
James E Freer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/664407/publications.pdf Version: 2024-02-01

IAMES F FDEED

#	Article	IF	CITATIONS
1	A history of TOPMODEL. Hydrology and Earth System Sciences, 2021, 25, 527-549.	4.9	54
2	The evolving perceptual model of streamflow generation at the Panola Mountain Research Watershed. Hydrological Processes, 2021, 35, e14127.	2.6	12
3	The Maimai <scp>M8</scp> experimental catchment database: Forty years of processâ€based research on steep, wet hillslopes. Hydrological Processes, 2021, 35, e14112.	2.6	4
4	Assessing the hydrological and geomorphic behaviour of a landscape evolution model within a limitsâ€ofâ€acceptability uncertainty analysis framework. Earth Surface Processes and Landforms, 2021, 46, 1981-2003.	2.5	6
5	Incorporating Uncertainty Into Multiscale Parameter Regionalization to Evaluate the Performance of Nationally Consistent Parameter Fields for a Hydrological Model. Water Resources Research, 2021, 57, e2020WR028393.	4.2	9
6	The Abuse of Popular Performance Metrics in Hydrologic Modeling. Water Resources Research, 2021, 57, e2020WR029001.	4.2	76
7	Towards more realistic runoff projections by removing limits on simulated soil moisture deficit. Journal of Hydrology, 2021, 600, 126505.	5.4	8
8	Developing observational methods to drive future hydrological science: Can we make a start as a community?. Hydrological Processes, 2020, 34, 868-873.	2.6	34
9	A Brief Analysis of Conceptual Model Structure Uncertainty Using 36 Models and 559 Catchments. Water Resources Research, 2020, 56, e2019WR025975.	4.2	72
10	What about reservoirs? Questioning anthropogenic and climatic interferences on water availability. Hydrological Processes, 2020, 34, 5441-5455.	2.6	15
11	BVLOS UAS Operations in Highly-Turbulent Volcanic Plumes. Frontiers in Robotics and AI, 2020, 7, 549716.	3.2	10
12	The Spatial Dynamics of Droughts and Water Scarcity in England and Wales. Water Resources Research, 2020, 56, e2020WR027187.	4.2	31
13	The impact of different rainfall products on landscape modelling simulations. Earth Surface Processes and Landforms, 2020, 45, 2512-2523.	2.5	8
14	Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain. Nature Communications, 2020, 11, 2239.	12.8	53
15	CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain. Earth System Science Data, 2020, 12, 2459-2483.	9.9	87
16	DECIPHeR v1: Dynamic fluxEs and ConnectIvity for Predictions of HydRology. Geoscientific Model Development, 2019, 12, 2285-2306.	3.6	51
17	Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v1.2: an open-source, extendable framework providing implementations of 46 conceptual hydrologic models as continuous state-space formulations. Geoscientific Model Development, 2019, 12, 2463-2480.	3.6	74
18	Remote sensing and identification of volcanic plumes using fixedâ€wing UAVs over Volcán de Fuego, Guatemala. Journal of Field Robotics, 2019, 36, 1192-1211.	6.0	22

