List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6644693/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular Vesicles Derived from Human Liver Stem Cells Attenuate Chronic Kidney Disease Development in an In Vivo Experimental Model of Renal Ischemia and Reperfusion Injury. International Journal of Molecular Sciences, 2022, 23, 1485.	1.8	6
2	Extracellular Vesicles Derived from Mesenchymal Stromal Cells Delivered during Hypothermic Oxygenated Machine Perfusion Repair Ischemic/Reperfusion Damage of Kidneys from Extended Criteria Donors. Biology, 2022, 11, 350.	1.3	16
3	Antigen Expression Profile and Micrornas Cargo in Extracellular Vesicles As Plasmatic Biomarkers of Acute Graft-Versus-Host Disease after Haplo-Identical Allografting. Transplantation and Cellular Therapy, 2022, 28, S303-S304.	0.6	0
4	Stem Cell-Derived Extracellular Vesicles as Potential Therapeutic Approach for Acute Kidney Injury. Frontiers in Immunology, 2022, 13, 849891.	2.2	9
5	Extracellular vesicles derived from patients with antibody-mediated rejection induce tubular senescence and endothelial to mesenchymal transition in renal cells. American Journal of Transplantation, 2022, 22, 2139-2157.	2.6	19
6	Protective Effects of Human Liver Stem Cell-Derived Extracellular Vesicles in a Mouse Model of Hepatic Ischemia-Reperfusion Injury. Stem Cell Reviews and Reports, 2021, 17, 459-470.	1.7	14
7	Circulating Exosomes Are Strongly Involved in SARS-CoV-2 Infection. Frontiers in Molecular Biosciences, 2021, 8, 632290.	1.6	140
8	A First Phenotypic and Functional Characterization of Placental Extracellular Vesicles from Women with Multiple Sclerosis. International Journal of Molecular Sciences, 2021, 22, 2875.	1.8	3
9	Protective Role of the M-Sec–Tunneling Nanotube System in Podocytes. Journal of the American Society of Nephrology: JASN, 2021, 32, 1114-1130.	3.0	12
10	Adipocyte-derived extracellular vesicles regulate survival and function of pancreatic \hat{I}^2 cells. JCI Insight, 2021, 6, .	2.3	55
11	Human Liver Stem Cells: A Liver-Derived Mesenchymal Stromal Cell-Like Population With Pro-regenerative Properties. Frontiers in Cell and Developmental Biology, 2021, 9, 644088.	1.8	20
12	Human Liver Stem Cell-Derived Extracellular Vesicles Target Hepatic Stellate Cells and Attenuate Their Pro-fibrotic Phenotype. Frontiers in Cell and Developmental Biology, 2021, 9, 777462.	1.8	19
13	Extracellular Vesicles as Biomarkers of Acute Graft-vsHost Disease After Haploidentical Stem Cell Transplantation and Post-Transplant Cyclophosphamide. Frontiers in Immunology, 2021, 12, 816231.	2.2	5
14	HLSC-Derived Extracellular Vesicles Attenuate Liver Fibrosis and Inflammation in a Murine Model of Non-alcoholic Steatohepatitis. Molecular Therapy, 2020, 28, 479-489.	3.7	86
15	Intrahepatic Administration of Human Liver Stem Cells in Infants with Inherited Neonatal-Onset Hyperammonemia: A Phase I Study. Stem Cell Reviews and Reports, 2020, 16, 186-197.	1.7	23
16	Detection of urinary podocytes by flow cytometry in idiopathic membranous nephropathy. Scientific Reports, 2020, 10, 16362.	1.6	8
17	Molecular Pathways Modulated by Mesenchymal Stromal Cells and Their Extracellular Vesicles in Experimental Models of Liver Fibrosis. Frontiers in Cell and Developmental Biology, 2020, 8, 594794.	1.8	17
18	Nephroprotective Potential of Mesenchymal Stromal Cells and Their Extracellular Vesicles in a Murine Model of Chronic Cyclosporine Nephrotoxicity. Frontiers in Cell and Developmental Biology, 2020, 8, 296.	1.8	16

#	Article	IF	CITATIONS
19	Role of ncRNAs in modulation of liver fibrosis by extracellular vesicles. ExRNA, 2020, 2, .	1.0	5
