

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6646112/publications.pdf Version: 2024-02-01

		279798	315739
40	1,611	23	38
papers	citations	h-index	g-index
43	43	43	2004
all docs	docs citations	times ranked	citing authors

KANC CAL

#	Article	IF	CITATIONS
1	A precise polyrotaxane synthesizer. Science, 2020, 368, 1247-1253.	12.6	148
2	Concurrent Cooperative J-Aggregates and Anticooperative H-Aggregates. Journal of the American Chemical Society, 2018, 140, 5764-5773.	13.7	113
3	NIR J-Aggregates of Hydroazaheptacene Tetraimides. Journal of the American Chemical Society, 2014, 136, 28-31.	13.7	109
4	Selective Extraction of C ₇₀ by a Tetragonal Prismatic Porphyrin Cage. Journal of the American Chemical Society, 2018, 140, 13835-13842.	13.7	105
5	Two-photon excited deep-red and near-infrared emissive organic co-crystals. Nature Communications, 2020, 11, 4633.	12.8	82
6	A Dynamic Tetracationic Macrocycle Exhibiting Photoswitchable Molecular Encapsulation. Journal of the American Chemical Society, 2019, 141, 1280-1289.	13.7	66
7	Molecular Russian dolls. Nature Communications, 2018, 9, 5275.	12.8	61
8	Large hydroazaacene diimides: synthesis, tautomerism, halochromism, and redox-switchable NIR optics. Chemical Science, 2012, 3, 3175.	7.4	56
9	Chemical designs of functional photoactive molecular assemblies. Chemical Society Reviews, 2014, 43, 4199-4221.	38.1	55
10	Radical-pairing-induced molecular assembly and motion. Nature Reviews Chemistry, 2021, 5, 447-465.	30.2	55
11	A Molecular Dual Pump. Journal of the American Chemical Society, 2019, 141, 17472-17476.	13.7	53
12	Ring-in-Ring(s) Complexes Exhibiting Tunable Multicolor Photoluminescence. Journal of the American Chemical Society, 2020, 142, 16849-16860.	13.7	52
13	Electron-catalysed molecular recognition. Nature, 2022, 603, 265-270.	27.8	51
14	A NIR dye with high-performance n-type semiconducting properties. Chemical Science, 2016, 7, 499-504.	7.4	48
15	A Donor–Acceptor [2]Catenane for Visible Light Photocatalysis. Journal of the American Chemical Society, 2021, 143, 8000-8010.	13.7	47
16	Epitaxial Growth of γ-Cyclodextrin-Containing Metal–Organic Frameworks Based on a Host–Guest Strategy. Journal of the American Chemical Society, 2018, 140, 11402-11407.	13.7	44
17	Giant Conductance Enhancement of Intramolecular Circuits through Interchannel Gating. Matter, 2020, 2, 378-389.	10.0	43
18	High-Efficiency Gold Recovery Using Cucurbit[6]uril. ACS Applied Materials & Interfaces, 2020, 12, 38768-38777.	8.0	41

Kang Cai

#	Article	IF	CITATIONS
19	Selective Photodimerization in a Cyclodextrin Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 9129-9139.	13.7	34
20	Stabilizing the Naphthalenediimide Radical within a Tetracationic Cyclophane. Journal of the American Chemical Society, 2019, 141, 16915-16922.	13.7	30
21	Stepwise on-surface dissymmetric reaction to construct binodal organometallic network. Nature Communications, 2019, 10, 2545.	12.8	26
22	Organic Counteranion Co-assembly Strategy for the Formation of Î ³ -Cyclodextrin-Containing Hybrid Frameworks. Journal of the American Chemical Society, 2020, 142, 2042-2050.	13.7	26
23	Radical Cyclic [3]Daisy Chains. CheM, 2021, 7, 174-189.	11.7	26
24	Electron-Catalyzed Dehydrogenation in a Single-Molecule Junction. Journal of the American Chemical Society, 2021, 143, 8476-8487.	13.7	25
25	Heterohexacene Diimides: <i>Anti-</i> and <i>Syn-</i> Isomers and Quinonoid Forms. Organic Letters, 2014, 16, 1852-1855.	4.6	24
26	Molecular-Pump-Enabled Synthesis of a Daisy Chain Polymer. Journal of the American Chemical Society, 2020, 142, 10308-10313.	13.7	24
27	Supramolecular aggregates with distinct optical properties from PDI oligomers of similar structures. Physical Chemistry Chemical Physics, 2016, 18, 1905-1910.	2.8	23
28	Syntheses of polycyclic aromatic diimides via intramolecular cyclization of maleic acid derivatives. New Journal of Chemistry, 2016, 40, 113-121.	2.8	20
29	Suit[3]ane. Journal of the American Chemical Society, 2020, 142, 20152-20160.	13.7	20
30	Toward Möbius and Tubular Cyclopolyarene Nanorings via Arylbutadiyne Macrocycles. Angewandte Chemie - International Edition, 2020, 59, 14854-14860.	13.8	17
31	Highly Stable Organic Bisradicals Protected by Mechanical Bonds. Journal of the American Chemical Society, 2020, 142, 7190-7197.	13.7	17
32	Guest recognition enhanced by lateral interactions. Chemical Science, 2019, 10, 5114-5123.	7.4	16
33	Tuning radical interactions in trisradical tricationic complexes by varying host-cavity sizes. Chemical Science, 2020, 11, 107-112.	7.4	14
34	A contorted nanographene shelter. Nature Communications, 2021, 12, 5191.	12.8	12
35	Radically Enhanced Dual Recognition. Angewandte Chemie - International Edition, 2021, 60, 25454-25462.	13.8	10
36	Toward Möbius and Tubular Cyclopolyarene Nanorings via Arylbutadiyne Macrocycles. Angewandte Chemie, 2020, 132, 14964-14970.	2.0	7

Kang Cai

#	Article	IF	CITATIONS
37	Snapshots of Life—Early Career Materials Scientists Managing in the Midst of a Pandemic. Chemistry of Materials, 2020, 32, 3673-3677.	6.7	5
38	Radically Enhanced Dual Recognition. Angewandte Chemie, 0, , .	2.0	4
39	Polysilicon Microchips Functionalized with Bipyridinium-Based Cyclophanes for a Highly Efficient Cytotoxicity in Cancerous Cells. ACS Nano, 2022, 16, 5358-5375.	14.6	1
40	Innenrücktitelbild: Radically Enhanced Dual Recognition (Angew. Chem. 48/2021). Angewandte Chemie, 2021, 133, 25787-25787.	2.0	0