#	Article	IF	CITATIONS
19	Global bimodal precipitation seasonality: A systematic overview. International Journal of Climatology, 2019, 39, 558-567.	3.5	31
20	Benchmarking the predictive capability of hydrological models for river flow and flood peak predictions across over 1000Âcatchments in Great Britain. Hydrology and Earth System Sciences, 2019, 23, 4011-4032.	4.9	63
21	Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences, 2019, 23, 4323-4331.	4.9	582
22	Determining the sources of nutrient flux to water in headwater catchments: Examining the speciation balance to inform the targeting of mitigation measures. Science of the Total Environment, 2019, 648, 1179-1200.	8.0	31
23	Improving estuary models by reducing uncertainties associated with river flows. Estuarine, Coastal and Shelf Science, 2018, 207, 63-73.	2.1	15
24	Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of different natural hazard areas. Natural Hazards and Earth System Sciences, 2018, 18, 2741-2768.	3.6	45
25	Simulating Runoff Under Changing Climatic Conditions: A Framework for Model Improvement. Water Resources Research, 2018, 54, 9812-9832.	4.2	58
26	Constraining Conceptual Hydrological Models With Multiple Information Sources. Water Resources Research, 2018, 54, 8332-8362.	4.2	85
27	A Quantitative Hydrological Climate Classification Evaluated With Independent Streamflow Data. Water Resources Research, 2018, 54, 5088-5109.	4.2	100
28	A large set of potential past, present and future hydro-meteorological time series for the UK. Hydrology and Earth System Sciences, 2018, 22, 611-634.	4.9	54
29	Process-based modelling to evaluate simulated groundwater levels and frequencies in aÂChalk catchment in south-western England. Natural Hazards and Earth System Sciences, 2018, 18, 445-461.	3.6	22
30	A rule based quality control method for hourly rainfall data and a 1†km resolution gridded hourly rainfall dataset for Great Britain: CEH-GEAR1hr. Journal of Hydrology, 2018, 564, 930-943.	5.4	58
31	Effects of variability in probable maximum precipitation patterns on flood losses. Hydrology and Earth System Sciences, 2018, 22, 2759-2773.	4.9	24
32	A Comparison of Methods for Streamflow Uncertainty Estimation. Water Resources Research, 2018, 54, 7149-7176.	4.2	108
33	Quantifying local rainfall dynamics and uncertain boundary conditions into a nested regionalâ€local flood modeling system. Water Resources Research, 2017, 53, 2770-2785.	4.2	51
34	Reply to comment by Melsen et al. on "Most computational hydrology is not reproducible, so is it really science?― Water Resources Research, 2017, 53, 2570-2571.	4.2	2
35	Reply to comment by Añel on "Most computational hydrology is not reproducible, so is it really science?― Water Resources Research, 2017, 53, 2575-2576.	4.2	1
36	The potential benefits of on-farm mitigation scenarios for reducing multiple pollutant loadings in prioritised agri-environment areas across England. Environmental Science and Policy, 2017, 73, 100-114.	4.9	21

#	Article	IF	CITATIONS
37	Major agricultural changes required to mitigate phosphorus losses under climate change. Nature Communications, 2017, 8, 161.	12.8	121
38	Prediction of storm transfers and annual loads with data-based mechanistic models using high-frequency data. Hydrology and Earth System Sciences, 2017, 21, 6425-6444.	4.9	9
39	Atmospheric Sampling on Ascension Island Using Multirotor UAVs. Sensors, 2017, 17, 1189.	3.8	29
40	Hydrological controls on DOC â€∵: â€⁻nitrate resource stoichiometry in a lowland, agricultural catchment southern UK. Hydrology and Earth System Sciences, 2017, 21, 4785-4802.	t, 4.9	25
41	Consistency assessment of rating curve data in various locations using Bidirectional Reach (BReach). Hydrology and Earth System Sciences, 2017, 21, 5315-5337.	4.9	1
42	Technical Note: Testing an improved index for analysing storm discharge–concentration hysteresis. Hydrology and Earth System Sciences, 2016, 20, 625-632.	4.9	108
43	The evolution of root-zone moisture capacities after deforestation: a step towards hydrological predictions under change?. Hydrology and Earth System Sciences, 2016, 20, 4775-4799.	4.9	61
44	Methane mole fraction and δ ¹³ C above and below the trade wind inversion at Ascension Island in air sampled by aerial robotics. Geophysical Research Letters, 2016, 43, 11,893.	4.0	14
45	Quantifying the importance of spatial resolution and other factors through global sensitivity analysis of a flood inundation model. Water Resources Research, 2016, 52, 9146-9163.	4.2	92
46	Most computational hydrology is not reproducible, so is it really science?. Water Resources Research, 2016, 52, 7548-7555.	4.2	119
47	When does spatial resolution become spurious in probabilistic flood inundation predictions?. Hydrological Processes, 2016, 30, 2014-2032.	2.6	94
48	Uncertainty in hydrological signatures for gauged and ungauged catchments. Water Resources Research, 2016, 52, 1847-1865.	4.2	104
49	Improving the theoretical underpinnings of processâ€based hydrologic models. Water Resources Research, 2016, 52, 2350-2365.	4.2	80
50	Using hysteresis analysis of high-resolution water quality monitoring data, including uncertainty, to infer controls on nutrient and sediment transfer in catchments. Science of the Total Environment, 2016, 543, 388-404.	8.0	221
51	Discharge and nutrient uncertainty: implications for nutrient flux estimation in small streams. Hydrological Processes, 2016, 30, 135-152.	2.6	48
52	Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling and Software, 2016, 79, 214-232.	4.5	926
53	A novel framework for discharge uncertainty quantification applied to 500 <scp>UK</scp> gauging stations. Water Resources Research, 2015, 51, 5531-5546.	4.2	159
54	A high-resolution global flood hazard model. Water Resources Research, 2015, 51, 7358-7381.	4.2	353