20	Extracellular Vesicles: A Therapeutic Option for Liver Fibrosis. International Journal of Molecular Sciences, 2020, 21, 4255.	1.8	34
21	P1600KIDNEY PERFUSION WITH MESENCHYMAL STROMAL CELLS OR EXTRACELLULAR VESICLES PREVENTS ISCHAEMIC DAMAGE THROUGH CD73/ADO SYSTEM IN A RAT MODEL OF DCD DONATION. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
22	Mesenchymal Stem Cell Derived Extracellular Vesicles Ameliorate Kidney Injury in Aristolochic Acid Nephropathy. Frontiers in Cell and Developmental Biology, 2020, 8, 188.	1.8	40
23	Prevention of acute rejection after rescue with Belatacept by association of low-dose Tacrolimus maintenance in medically complex kidney transplant recipients with early or late graft dysfunction. PLoS ONE, 2020, 15, e0240335.	1.1	8
24	Title is missing!. , 2020, 15, e0240335.		0
25	Title is missing!. , 2020, 15, e0240335.		0
26	Title is missing!. , 2020, 15, e0240335.		0
27	Title is missing!. , 2020, 15, e0240335.		0
28	Biomarkers of Acute Graft-Versus-Host Disease: Surface Antigens and Micro Rnas in Extracellular Vesicles. Biology of Blood and Marrow Transplantation, 2019, 25, S232.	2.0	4
29	Renal Regenerative Potential of Extracellular Vesicles Derived from miRNA-Engineered Mesenchymal Stromal Cells. International Journal of Molecular Sciences, 2019, 20, 2381.	1.8	40
30	Human Liver-Derived Stem Cells Improve Fibrosis and Inflammation Associated with Nonalcoholic Steatohepatitis. Stem Cells International, 2019, 2019, 1-14.	1.2	24
31	Role of extracellular vesicles in stem cell biology. American Journal of Physiology - Cell Physiology, 2019, 317, C303-C313.	2.1	44
32	Defining mesenchymal stromal cell (MSC)â€derived small extracellular vesicles for therapeutic applications. Journal of Extracellular Vesicles, 2019, 8, 1609206.	5.5	400
33	Mesenchymal Stromal Cell Derived Extracellular Vesicles Reduce Hypoxia-Ischaemia Induced Perinatal Brain Injury. Frontiers in Physiology, 2019, 10, 282.	1.3	57
34	The Role of Extracellular Vesicles as Paracrine Effectors in Stem Cell-Based Therapies. Advances in Experimental Medicine and Biology, 2019, 1201, 175-193.	0.8	26
35	Plasmatic Extracellular Vesicles in Acute Graft-Versus-Host Disease after Haplo-Identical Allografting with Post-Transplant Cyclophosphamide. Blood, 2019, 134, 598-598.	0.6	0
36	Promising Role of Extracellular Vesicles as Biomarkers of Acute Graft-vsHost Disease. Biology of Blood and Marrow Transplantation, 2018, 24, S196.	2.0	0

#	Article	IF	CITATIONS
37	Extracellular vesicles as potential biomarkers of acute graft-vs-host disease. Leukemia, 2018, 32, 765-773.	3.3	32
38	Exosome and Microvesicle-Enriched Fractions Isolated from Mesenchymal Stem Cells by Gradient Separation Showed Different Molecular Signatures and Functions on Renal Tubular Epithelial Cells. Stem Cell Reviews and Reports, 2017, 13, 226-243.	5.6	129
39	Renal Regenerative Potential of Different Extracellular Vesicle Populations Derived from Bone Marrow Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2017, 23, 1262-1273.	1.6	159
40	Perfusion of isolated rat kidney with Mesenchymal Stromal Cells/Extracellular Vesicles prevents ischaemic injury. Journal of Cellular and Molecular Medicine, 2017, 21, 3381-3393.	1.6	102
41	The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury. Stem Cell Research and Therapy, 2017, 8, 24.	2.4	117
42	Extracellular vesicles from human liver stem cells restore argininosuccinate synthase deficiency. Stem Cell Research and Therapy, 2017, 8, 176.	2.4	33
