
Flavio Della Pelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6643650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enzyme inhibition coupled to molecularly imprinted polymers for acetazolamide determination in biological samples. Talanta, 2022, 240, 123195.	2.9	10
2	Monitoring disinfection in the Covid-19 era. A reagent-free nanostructured smartphone-based device for the detection of oxidative disinfectants. Microchemical Journal, 2022, 175, 107165.	2.3	10
3	Modular graphene mediator film-based electrochemical pocket device for chlorpyrifos determination. Talanta, 2022, 240, 123212.	2.9	10
4	New trends in enzyme-free electrochemical sensing of ROS/RNS.ÂApplication to live cell analysis. Mikrochimica Acta, 2022, 189, 102.	2.5	9
5	Fast sonochemical molecularly imprinted polymer synthesis for selective electrochemical determination of maleic hydrazide. Microchemical Journal, 2022, 180, 107634.	2.3	12
6	Plasmonic active film integrating gold/silver nanostructures for H2O2 readout. Talanta, 2021, 222, 121682.	2.9	27
7	Effect of phenolic compounds-capped AgNPs on growth inhibition of Aspergillus niger. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111533.	2.5	19
8	Molecularly Imprinted Polymers Combined with Electrochemical Sensors for Food Contaminants Analysis. Molecules, 2021, 26, 4607.	1.7	61
9	Metal nanoparticles based lab-on-paper for phenolic compounds evaluation with no sample pretreatment. Application to extra virgin olive oil samples. Analytica Chimica Acta, 2021, 1183, 338971.	2.6	10
10	(+)-Catechin-assisted graphene production by sonochemical exfoliation in water. A new redox-active nanomaterial for electromediated sensing. Mikrochimica Acta, 2021, 188, 369.	2.5	9
11	Water-Phase Exfoliated Biochar Nanofibers from Eucalyptus Scraps for Electrode Modification and Conductive Film Fabrication. ACS Sustainable Chemistry and Engineering, 2021, 9, 13988-13998.	3.2	19
12	Graphene Nanoflakes Incorporating Natural Phytochemicals Containing Catechols as Functional Material for Sensors. , 2021, 5, .		0
13	Eucalyptus Biochar as a Sustainable Nanomaterial for Electrochemical Sensors. , 2021, 5, .		3
14	Cocoa powder and catechins as natural mediators to modify carbon-black based screen-printed electrodes. Application to free and total glutathione detection in blood. Talanta, 2020, 207, 120349.	2.9	20
15	Oxidative stress on-chip: Prussian blue-based electrode array for in situ detection of H2O2 from cell populations. Biosensors and Bioelectronics, 2020, 170, 112669.	5.3	24
16	Peptides, DNA and MIPs in Gas Sensing. From the Realization of the Sensors to Sample Analysis. Sensors, 2020, 20, 4433.	2.1	18
17	Xurography-Enabled Thermally Transferred Carbon Nanomaterial-Based Electrochemical Sensors on Polyethylene Terephthalate–Ethylene Vinyl Acetate Films. Analytical Chemistry, 2020, 92, 13565-13572.	3.2	16
18	Piezoelectric peptide-hpDNA based electronic nose for the detection of terpenes; Evaluation of the aroma profile in different Cannabis sativa L. (hemp) samples. Sensors and Actuators B: Chemical, 2020, 308, 127697.	4.0	14