#	Article	IF	CITATIONS
55	Sensitivity of a hydraulic model to channel erosion uncertainty during extreme flooding. Hydrological Processes, 2015, 29, 261-279.	2.6	26
56	Factors affecting the spatial pattern of bedrock groundwater recharge at the hillslope scale. Hydrological Processes, 2015, 29, 4594-4610.	2.6	40
57	Virtual laboratories: new opportunities for collaborative water science. Hydrology and Earth System Sciences, 2015, 19, 2101-2117.	4.9	63
58	A unified approach for processâ€based hydrologic modeling: 2. Model implementation and case studies. Water Resources Research, 2015, 51, 2515-2542.	4.2	173
59	Dynamic TOPMODEL: A new implementation in R and its sensitivity to time and space steps. Environmental Modelling and Software, 2015, 72, 155-172.	4.5	53
60	Efficient incorporation of channel cross-section geometry uncertainty into regional and global scale flood inundation models. Journal of Hydrology, 2015, 529, 169-183.	5.4	76
61	A unified approach for processâ€based hydrologic modeling: 1. Modeling concept. Water Resources Research, 2015, 51, 2498-2514.	4.2	354
62	A geospatial framework to support integrated biogeochemical modelling in the United Kingdom. Environmental Modelling and Software, 2015, 68, 219-232.	4.5	26
63	Satellite-supported flood forecasting in river networks: A real case study. Journal of Hydrology, 2015, 523, 706-724.	5.4	88
64	Spotting East African Mammals in Open Savannah from Space. PLoS ONE, 2014, 9, e115989.	2.5	52
65	High-frequency monitoring of nitrogen and phosphorus response in three rural catchments to the end of the 2011–2012 drought in England. Hydrology and Earth System Sciences, 2014, 18, 3429-3448.	4.9	103
66	The impact of uncertain precipitation data on insurance loss estimates using a flood catastrophe model. Hydrology and Earth System Sciences, 2014, 18, 2305-2324.	4.9	48
67	Catchment similarity concepts for understanding dynamic biogeochemical behaviour of river basins. Hydrological Processes, 2014, 28, 1554-1560.	2.6	14
68	The Impact of Scale on Probabilistic Flood Inundation Maps Using a 2D Hydraulic Model with Uncertain Boundary Conditions. , 2014, , .		5
69	Recent climatic trends and linkages to river discharge in Central Vietnam. Hydrological Processes, 2014, 28, 1587-1601.	2.6	24
70	Methods for detecting change in hydrochemical time series in response to targeted pollutant mitigation in river catchments. Journal of Hydrology, 2014, 514, 297-312.	5.4	49
71	Struggling with Epistemic Uncertainties in Environmental Modelling of Natural Hazards. , 2014, , .		2
72	Comparing ensemble projections of flooding against flood estimation by continuous simulation. Journal of Hydrology, 2014, 511, 205-219.	5.4	32