43	Isolation and characterization of renal cancer stem cells from patient-derived xenografts. Oncotarget, 2016, 7, 15507-15524.	0.8	20
44	Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation. Stem Cells International, 2016, 2016, 1-14.	1.2	21
45	Mesenchymal Stromal Cells Epithelial Transition Induced by Renal Tubular Cells-Derived Extracellular Vesicles. PLoS ONE, 2016, 11, e0159163.	1.1	22
46	Extracellular vesicles in renal tissue damage and regeneration. European Journal of Pharmacology, 2016, 790, 83-91.	1.7	63
47	Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia, 2016, 30, 2221-2231.	3.3	170
48	Extracellular Vesicles as Potential Biomarker for Acute Graft-Versus-Host-Disease. Blood, 2016, 128, 2239-2239.	0.6	1
49	Endothelial progenitor cell-derived extracellular vesicles protect from complement-mediated mesangial injury in experimental anti-Thy1.1 glomerulonephritis. Nephrology Dialysis Transplantation, 2015, 30, 410-422.	0.4	74
50	The secretome of mesenchymal stromal cells: Role of extracellular vesicles in immunomodulation. Immunology Letters, 2015, 168, 154-158.	1.1	128
51	AKI Recovery Induced by Mesenchymal Stromal Cell-Derived Extracellular Vesicles Carrying MicroRNAs. Journal of the American Society of Nephrology: JASN, 2015, 26, 2349-2360.	3.0	212
52	Human Renal Normal, Tumoral, and Cancer Stem Cells Express Membrane-Bound Interleukin-15 Isoforms Displaying Different Functions. Neoplasia, 2015, 17, 509-517.	2.3	10
53	Effects of Mesenchymal Stromal Cell-Derived Extracellular Vesicles on Tumor Growth. Frontiers in Immunology, 2014, 5, 382.	2.2	55
54	Human mesenchymal stem cell-derived microvesicles modulate T cell response to islet antigen glutamic acid decarboxylase in patients with type 1 diabetes. Diabetologia, 2014, 57, 1664-1673.	2.9	119

#	Article	IF	CITATIONS
55	Renal Cells from Spermatogonial Germline Stem Cells Protect against Kidney Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 316-328.	3.0	27
56	Concise Review: Different Mesenchymal Stromal/Stem Cell Populations Reside in the Adult Kidney. Stem Cells Translational Medicine, 2014, 3, 1451-1455.	1.6	23
57	Extracellular Vesicles Released from Mesenchymal Stromal Cells Modulate miRNA in Renal Tubular Cells and Inhibit ATP Depletion Injury. Stem Cells and Development, 2014, 23, 1809-1819.	1.1	121
58	miRNA Expression in Mesenchymal Stem Cells. Current Pathobiology Reports, 2014, 2, 101-107.	1.6	6
59	Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Communication and Signaling, 2014, 12, 26.	2.7	240
60	Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. International Journal of Molecular Medicine, 2014, 33, 1055-1063.	1.8	277
61	Human liver stem cells and derived extracellular vesicles improve recovery in a murine model of acute kidney injury. Stem Cell Research and Therapy, 2014, 5, 124.	2.4	86
62	Exploring Mesenchymal Stem Cell-Derived Extracellular Vesicles in Acute Kidney Injury. Methods in Molecular Biology, 2014, 1213, 139-145.	0.4	11
63	The Combination of Sorafenib and Everolimus Abrogates mTORC1 and mTORC2 Upregulation in Osteosarcoma Preclinical Models. Clinical Cancer Research, 2013, 19, 2117-2131.	3.2	96
64	Therapeutic effects of mesenchymal stem cells on renal ischemia–reperfusion injury: a matter of genetic transfer?. Stem Cell Research and Therapy, 2013, 4, 55.	2.4	11
65	Human liver stem cells improve liver injury in a model of fulminant liver failure. Hepatology, 2013, 57, 311-319.	3.6	86
66	Role of mesenchymal stem cell-derived microvesicles in tissue repair. Pediatric Nephrology, 2013, 28, 2249-2254.	0.9	65
67	Microvesicles Derived from Human Bone Marrow Mesenchymal Stem Cells Inhibit Tumor Growth. Stem Cells and Development, 2013, 22, 758-771.	1.1	264
