## Ricardo Chavarriaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6644373/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition.<br>Pattern Recognition Letters, 2013, 34, 2033-2042.                         | 4.2 | 508       |
| 2  | Collecting complex activity datasets in highly rich networked sensor environments. , 2010, , .                                                                              |     | 401       |
| 3  | Errare machinale est: the use of error-related potentials in brain-machine interfaces. Frontiers in Neuroscience, 2014, 8, 208.                                             | 2.8 | 216       |
| 4  | Learning From EEG Error-Related Potentials in Noninvasive Brain-Computer Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18, 381-388. | 4.9 | 198       |
| 5  | A hybrid brain–computer interface based on the fusion of electroencephalographic and electromyographic activities. Journal of Neural Engineering, 2011, 8, 025011.          | 3.5 | 177       |
| 6  | Detection of self-paced reaching movement intention from EEG signals. Frontiers in Neuroengineering, 2012, 5, 13.                                                           | 4.8 | 177       |
| 7  | Teaching brain-machine interfaces as an alternative paradigm to neuroprosthetics control. Scientific Reports, 2015, 5, 13893.                                               | 3.3 | 119       |
| 8  | A brain-controlled exoskeleton with cascaded event-related desynchronization classifiers. Robotics and Autonomous Systems, 2017, 90, 15-23.                                 | 5.1 | 107       |
| 9  | Is there a geometric module for spatial orientation? Insights from a rodent navigation model<br>Psychological Review, 2009, 116, 540-566.                                   | 3.8 | 100       |
| 10 | Brain-coupled interaction for semi-autonomous navigation of an assistive robot. Robotics and Autonomous Systems, 2010, 58, 1246-1255.                                       | 5.1 | 90        |
| 11 | NON-INVASIVE BRAIN-MACHINE INTERACTION. International Journal of Pattern Recognition and Artificial Intelligence, 2008, 22, 959-972.                                        | 1.2 | 83        |
| 12 | Heading for new shores! Overcoming pitfalls in BCI design. Brain-Computer Interfaces, 2017, 4, 60-73.                                                                       | 1.8 | 73        |
| 13 | Opportunistic human activity and context recognition. Computer, 2013, 46, 36-45.                                                                                            | 1.1 | 70        |
| 14 | Single trial analysis of slow cortical potentials: a study on anticipation related potentials. Journal of<br>Neural Engineering, 2013, 10, 036014.                          | 3.5 | 70        |
| 15 | Benchmarking classification techniques using the Opportunity human activity dataset. , 2011, , .                                                                            |     | 67        |
| 16 | Robust self-localisation and navigation based on hippocampal place cells. Neural Networks, 2005, 18, 1125-1140.                                                             | 5.9 | 66        |
| 17 | Single trial prediction of self-paced reaching directions from EEG signals. Frontiers in Neuroscience, 2014, 8, 222.                                                        | 2.8 | 60        |
| 18 | Classification of upper limb center-out reaching tasks by means of EEG-based continuous decoding techniques. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 9.   | 4.6 | 58        |