#	Article	IF	CITATIONS
73	Catchment properties, function, and conceptual model representation: is there a correspondence?. Hydrological Processes, 2014, 28, 2451-2467.	2.6	135
74	Diagnostic evaluation of multiple hypotheses of hydrological behaviour in a limits-of-acceptability framework for 24 UK catchments. Hydrological Processes, 2014, 28, 6135-6150.	2.6	71
75	Investigating the application of climate models in flood projection across the UK. Hydrological Processes, 2014, 28, 2810-2823.	2.6	24
76	Process consistency in models: The importance of system signatures, expert knowledge, and process complexity. Water Resources Research, 2014, 50, 7445-7469.	4.2	170
77	A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrological Sciences Journal, 2013, 58, 1198-1255.	2.6	821
78	Modelling climate impact on floods with ensemble climate projections. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 282-297.	2.7	92
79	Improving the stability of a simple formulation of the shallow water equations for 2â€Ð flood modeling. Water Resources Research, 2012, 48, .	4.2	127
80	Comparing empirical models for sediment and phosphorus transfer from soils to water at field and catchment scale under data uncertainty. European Journal of Soil Science, 2012, 63, 211-223.	3.9	23
81	Comment on "Pursuing the method of multiple working hypotheses for hydrological modeling―by P. Clark et al Water Resources Research, 2012, 48, .	4.2	53
82	Conditioning model output statistics of regional climate model precipitation on circulation patterns. Nonlinear Processes in Geophysics, 2012, 19, 623-633.	1.3	61
83	Benchmarking observational uncertainties for hydrology: rainfall, river discharge and water quality. Hydrological Processes, 2012, 26, 4078-4111.	2.6	345
84	Scaling up the phosphorus signal from soil hillslopes to headwater catchments. Freshwater Biology, 2012, 57, 7-25.	2.4	58
85	A novel application of natural fluorescence to understand the sources and transport pathways of pollutants from livestock farming in small headwater catchments. Science of the Total Environment, 2012, 417-418, 169-182.	8.0	32
86	The impact of uncertainty in satellite data on the assessment of flood inundation models. Journal of Hydrology, 2012, 414-415, 162-173.	5.4	77
87	Processes influencing model-data mismatch in drought-stressed, fire-disturbed eddy flux sites. Journal of Geophysical Research, 2011, 116, .	3.3	20
88	Calibration of hydrological models using flow-duration curves. Hydrology and Earth System Sciences, 2011, 15, 2205-2227.	4.9	203
89	Impacts of uncertain river flow data on rainfallâ€runoff model calibration and discharge predictions. Hydrological Processes, 2010, 24, 1270-1284.	2.6	136
90	Ensemble evaluation of hydrological model hypotheses. Water Resources Research, 2010, 46, .	4.2	83

#	Article	IF	CITATIONS
91	Flood-plain mapping: a critical discussion of deterministic and probabilistic approaches. Hydrological Sciences Journal, 2010, 55, 364-376.	2.6	213
92	Assessing catchment-scale erosion and yields of suspended solids from improved temperate grassland. Journal of Environmental Monitoring, 2010, 12, 731.	2.1	63
93	Assessment of projected changes in upland environments using simple climatic indices. Climate Research, 2010, 45, 87-104.	1.1	7
94	Diffuse Phosphorus Models in the United States and Europe: Their Usages, Scales, and Uncertainties. Journal of Environmental Quality, 2009, 38, 1956-1967.	2.0	80
95	Towards a limits of acceptability approach to the calibration of hydrological models: Extending observation error. Journal of Hydrology, 2009, 367, 93-103.	5.4	137
96	Multiple sources of predictive uncertainty in modeled estimates of net ecosystem CO2 exchange. Ecological Modelling, 2009, 220, 3259-3270.	2.5	49
97	Consistency between hydrological models and field observations: linking processes at the hillslope scale to hydrological responses at the watershed scale. Hydrological Processes, 2009, 23, 311-319.	2.6	128
98	Detecting the effects of spatial variability of rainfall on hydrological modelling within an uncertainty analysis framework. Hydrological Processes, 2009, 23, 1988-2003.	2.6	59
99	Science versus politics: truth and uncertainty in predictive modelling. Hydrological Processes, 2009, 23, 2549-2554.	2.6	28
100	Tracking the uncertainty in flood alerts driven by grand ensemble weather predictions. Meteorological Applications, 2009, 16, 91-101.	2.1	109
101	Uncertainty assessment of a process-based integrated catchment model of phosphorus. Stochastic Environmental Research and Risk Assessment, 2009, 23, 991-1010.	4.0	86
102	Uncertainties in Data and Models to Describe Event Dynamics of Agricultural Sediment and Phosphorus Transfer. Journal of Environmental Quality, 2009, 38, 1137-1148.	2.0	75
103	The usability of 250 m resolution data from the UK Meteorological Office Unified Model as input data for a hydrological model. Meteorological Applications, 2008, 15, 207-217.	2.1	4
104	Conceptualization in catchment modelling: simply learning?. Hydrological Processes, 2008, 22, 2389-2393.	2.6	65
105	So just why would a modeller choose to be incoherent?. Journal of Hydrology, 2008, 354, 15-32.	5.4	221
106	Rethinking the Contribution of Drained and Undrained Grasslands to Sedimentâ€Related Water Quality Problems. Journal of Environmental Quality, 2008, 37, 906-914.	2.0	62
107	Comment on "Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology―by Pietro Mantovan and Ezio Todini. Journal of Hydrology, 2007, 338, 315-318.	5.4	86
108	Modelling the chloride signal at Plynlimon, Wales, using a modified dynamic TOPMODEL incorporating conservative chemical mixing (with uncertainty). Hydrological Processes, 2007, 21, 292-307.	2.6	89