68	Role of Lefty in the anti tumor activity of human adult liver stem cells. Oncogene, 2013, 32, 819-826.	2.6	33
69	Reply. Hepatology, 2013, 58, 2214-2214.	3.6	0
70	Dissecting Paracrine Effectors for Mesenchymal Stem Cells. Advances in Biochemical Engineering/Biotechnology, 2012, 129, 137-152.	0.6	17
71	Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrology Dialysis Transplantation, 2012, 27, 3037-3042.	0.4	362
72	Human Liver Stem Cell-Derived Microvesicles Inhibit Hepatoma Growth in SCID Mice by Delivering Antitumor MicroRNAs. Stem Cells, 2012, 30, 1985-1998.	1.4	170

#	Article	IF	CITATIONS
73	Isolation and Characterization of Resident Mesenchymal Stem Cells in Human Glomeruli. Methods in Molecular Biology, 2012, 879, 367-380.	0.4	21
74	Differentiation of Podocyte and Proximal Tubule-Like Cells from a Mouse Kidney-Derived Stem Cell Line. Stem Cells and Development, 2012, 21, 296-307.	1.1	35
75	Microvesicles Derived from Mesenchymal Stem Cells Enhance Survival in a Lethal Model of Acute Kidney Injury. PLoS ONE, 2012, 7, e33115.	1.1	526
76	Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia–reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney International, 2012, 82, 412-427.	2.6	459
77	Abstract LB-366: Everolimus (EV) potentiates Sorafenib (SOR)activity in osteosarcoma (OS) preclinical models: a combination targeting the crosstalk between ERK1/2 and mTORC1/2 signaling pathways. , 2012, , .		0
78	The role of microvesicles derived from mesenchymal stem cells in tissue regeneration; a dream for tendon repair?. Muscles, Ligaments and Tendons Journal, 2012, 2, 212-21.	0.1	21
79	MicroRNAs and Mesenchymal Stem Cells. Vitamins and Hormones, 2011, 87, 291-320.	0.7	45
80	Differentiation of Mesenchymal Stem Cells Derived from Pancreatic Islets and Bone Marrow into Islet-Like Cell Phenotype. PLoS ONE, 2011, 6, e28175.	1.1	59
81	Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrology Dialysis Transplantation, 2011, 26, 1474-1483.	0.4	697
82	Differentiation Therapy: Targeting Human Renal Cancer Stem Cells with Interleukin 15. Journal of the National Cancer Institute, 2011, 103, 1884-1898.	3.0	70
83	The role of microvesicles in tissue repair. Organogenesis, 2011, 7, 105-115.	0.4	103
84	Exosome/microvesicle-mediated epigenetic reprogramming of cells. American Journal of Cancer Research, 2011, 1, 98-110.	1.4	206
85	Microvesicles Derived from Adult Human Bone Marrow and Tissue Specific Mesenchymal Stem Cells Shuttle Selected Pattern of miRNAs. PLoS ONE, 2010, 5, e11803.	1.1	554
86	Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney International, 2010, 78, 838-848.	2.6	995
87	Stem Cells Derived from Human Amniotic Fluid Contribute to Acute Kidney Injury Recovery. American Journal of Pathology, 2010, 177, 2011-2021.	1.9	119
88	Mesenchymal Stem Cell-Derived Microvesicles Protect Against Acute Tubular Injury. Journal of the American Society of Nephrology: JASN, 2009, 20, 1053-1067.	3.0	1,144
89	Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways. Molecular Cancer, 2009, 8, 118.	7.9	159
90	Isolation and Characterization of Resident Mesenchymal Stem Cells in Human Glomeruli. Stem Cells and Development, 2009, 18, 867-880.	1.1	110

#	Article	IF	CITATIONS
91	Abstract C213: Sorafenib blocks tumor growth, angiogenesis, and metastatic potential in preclinical models of osteosarcoma through the inhibition of ERK1/2, MCLâ€1, and ezrin pathways. , 2009, , .		0
92	Identification of a tumorâ€initiating stem cell population in human renal carcinomas. FASEB Journal, 2008, 22, 3696-3705.	0.2	304