2

RICARDO CHAVARRIAGA

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | OPPORTUNITY: Towards opportunistic activity and context recognition systems. , 2009, , .                                                                                                        |     | 55        |
| 20 | Multimodal Fusion of Muscle and Brain Signals for a Hybrid-BCI. , 2010, 2010, 4343-6.                                                                                                           |     | 54        |
| 21 | Human EEG reveals distinct neural correlates of power and precision grasping types. NeuroImage, 2018, 181, 635-644.                                                                             | 4.2 | 47        |
| 22 | EEG-Based Lower-Limb Movement Onset Decoding: Continuous Classification and Asynchronous<br>Detection. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1626-1635. | 4.9 | 46        |
| 23 | Path planning versus cue responding: a bio-inspired model of switching between navigation strategies.<br>Biological Cybernetics, 2010, 103, 299-317.                                            | 1.3 | 45        |
| 24 | A Computational Model of Parallel Navigation Systems in Rodents. Neuroinformatics, 2005, 3, 223-242.                                                                                            | 2.8 | 44        |
| 25 | Unsupervised adaptation for acceleration-based activity recognition: robustness to sensor displacement and rotation. Personal and Ubiquitous Computing, 2013, 17, 479-490.                      | 2.8 | 44        |
| 26 | Action prediction based on anticipatory brain potentials during simulated driving. Journal of Neural<br>Engineering, 2015, 12, 066006.                                                          | 3.5 | 42        |
| 27 | Latency correction of event-related potentials between different experimental protocols. Journal of<br>Neural Engineering, 2014, 11, 036005.                                                    | 3.5 | 41        |
| 28 | Long-Term Stable Control of Motor-Imagery BCI by a Locked-In User Through Adaptive Assistance. IEEE<br>Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 380-391.        | 4.9 | 38        |
| 29 | On-line anomaly detection and resilience in classifier ensembles. Pattern Recognition Letters, 2013, 34,<br>1916-1927.                                                                          | 4.2 | 37        |
| 30 | Tiny noise, big mistakes: adversarial perturbations induce errors in brain–computer interface spellers.<br>National Science Review, 2021, 8, nwaa233.                                           | 9.5 | 37        |
| 31 | Latency correction of error potentials between different experiments reduces calibration time for single-trial classification. , 2012, 2012, 3288-91.                                           |     | 35        |
| 32 | Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future.<br>Brain-Computer Interfaces, 2014, 1, 27-49.                                                       | 1.8 | 35        |
| 33 | Detection of anticipatory brain potentials during car driving. , 2012, 2012, 3829-32.                                                                                                           |     | 34        |
| 34 | The timing of exploratory decision-making revealed by single-trial topographic EEGanalyses.<br>NeuroImage, 2012, 60, 1959-1969.                                                                 | 4.2 | 34        |
| 35 | Fast Recognition of Anticipation-Related Potentials. IEEE Transactions on Biomedical Engineering, 2009, 56, 1257-1260.                                                                          | 4.2 | 31        |
| 36 | Characterizing the EEG Correlates of Exploratory Behavior. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2008, 16, 549-556.                                               | 4.9 | 30        |

RICARDO CHAVARRIAGA

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Self-paced movement intention detection from human brain signals: Invasive and non-invasive EEG. , 2012, 2012, 3280-3.                                                  |     | 28        |
| 38 | Harnessing Prefrontal Cognitive Signals for Brain–Machine Interfaces. Trends in Biotechnology, 2017,<br>35, 585-597.                                                    | 9.3 | 28        |
| 39 | Mobile brain/body imaging of landmarkâ€based navigation with highâ€density EEG. European Journal of<br>Neuroscience, 2021, 54, 8256-8282.                               | 2.6 | 28        |
| 40 | International data governance for neuroscience. Neuron, 2022, 110, 600-612.                                                                                             | 8.1 | 28        |
| 41 | Steering timing prediction in a driving simulator task. , 2013, 2013, 6913-6.                                                                                           |     | 24        |
| 42 | Workshops of the Sixth International Brain–Computer Interface Meeting: brain–computer interfaces past, present, and future. Brain-Computer Interfaces, 2017, 4, 3-36.   | 1.8 | 24        |
| 43 | Adaptive Assistance for Brain-Computer Interfaces by Online Prediction of Command Reliability. IEEE<br>Computational Intelligence Magazine, 2016, 11, 32-39.            | 3.2 | 23        |
| 44 | Brain-actuated gait trainer with visual and proprioceptive feedback. Journal of Neural Engineering, 2017, 14, 056017.                                                   | 3.5 | 23        |
| 45 | Differential contributions of subthalamic beta rhythms and 1/f broadband activity to motor symptoms<br>in Parkinson's disease. Npj Parkinson's Disease, 2018, 4, 32.    | 5.3 | 23        |
| 46 | Customizing skills for assistive robotic manipulators, an inverse reinforcement learning approach with error-related potentials. Communications Biology, 2021, 4, 1406. | 4.4 | 23        |
| 47 | Kinect=IMU? Learning MIMO Signal Mappings to Automatically Translate Activity Recognition Systems across Sensor Modalities. , 2012, , .                                 |     | 22        |
| 48 | On the Use of Brain Decoded Signals for Online User Adaptive Gesture Recognition Systems. Lecture<br>Notes in Computer Science, 2010, , 427-444.                        | 1.3 | 22        |
| 49 | Anticipation- and error-related EEG signals during realistic human-machine interaction: A study on visual and tactile feedback. , 2012, 2012, 6723-6.                   |     | 21        |
| 50 | Decoding Neural Correlates of Cognitive States to Enhance Driving Experience. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2, 288-297.     | 4.9 | 21        |
| 51 | The birth of the brain-controlled wheelchair. , 2012, , .                                                                                                               |     | 20        |
| 52 | Detecting intention to grasp during reaching movements from EEG. , 2015, 2015, 1115-8.                                                                                  |     | 20        |
| 53 | Discriminant brain connectivity patterns of performance monitoring at average and single-trial levels. Neurolmage, 2015, 120, 64-74.                                    | 4.2 | 20        |
| 54 | Decoding of Self-paced Lower-Limb Movement Intention: A Case Study on the Influence Factors.<br>Frontiers in Human Neuroscience, 2017, 11, 560.                         | 2.0 | 19        |