FLAVIO DELLA PELLE

#	Article	IF	CITATIONS
19	Class-selective voltammetric determination of hydroxycinnamic acids structural analogs using a WS2/catechin-capped AuNPs/carbon black–based nanocomposite sensor. Mikrochimica Acta, 2020, 187, 296.	2.5	36
20	Colorimetric determination of polyphenols via aÂgold nanoseeds–decorated polydopamine film. Mikrochimica Acta, 2020, 187, 267.	2.5	16
21	Group VI transition metal dichalcogenides as antifouling transducers for electrochemical oxidation of catechol-containing structures. Electrochemistry Communications, 2020, 115, 106718.	2.3	26
22	Studies on Silver Nanoparticles Production Mediated by Sugars. Lecture Notes in Electrical Engineering, 2020, , 29-34.	0.3	0
23	Lab-on-a-Tip Based on a Bimetallic Nanoarchitecture Enabling Catalytic 4-Nitrophenol Switch-off. , 2020, 60, .		0
24	Hairpin DNA-AuNPs as molecular binding elements for the detection of volatile organic compounds. Biosensors and Bioelectronics, 2019, 123, 124-130.	5.3	25
25	Headspace Volatile Evaluation of Carrot Samples—Comparison of GC/MS and AuNPs-hpDNA-Based E-Nose. Foods, 2019, 8, 293.	1.9	16
26	Monitoring Shelf Life of Carrots with a Peptides Based Electronic Nose. Lecture Notes in Electrical Engineering, 2019, , 69-74.	0.3	1
27	Carbon Black as Electrode Modifier in Prussian Blue Electrodeposition for H2O2 Sensing. Lecture Notes in Electrical Engineering, 2019, , 345-350.	0.3	Ο
28	High-performance carbon black/molybdenum disulfide nanohybrid sensor for cocoa catechins determination using an extraction-free approach. Sensors and Actuators B: Chemical, 2019, 296, 126651.	4.0	41
29	Nanohybrid carbon black-molybdenum disulfide transducers for preconcentration-free voltammetric detection of the olive oil o-diphenols hydroxytyrosol and oleuropein. Mikrochimica Acta, 2019, 186, 363.	2.5	32
30	Electrochemical Glucose Quantification as a Strategy for Ethanolic Fermentation Monitoring. Chemosensors, 2019, 7, 14.	1.8	10
31	Silver and gold nanoparticles based colorimetric assays for the determination of sugars and polyphenols in apples. Food Research International, 2019, 119, 359-368.	2.9	38
32	Silver nanoparticles-based plasmonic assay for the determination of sugar content in food matrices. Analytica Chimica Acta, 2019, 1051, 129-137.	2.6	44
33	Simple and rapid silver nanoparticles based antioxidant capacity assays: Reactivity study for phenolic compounds. Food Chemistry, 2018, 256, 342-349.	4.2	49
34	Electrochemical Behaviour of Microwaveâ€assisted Oxidized MWCNTs Based Disposable Electrodes: Proposal of a NADH Electrochemical Sensor. Electroanalysis, 2018, 30, 509-516.	1.5	32
35	Nano carbon black-based screen printed sensor for carbofuran, isoprocarb, carbaryl and fenobucarb detection: application to grain samples. Talanta, 2018, 186, 389-396.	2.9	95
36	Affinity Sensing Strategies for the Detection of Pesticides in Food. Foods, 2018, 7, 148.	1.9	56

FLAVIO DELLA PELLE

#	Article	IF	CITATIONS
37	NADH Oxidation onto Different Carbon-Based Sensors: Effect of Structure and Surface-Oxygenated Groups. Journal of Sensors, 2018, 2018, 1-9.	0.6	17
38	Nanomaterial-Based Sensing and Biosensing of Phenolic Compounds and Related Antioxidant Capacity in Food. Sensors, 2018, 18, 462.	2.1	116
39	Peptide Modified ZnO Nanoparticles as Gas Sensors Array for Volatile Organic Compounds (VOCs). Frontiers in Chemistry, 2018, 6, 105.	1.8	41
40	Electrodeposited Prussian Blue on carbon black modified disposable electrodes for direct enzyme-free H2O2 sensing in a Parkinson's disease in vitro model. Sensors and Actuators B: Chemical, 2018, 275, 402-408.	4.0	43
41	Optical Detection of Antioxidant Capacity in Food Using Metal Nanoparticles Formation. Study on Saffron Constituents. Lecture Notes in Electrical Engineering, 2018, , 151-157.	0.3	0
42	Press-transferred carbon black nanoparticles for class-selective antioxidant electrochemical detection. Applied Materials Today, 2017, 9, 29-36.	2.3	37
43	Determination of Pesticides in Wheat Flour Using Microextraction on Packed Sorbent Coupled to Ultra-High Performance Liquid Chromatography and Tandem Mass Spectrometry. Food Analytical Methods, 2017, 10, 1699-1708.	1.3	25
44	Micro-solid-phase extraction (µ-SPE) of organophosphorous pesticides from wheat followed by LC-MS/MS determination. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 1-9.	1.1	9
45	Press-transferred carbon black nanoparticles on board of microfluidic chips for rapid and sensitive amperometric determination of phenyl carbamate pesticides in environmental samples. Mikrochimica Acta, 2016, 183, 3143-3149.	2.5	43
46	Pressâ€Printed Conductive Carbon Black Nanoparticle Films for Molecular Detection at the Microscale. Chemistry - A European Journal, 2016, 22, 12761-12766.	1.7	34
47	Solid-Phase Extraction of Pesticides by Using Bioinspired Peptide Receptors. Journal of Chemistry, 2015, 2015, 1-7.	0.9	0
48	Gold Nanoparticles-based Extraction-Free Colorimetric Assay in Organic Media: An Optical Index for Determination of Total Polyphenols in Fat-Rich Samples. Analytical Chemistry, 2015, 87, 6905-6911.	3.2	59
49	Press-transferred carbon black electrodes coupled to microchip electrophoresis for food pesticides detection. , 2015, , .		0
50	Antioxidant capacity index based on gold nanoparticles formation. Application to extra virgin olive oil samples. Food Chemistry, 2015, 178, 70-75.	4.2	47
51	Selective Voltammetric Analysis of <i>o</i> â€Diphenols from Olive Oil Using Na ₂ MoO ₄ as Electrochemical Mediator. Electroanalysis, 2012, 24, 889-896.	1.5	37
52	An Amperometric Sensor for the Selective Determination of Ortho-Diphenols in Olive Oil. Lecture Notes in Electrical Engineering, 2011, , 361-365.	0.3	1