates apoptosis. Nature, 1997, 388, 432-433.	27.8	438

p73 Affects Cell Fate and Tumorigenesis. , 0, , 536-550.