| #  | Article                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | An Iterative Framework for EEG-based Image Search: Robust Retrieval with Weak Classifiers. PLoS ONE, 2013, 8, e72018.                                        | 2.5 | 18        |
| 56 | Spatial Representation and Navigation in a Bio-inspired Robot. Lecture Notes in Computer Science, 2005, , 245-264.                                           | 1.3 | 17        |
| 57 | Detecting and Rectifying Anomalies in Body Sensor Networks. , 2011, , .                                                                                      |     | 17        |
| 58 | Online modulation of the level of assistance in shared control systems. , 2012, , .                                                                          |     | 17        |
| 59 | Unsupervised Adaptation to On-body Sensor Displacement in Acceleration-Based Activity Recognition. , 2011, , .                                               |     | 16        |
| 60 | Interactions of spatial strategies producing generalization gradient and blocking: A computational approach. PLoS Computational Biology, 2018, 14, e1006092. | 3.2 | 16        |
| 61 | Inferring subjective preferences on robot trajectories using EEG signals. , 2019, , .                                                                        |     | 16        |
| 62 | Uncovering EEG Correlates of Covert Attention in Soccer Goalkeepers: Towards Innovative Sport<br>Training Procedures. Scientific Reports, 2020, 10, 1705.    | 3.3 | 16        |
| 63 | To Err is Human: Learning from Error Potentials in Brain-Computer Interfaces. , 2008, , 777-782.                                                             |     | 15        |
| 64 | Adaptation of hybrid human-computer interaction systems using EEG error-related potentials. , 2010, 2010, 4226-9.                                            |     | 14        |
| 65 | Single trial recognition of anticipatory slow cortical potentials: The role of spatio-spectral filtering. , 2011, , .                                        |     | 14        |
| 66 | Detecting anomalies to improve classification performance in opportunistic sensor networks. , 2011, , .                                                      |     | 14        |
| 67 | Asynchronous Decoding of Error Potentials during the Monitoring of a Reaching Task. , 2015, , .                                                              |     | 13        |
| 68 | Quantifying the time for accurate EEG decoding of single value-based decisions. Journal of Neuroscience Methods, 2015, 250, 114-125.                         | 2.5 | 13        |
| 69 | Ensemble creation and reconfiguration for activity recognition: An information theoretic approach. , $2011,,$                                                |     | 12        |
| 70 | Improved recognition of error related potentials through the use of brain connectivity features. ,<br>2012, 2012, 6740-3.                                    |     | 12        |
| 71 | Spatial covariance improves BCI performance for late ERPs components with high temporal variability.<br>Journal of Neural Engineering, 2020, 17, 036030.     | 3.5 | 12        |
| 72 | A comparative psychophysical and EEG study of different feedback modalities for HRI. , 2008, , .                                                             |     | 11        |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Application of hybrid BCI and exergames for balance rehabilitation after stroke. , 2014, , .                                                                                                          |     | 11        |
| 74 | Spatial filters yield stable features for error-related potentials across conditions. , 2016, , .                                                                                                     |     | 11        |
| 75 | EEG Correlates of Difficulty Levels in Dynamical Transitions of Simulated Flying and Mapping Tasks.<br>IEEE Transactions on Human-Machine Systems, 2021, 51, 99-108.                                  | 3.5 | 11        |
| 76 | Invariability of EEG error-related potentials during continuous feedback protocols elicited by erroneous actions at predicted or unpredicted states. Journal of Neural Engineering, 2021, 18, 046044. | 3.5 | 11        |
| 77 | Activity Recognition in Opportunistic Sensor Environments. Procedia Computer Science, 2011, 7, 173-174.                                                                                               | 2.0 | 10        |
| 78 | Offline decoding of upper limb muscle synergies from EEG slow cortical potentials. , 2013, 2013, 3594-7.                                                                                              |     | 10        |
| 79 | General principles of machine learning for brain-computer interfacing. Handbook of Clinical<br>Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 311-328.                                    | 1.8 | 10        |
| 80 | User Adaptation to Closed-Loop Decoding of Motor Imagery Termination. IEEE Transactions on<br>Biomedical Engineering, 2021, 68, 3-10.                                                                 | 4.2 | 10        |
| 81 | BCI and motion capture technologies for rehabilitation based on videogames. , 2014, , .                                                                                                               |     | 9         |
| 82 | Quantifying Electrode Reliability During Brain–Computer Interface Operation. IEEE Transactions on<br>Biomedical Engineering, 2015, 62, 858-864.                                                       | 4.2 | 9         |
