
Jose Manuel MartÃ-nez-Costas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6643657/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A customizable 3D printed device for enzymatic removal of drugs in water. Water Research, 2022, 208, 117861.	11.3	12
2	Production and Purification of Candidate by IC-Tagging Protein Encapsulation. Methods in Molecular Biology, 2022, 2465, 27-40.	0.9	0
3	3D Printing: An Emerging Technology for Biocatalyst Immobilization. Macromolecular Bioscience, 2022, 22, e2200110.	4.1	14
4	Nanoparticle- and Microparticle-Based Vaccines against Orbiviruses of Veterinary Importance. Vaccines, 2022, 10, 1124.	4.4	3
5	Dynamic Stereoselection of Peptide Helicates and Their Selective Labeling of DNA Replication Foci in Cells**. Angewandte Chemie, 2021, 133, 8941-8948.	2.0	7
6	Dynamic Stereoselection of Peptide Helicates and Their Selective Labeling of DNA Replication Foci in Cells**. Angewandte Chemie - International Edition, 2021, 60, 8859-8866.	13.8	29
7	Chemical and thermal stabilization of CotA laccase via a novel one-step expression and immobilization in muNS-Mi nanospheres. Scientific Reports, 2021, 11, 2802.	3.3	8
8	Rational Design of Copper(II)–Uracil Nanoprocessed Coordination Polymers to Improve Their Cytotoxic Activity in Biological Media. ACS Applied Materials & Interfaces, 2021, 13, 36948-36957.	8.0	5
9	Cross-protective immune responses against African horse sickness virus after vaccination with protein NS1 delivered by avian reovirus muNS microspheres and modified vaccinia virus Ankara. Vaccine, 2020, 38, 882-889.	3.8	11
10	MitoBlue as a tool to analyze the mitochondria-lysosome communication. Scientific Reports, 2020, 10, 3528.	3.3	7
11	Tuning the Size of Nanoassembles: A Hierarchical Transfer of Information from Dendrimers to Polyion Complexes. Angewandte Chemie, 2018, 130, 5371-5375.	2.0	1
12	Selective G-quadruplex binding by oligoarginine-Ru(dppz) metallopeptides. Chemical Communications, 2018, 54, 658-661.	4.1	16
13	Tuning the Size of Nanoassembles: A Hierarchical Transfer of Information from Dendrimers to Polyion Complexes. Angewandte Chemie - International Edition, 2018, 57, 5273-5277.	13.8	28
14	IC-Tagging methodology applied to the expression of viral glycoproteins and the difficult-to-express membrane-bound IGRP autoantigen. Scientific Reports, 2018, 8, 16286.	3.3	3
15	Microspheres-prime/rMVA-boost vaccination enhances humoral and cellular immune response in IFNAR(â^²/â^²) mice conferring protection against serotypes 1 and 4 of bluetongue virus. Antiviral Research, 2017, 142, 55-62.	4.1	13
16	A dendrimer–hydrophobic interaction synergy improves the stability of polyion complex micelles. Polymer Chemistry, 2017, 8, 2528-2537.	3.9	23
17	Rücktitelbild: In Situ Functionalized Polymers for siRNA Delivery (Angew. Chem. 26/2016). Angewandte Chemie, 2016, 128, 7676-7676.	2.0	0
18	In Situ Functionalized Polymers for siRNA Delivery. Angewandte Chemie - International Edition, 2016, 55, 7492-7495.	13.8	73

#	Article	IF	CITATIONS
19	Response of Three Different Viruses to Interferon Priming and Dithiothreitol Treatment of Avian Cells. Journal of Virology, 2016, 90, 8328-8340.	3.4	1
20	Membrane-disrupting iridium(iii) oligocationic organometallopeptides. Chemical Communications, 2016, 52, 11008-11011.	4.1	14
21	In Situ Functionalized Polymers for siRNA Delivery. Angewandte Chemie, 2016, 128, 7618-7621.	2.0	18
22	Interferon induction by avian reovirus. Virology, 2016, 487, 104-111.	2.4	11