#	Article	IF	CITATIONS
109	Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: a critical note on modelling of phosphorus transfers. Hydrological Processes, 2007, 21, 557-562.	2.6	22
110	Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: an overview of key issues. Hydrological Processes, 2006, 20, 4407-4413.	2.6	73
111	Spatial Variability of Soil Phosphorus in Relation to the Topographic Index and Critical Source Areas. Journal of Environmental Quality, 2005, 34, 2263-2277.	2.0	104
112	Constraining dynamic TOPMODEL responses for imprecise water table information using fuzzy rule based performance measures. Journal of Hydrology, 2004, 291, 254-277.	5.4	158
113	Title is missing!. Water, Air, and Soil Pollution, 2003, 142, 71-94.	2.4	24
114	Modelling hydrologic responses in a small forested catchment (Panola Mountain, Georgia, USA): a comparison of the original and a new dynamic TOPMODEL. Hydrological Processes, 2003, 17, 345-362.	2.6	50
115	The Geochemical Evolution of Riparian Ground Water in a Forested Piedmont Catchment. Ground Water, 2003, 41, 913-925.	1.3	88
116	Hydrological Dynamics of the Panola Mountain Research Watershed, Georgia. Ground Water, 2003, 41, 973-988.	1.3	54
117	Multivariate seasonal period model rejection within the generalised likelihood uncertainty estimation procedure. Water Science and Application, 2003, , 69-87.	0.3	55
118	The role of bedrock topography on subsurface storm flow. Water Resources Research, 2002, 38, 5-1-5-16.	4.2	322
119	Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology, 2001, 249, 11-29.	5.4	1,716
120	Stochastic capture zone delineation within the generalized likelihood uncertainty estimation methodology: Conditioning on head observations. Water Resources Research, 2001, 37, 625-638.	4.2	83
121	Quantifying contributions to storm runoff through end-member mixing analysis and hydrologic measurements at the Panola Mountain Research Watershed (Georgia, USA). Hydrological Processes, 2001, 15, 1903-1924.	2.6	299
122	A dynamic TOPMODEL. Hydrological Processes, 2001, 15, 1993-2011.	2.6	289
123	Equifinality and uncertainty in physically based soil erosion models: application of the GLUE methodology to WEPP-the Water Erosion Prediction Project-for sites in the UK and USA. Earth Surface Processes and Landforms, 2000, 25, 825-845.	2.5	160
124	Base cation concentrations in subsurface flow from a forested hillslope: The role of flushing frequency. Water Resources Research, 1998, 34, 3535-3544.	4.2	100
125	Modelling the hydrological response of mediterranean catchments, Prades, Catalonia. The use of distributed models as aids to hypothesis formulation. Hydrological Processes, 1997, 11, 1287-1306.	2.6	76
126	Hydrological processes—Letters. Topographic controls on subsurface storm flow at the hillslope scale for two hydrologically distinct small catchmetns. Hydrological Processes, 1997, 11, 1347-1352.	2.6	125

#	Article	IF	CITATIONS
127	Hydrological processes—Letters. Topographic controls on subsurface storm flow at the hillslope scale for two hydrologically distinct small catchmetns. Hydrological Processes, 1997, 11, 1347-1352.	2.6	1
128	Application of a Generalized TOPMODEL to the Small Ringelbach Catchment, Vosges, France. Water Resources Research, 1996, 32, 2147-2159.	4.2	77
129	Toward a Generalization of the TOPMODEL Concepts: Topographic Indices of Hydrological Similarity. Water Resources Research, 1996, 32, 2135-2145.	4.2	261
130	Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach. Water Resources Research, 1996, 32, 2161-2173.	4.2	658
131	New method developed for studying flow on hillslopes. Eos, 1996, 77, 465-472.	0.1	90