| 83 | Turning negative into positives! Exploiting â€~negative' results in Brain–Machine Interface (BMI)<br>research. Brain-Computer Interfaces, 2019, 6, 178-189.                                           | 1.8 | 9         |
| 84 | Cortical current density vs. surface EEG for event-related potential-based Brain-Computer Interface. , 2011, , .                                                                                      |     | 8         |
| 85 | Dynamic Quantification of Activity Recognition Capabilities in Opportunistic Systems. , 2011, , .                                                                                                     |     | 8         |
| 86 | Three-dimensional upper limb movement decoding from EEG signals. , 2013, , .                                                                                                                          |     | 8         |
| 87 | Inferring driver's turning direction through detection of error related brain activity. , 2013, 2013, 2196-9.                                                                                         |     | 8         |
| 88 | Workshops of the seventh international brain-computer interface meeting: not getting lost in translation. Brain-Computer Interfaces, 2019, 6, 71-101.                                                 | 1.8 | 8         |
| 89 | A Survey of Un-, Weakly-, and Semi-Supervised Learning Methods for Noisy, Missing and Partial Labels in Industrial Vision Applications. , 2021, , .                                                   |     | 8         |
| 90 | Analyzing Interactions between Navigation Strategies Using a Computational Model of Action Selection. Lecture Notes in Computer Science, 2008, , 71-86.                                               | 1.3 | 8         |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Minimizing calibration time using inter-subject information of single-trial recognition of error potentials in brain-computer interfaces. , 2011, 2011, 6369-72.                                     |     | 7         |
| 92  | Brain Correlates of Lane Changing Reaction Time in Simulated Driving. , 2015, , .                                                                                                                    |     | 7         |
| 93  | The OPPORTUNITY Framework and Data Processing Ecosystem for Opportunistic Activity and Context Recognition. International Journal of Sensors, Wireless Communications and Control, 2012, 1, 102-125. | 0.7 | 7         |
| 94  | EEG error-related potentials detection with a Bayesian filter. , 2009, , .                                                                                                                           |     | 6         |
| 95  | Anticipation based Brain-Computer Interfacing (aBCI). , 2009, , .                                                                                                                                    |     | 6         |
| 96  | Making the most of context-awareness in brain-computer interfaces. , 2013, , .                                                                                                                       |     | 6         |
| 97  | Multidisciplinary design of suitable assistive technologies for motor disabilities in Colombia. , 2014, , .                                                                                          |     | 6         |
| 98  | EEG correlates of active visual search during simulated driving: An exploratory study. , 2014, , .                                                                                                   |     | 6         |
| 99  | Decoding fast-paced error-related potentials in monitoring protocols. , 2015, 2015, 1111-4.                                                                                                          |     | 6         |
| 100 | Endogenous Control of Powered Lower-Limb Exoskeleton. Biosystems and Biorobotics, 2017, , 115-119.                                                                                                   | 0.3 | 6         |
| 101 | Using Robust Principal Component Analysis to Reduce EEG Intra-Trial Variability. , 2018, 2018, 1956-1959.                                                                                            |     | 6         |
| 102 | Standardization of Neurotechnology for Brain-Machine Interfacing: State of the Art and<br>Recommendations. IEEE Open Journal of Engineering in Medicine and Biology, 2021, 2, 71-73.                 | 2.3 | 6         |
| 103 | Competition between cue response and place response: a model of rat navigation behaviour.<br>Connection Science, 2005, 17, 167-183.                                                                  | 3.0 | 5         |
| 104 | Discriminative channel selection method for the recognition of anticipation related potentials from CCD estimated cortical activity. , 2009, , .                                                     |     | 5         |
| 105 | Learning user habits for semi-autonomous navigation using low throughput interfaces. , 2011, , .                                                                                                     |     | 5         |
| 106 | Evaluating decoding performance of upper limb imagined trajectories during center-out reaching tasks. , 2016, , .                                                                                    |     | 5         |
| 107 | tDCS Modulates Motor Imagery-Related BCI Features. Biosystems and Biorobotics, 2013, , 647-651.                                                                                                      | 0.3 | 5         |
| 108 | Real-time prediction of fast and slow delivery of mental commands in a motor imagery BCI: An                                                                                                         |     | 4         |