23	Using IC-Tagging Methodology for Production and Purification of Epitope-Loaded Protein Microspheres for Vaccination. Methods in Molecular Biology, 2016, 1349, 25-34.	0.9	2
24	MitoBlue: A Nontoxic and Photostable Blue-Emitting Dye That Selectively Labels Functional Mitochondria. ACS Chemical Biology, 2014, 9, 2742-2747.	3.4	10
25	VP2, VP7, and NS1 proteins of bluetongue virus targeted in avian reovirus muNS-Mi microspheres elicit a protective immune response in IFNAR(â^'/â^') mice. Antiviral Research, 2014, 110, 42-51.	4.1	27
26	Programmed stereoselective assembly of DNA-binding helical metallopeptides. Chemical Communications, 2014, 50, 11097-11100.	4.1	30
27	Avian reovirus-triggered apoptosis enhances both virus spread and the processing of the viral nonstructural muNS protein. Virology, 2014, 462-463, 49-59.	2.4	18
28	Customâ€Fit Ruthenium(II) Metallopeptides: A New Twist to DNA Binding With Coordination Compounds. Chemistry - A European Journal, 2013, 19, 13369-13375.	3.3	22
29	Different intracellular distribution of avian reovirus core protein sigmaA in cells of avian and mammalian origin. Virology, 2012, 432, 495-504.	2.4	5
30	Straightforward access to bisbenzamidine DNA binders and their use as versatile adaptors for DNA-promoted processes. Chemical Science, 2012, 3, 2383.	7.4	37
31	<i>In Vivo</i> Light-Driven DNA Binding and Cellular Uptake of Nucleic Acid Stains. ACS Chemical Biology, 2012, 7, 1276-1280.	3.4	22
32	IC-tagged proteins are able to interact with each other and perform complex reactions when integrated into muNS-derived inclusions. Journal of Biotechnology, 2011, 155, 284-286.	3.8	7
33	Avian and mammalian reoviruses use different molecular mechanisms to synthesize their μNS isoforms. Journal of General Virology, 2011, 92, 2566-2574.	2.9	12
34	Avian Reovirus μNS Protein Forms Homo-Oligomeric Inclusions in a Microtubule-Independent Fashion, Which Involves Specific Regions of Its C-Terminal Domain. Journal of Virology, 2010, 84, 4289-4301.	3.4	40
35	Bis-4-aminobenzamidines: Versatile, Fluorogenic A/T-Selective dsDNA Binders. Organic Letters, 2010, 12, 216-219.	4.6	46
36	IC-Tagging and Protein Relocation to ARV muNS Inclusions: A Method to Study Protein-Protein Interactions in the Cytoplasm or Nucleus of Living Cells. PLoS ONE, 2010, 5, e13785.	2.5	10

#	Article	IF	CITATIONS
37	A Versatile Molecular Tagging Method for Targeting Proteins to Avian Reovirus muNS Inclusions. Use in Protein Immobilization and Purification. PLoS ONE, 2010, 5, e13961.	2.5	20
38	Avian Reovirus SigmaA Localizes to the Nucleolus and Enters the Nucleus by a Nonclassical Energy- and Carrier-Independent Pathway. Journal of Virology, 2009, 83, 10163-10175.	3.4	32
39	Efficient DNA Binding and Nuclear Uptake by Distamycin Derivatives Conjugated to Octaâ€arginine Sequences. ChemBioChem, 2008, 9, 2822-2829.	2.6	28
40	Crystal Structure of the Avian Reovirus Inner Capsid Protein ÏfA. Journal of Virology, 2008, 82, 11208-11216.	3.4	20
41	Avian reovirus: Structure and biology. Virus Research, 2007, 123, 105-119.	2.2	196
42	Crystallization of the avian reovirus double-stranded RNA-binding and core protein ÏfA. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 426-429.	0.7	3
43	High Affinity, Sequence Specific DNA Binding by Synthetic Tripyrrole-Peptide Conjugates. Chemistry - A European Journal, 2005, 11, 4171-4178.	3.3	31