93	Pancreatic ductal transdifferentiation for β-cell neogenesis. Expert Opinion on Therapeutic Patents, 2008, 18, 963-967.	2.4	0
94	Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney International, 2007, 72, 430-441.	2.6	333
95	Endothelial progenitor cell–derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood, 2007, 110, 2440-2448.	0.6	864
96	CD133+ Renal Progenitor Cells Contribute to Tumor Angiogenesis. American Journal of Pathology, 2006, 169, 2223-2235.	1.9	161
97	Neural-cell adhesion molecule (NCAM) expression by immature and tumor-derived endothelial cells favors cell organization into capillary-like structures. Experimental Cell Research, 2006, 312, 913-924.	1.2	46
98	Combined administration of G-CSF and GM-CSF stimulates monocyte-derived pro-angiogenic cells in patients with acute myocardial infarction. Cytokine, 2006, 34, 56-65.	1.4	28
99	Isolation and characterization of human breast tumor-derived endothelial cells. Oncology Reports, 2006, 15, 381.	1.2	33
100	Serial Transplantations in Nonobese Diabetic/Severe Combined Immunodeficiency Mice of Transduced Human CD34+Cord Blood Cells: Efficient Oncoretroviral Gene Transfer and Ex Vivo Expansion Under Serum-Free Conditions. Stem Cells, 2006, 24, 1201-1212.	1.4	8
101	Isolation and Characterization of a Stem Cell Population from Adult Human Liver. Stem Cells, 2006, 24, 2840-2850.	1.4	384
102	Isolation and characterization of human breast tumor-derived endothelial cells. Oncology Reports, 2006, 15, 381-6.	1.2	64
103	Isolation of Renal Progenitor Cells from Adult Human Kidney. American Journal of Pathology, 2005, 166, 545-555.	1.9	578
104	Vasculogenic potential of long term repopulating cord blood progenitors. FASEB Journal, 2004, 18, 1273-1275.	0.2	20
105	Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. International Journal of Molecular Medicine, 2004, 14, 1035.	1.8	126
106	Fast But Durable Megakaryocyte Repopulation and Platelet Production in NOD/SCID Mice Transplanted with Ex-Vivo Expanded Human Cord Blood CD34+ Cells. Stem Cells, 2004, 22, 135-143.	1.4	33
107	Elevated telomerase activity and minimal telomere loss in cord blood long-term cultures with extensive stem cell replication. Blood, 2004, 103, 4440-4448.	0.6	81
108	Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. International Journal of Molecular Medicine, 2004, 14, 1035-41.	1.8	326

#	Article	IF	CITATIONS
109	Ex vivo expansion of human adult stem cells capable of primary and secondary hemopoietic reconstitution. Experimental Hematology, 2003, 31, 261-270.	0.2	85
110	Expression of the c-ErbB-2/HER2 proto-oncogene in normal hematopoietic cells. Journal of Leukocyte Biology, 2003, 74, 593-601.	1.5	17
111	In vitro and in vivo megakaryocyte differentiation of fresh and ex-vivo expanded cord blood cells: rapid and transient megakaryocyte reconstitution. Haematologica, 2003, 88, 379-87.	1.7	44
112	Role of different medium and growth factors on placental blood stem cell expansion: an in vitro and in vivo study. Bone Marrow Transplantation, 2002, 29, 443-448.	1.3	11
113	Lentiviral gene transfer and ex vivo expansion of human primitive stem cells capable of primary, secondary, and tertiary multilineage repopulation in NOD/SCID mice. Blood, 2002, 100, 4391-4400.	0.6	84
114	The involvement of human-nuc gene in polyploidization of K562 cell line. Experimental Hematology, 2000, 28, 1432-1440.	0.2	12
115	Negative Influence of IL3 on the Expansion of Human Cord BloodIn VivoLong-Term Repopulating Stem Cells, Journal of Hematotherapy and Stem Cell Research, 2000, 9, 945-956.	1.8	28