entropy-based approach., 2012,,.

| #   | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Superposition model for Steady State Visually Evoked Potentials. , 2016, , .                                                                                                                                     |      | 4         |
| 110 | Analysis of EEG Correlates of Perceived Difficulty in Dynamically Changing Flying Tasks. , 2018, , .                                                                                                             |      | 4         |
| 111 | Context-Aware Learning for Generative Models. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 3471-3483.                                                                                    | 11.3 | 4         |
| 112 | The Use of Brain-Computer Interfacing in Ambient Intelligence. Communications in Computer and Information Science, 2008, , 268-285.                                                                              | 0.5  | 4         |
| 113 | Workshops of the eighth international brain–computer interface meeting: BCIs: the next frontier.<br>Brain-Computer Interfaces, 2022, 9, 69-101.                                                                  | 1.8  | 4         |
| 114 | Combining discriminant and topographic information in BCI: Preliminary results on stroke patients. , 2011, , .                                                                                                   |      | 3         |
| 115 | Standards for Neurotechnologies and Brain-Machine Interfacing [Standards]. IEEE Systems, Man, and<br>Cybernetics Magazine, 2020, 6, 50-51.                                                                       | 1.4  | 3         |
| 116 | EEC-Based Online Regulation of Difficulty in Simulated Flying. IEEE Transactions on Affective Computing, 2023, 14, 394-405.                                                                                      | 8.3  | 3         |
| 117 | Non-invasive Brain-Actuated Interaction. Lecture Notes in Computer Science, 2007, , 438-447.                                                                                                                     | 1.3  | 3         |
| 118 | Analyzing Interactions between Cue-Guided and Place-Based Navigation with a Computational Model of Action Selection: Influence of Sensory Cues and Training. Lecture Notes in Computer Science, 2010, , 335-346. | 1.3  | 3         |
| 119 | Closed-loop EEG study on visual recognition during driving. Journal of Neural Engineering, 2021, 18, 026010.                                                                                                     | 3.5  | 2         |
| 120 | Visuo-Spatial Attention Frame Recognition for Brain-Computer Interfaces. , 2008, , 771-775.                                                                                                                      |      | 2         |
| 121 | Robust activity recognition combining anomaly detection and classifier retraining. , 2013, , .                                                                                                                   |      | 1         |
| 122 | Moving Brain-Controlled Devices Outside the Lab: Principles and Applications. Trends in Augmentation of Human Performance, 2015, , 73-94.                                                                        | 0.4  | 1         |
| 123 | Inverse solutions for brain-computer interfaces: Effects of regularisation on localisation and classification. , 2017, , .                                                                                       |      | 1         |
| 124 | Adaptive sensory processing for efficient place coding. Neurocomputing, 2006, 69, 1211-1214.                                                                                                                     | 5.9  | 0         |
| 125 | Prediction of command delivery time for BCI. , 2014, , .                                                                                                                                                         |      | 0         |
| 126 | 10. Brain-Machine Symbiosis. , 2015, , 175-197.                                                                                                                                                                  |      | 0         |

| #   | Article                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Stream fusion for multi-stream automatic speech recognition. International Journal of Speech Technology, 2016, 19, 669-675.                 | 2.2 | 0         |
| 128 | Detection of movement related cortical potential: Effects of causal vs. non-causal processing. , 2016, 2016, 5733-5736.                     |     | 0         |
| 129 | An Approach to a Phase Model for Steady State Visually Evoked Potentials. Biosystems and Biorobotics, 2017, , 1481-1489.                    | 0.3 | 0         |
| 130 | The CLAIRE COVID-19 initiative: approach, experiences and recommendations. Ethics and Information Technology, 2021, 23, 127-133.            | 3.8 | 0         |
| 131 | Two to Trust: AutoML for Safe Modelling and Interpretable Deep Learning for Robustness. Lecture Notes in Computer Science, 2021, , 268-275. | 1.3 | 0         |
| 132 | Symbiotic Brain-Machine interaction: Beyond control and monitoring. Frontiers in Human Neuroscience, 0, 12, .                               | 2.0 | 0         |