44	Crystallization of the C-terminal globular domain of avian reovirus fibre. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 651-654.	0.7	6
45	Characterization of the nucleic acid-binding activity of the avian reovirus non-structural protein σNS. Journal of General Virology, 2005, 86, 1159-1169.	2.9	24
46	The Second Open Reading Frame of the Avian Reovirus S1 Gene Encodes a Transcription-Dependent and CRM1-Independent Nucleocytoplasmic Shuttling Protein. Journal of Virology, 2005, 79, 2141-2150.	3.4	51
47	Structure of the Carboxy-terminal Receptor-binding Domain of Avian Reovirus Fibre SigmaC. Journal of Molecular Biology, 2005, 354, 137-149.	4.2	56
48	Avian reovirus nonstructural protein \hat{l} 4NS forms viroplasm-like inclusions and recruits protein ÏfNS to these structures. Virology, 2004, 319, 94-106.	2.4	80
49	Avian Reovirus Morphogenesis Occurs Within Viral Factories and Begins with the Selective Recruitment of ÏfNS and λA to μNS Inclusions. Journal of Molecular Biology, 2004, 341, 361-374.	4.2	60
50	A Synthetic Miniprotein that Binds Specific DNA Sequences by Contacting Both the Major and the Minor Groove. Chemistry and Biology, 2003, 10, 713-722.	6.0	32
51	Evidence that avian reovirus σA protein is an inhibitor of the double-stranded RNA-dependent protein kinase. Journal of General Virology, 2003, 84, 1629-1639.	2.9	59
52	Modification of Late Membrane Permeability in Avian Reovirus-infected Cells. Journal of Biological Chemistry, 2002, 277, 17789-17796.	3.4	59
53	Cloning, Expression, and Characterization of Avian Reovirus Guanylyltransferase. Virology, 2002, 296, 288-299.	2.4	36
54	Design and Synthesis of a Peptide That Binds Specific DNA Sequences through Simultaneous Interaction in the Major and in the Minor Groove. Angewandte Chemie - International Edition, 2001, 40, 4723-4725.	13.8	54

#	Article	IF	CITATIONS
55	The Avian Reovirus Genome Segment S1 Is a Functionally Tricistronic Gene That Expresses One Structural and Two Nonstructural Proteins in Infected Cells. Virology, 2001, 290, 181-191.	2.4	105
56	A Light-Modulated Sequence-Specific DNA-Binding Peptide. Angewandte Chemie - International Edition, 2000, 39, 3104-3107.	13.8	95
57	Possible Involvement of the Double-Stranded RNA-Binding Core Protein Ï,A in the Resistance of Avian Reovirus to Interferon. Journal of Virology, 2000, 74, 1124-1131.	3.4	58
58	Guanylyltransferase and RNA 5′-triphosphatase activities of the purified expressed VP4 protein of bluetongue virus 1 1Edited by J. Karn. Journal of Molecular Biology, 1998, 280, 859-866.	4.2	40
59	Protein architecture of avian reovirus S1133 and identification of the cell attachment protein. Journal of Virology, 1997, 71, 59-64.	3.4	96
60	Intracellular posttranslational modifications of S1133 avian reovirus proteins. Journal of Virology, 1996, 70, 2974-2981.	3.4	48
61	Endogenous Enzymatic Activities of the Avian Reovirus S1133: Identification of the Viral Capping Enzyme. Virology, 1995, 206, 1017-1026.	2.4	40
62	Avian reovirus S1133 can replicate in mouse L cells: effect of pH and cell attachment status on viral infection. Journal of Virology, 1991, 65, 5499-5505.	3.4	11
63	The stimulatory effect of actinomycin D on avian reovirus replication in L cells suggests that translational competition dictates the fate of the infection. Journal of Virology, 1991, 65, 5506-5512.	3.4	4
64	Selective recognition of A/T-rich DNA 3-way junctions with a three-fold symmetric tripeptide. Chemical Communications, 0, , .	4.1	5