
Alessandro Varani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6642980/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biology, 2011, 12, R30.	9.6	340
2	Insertion Sequence IS <i>26</i> Reorganizes Plasmids in Clinically Isolated Multidrug-Resistant Bacteria by Replicative Transposition. MBio, 2015, 6, e00762.	4.1	256
3	Everyman's Guide to Bacterial Insertion Sequences. Microbiology Spectrum, 2015, 3, MDNA3-0030-2014.	3.0	204
4	Building the sugarcane genome for biotechnology and identifying evolutionary trends. BMC Genomics, 2014, 15, 540.	2.8	136
5	Genomic signatures and coâ€occurrence patterns of the ultraâ€small Saccharimonadia (phylum) Tj ETQq1 1 0.7	84314 rgB	T /Overlock
6	A Metagenomic Approach to Cyanobacterial Genomics. Frontiers in Microbiology, 2017, 8, 809.	3.5	98
7	The Chloroplast Genome of Passiflora edulis (Passifloraceae) Assembled from Long Sequence Reads: Structural Organization and Phylogenomic Studies in Malpighiales. Frontiers in Plant Science, 2017, 8, 334.	3.6	79
8	The Role of Prophage in Plant-Pathogenic Bacteria. Annual Review of Phytopathology, 2013, 51, 429-451.	7.8	76
9	Exploring Bacterial Insertion Sequences with ISfinder: Objectives, Uses, and Future Developments. Methods in Molecular Biology, 2012, 859, 91-103.	0.9	61
10	The IS6 family, a clinically important group of insertion sequences including IS26. Mobile DNA, 2021, 12, 11.	3.6	58
11	The Chloroplast Genome of Utricularia reniformis Sheds Light on the Evolution of the ndh Gene Complex of Terrestrial Carnivorous Plants from the Lentibulariaceae Family. PLoS ONE, 2016, 11, e0165176.	2.5	57
12	TnCentral: a Prokaryotic Transposable Element Database and Web Portal for Transposon Analysis. MBio, 2021, 12, e0206021.	4.1	56
13	NAD Biosynthesis Evolution in Bacteria: Lateral Gene Transfer of Kynurenine Pathway in Xanthomonadales and Flavobacteriales. Molecular Biology and Evolution, 2009, 26, 399-406.	8.9	50
14	Origins of the Xylella fastidiosa Prophage-Like Regions and Their Impact in Genome Differentiation. PLoS ONE, 2008, 3, e4059.	2.5	50
15	Mechanisms of Evolution in High-Consequence Drug Resistance Plasmids. MBio, 2016, 7, .	4.1	49
16	Phylogenetic and antimicrobial resistance gene analysis of Salmonella Typhimurium strains isolated in Brazil by whole genome sequencing. PLoS ONE, 2018, 13, e0201882.	2.5	48
17	XylellaandXanthomonasMobil'omics. OMICS A Journal of Integrative Biology, 2005, 9, 146-159.	2.0	46
18	Laterally transferred genomic islands in Xanthomonadales related to pathogenicity and primary metabolism. FEMS Microbiology Letters, 2008, 281, 87-97.	1.8	43

#	Article	IF	CITATIONS
19	A TALE of Transposition: Tn <i>3</i> -Like Transposons Play a Major Role in the Spread of Pathogenicity Determinants of Xanthomonas citri and Other Xanthomonads. MBio, 2015, 6, e02505-14.	4.1	43
20	The Family Rhizobiaceae. , 2014, , 419-437.		39
21	The Family Bradyrhizobiaceae. , 2014, , 135-154.		37
22	Unravelling potential virulence factor candidates in <i>Xanthomonas citri</i> . subsp. <i>citri</i> by secretome analysis. PeerJ, 2016, 4, e1734.	2.0	35
23	A balanced microbiota efficiently produces methane in a novel high-rate horizontal anaerobic reactor for the treatment of swine wastewater. Bioresource Technology, 2015, 197, 152-160.	9.6	34
24	Origin and diversification of Xanthomonas citri subsp. citri pathotypes revealed by inclusive phylogenomic, dating, and biogeographic analyses. BMC Genomics, 2019, 20, 700.	2.8	33
25	Strain-specific polyketide synthase genes of Aspergillus niger. International Journal of Food Microbiology, 2012, 155, 137-145.	4.7	32
26	Comparative analysis of Mutator -like transposases in sugarcane. Molecular Genetics and Genomics, 2004, 272, 194-203.	2.1	31
27	The Terrestrial Carnivorous Plant Utricularia reniformis Sheds Light on Environmental and Life-Form Genome Plasticity. International Journal of Molecular Sciences, 2020, 21, 3.	4.1	30
28	Amazonocrinis nigriterrae gen. nov., sp. nov., Atlanticothrix silvestris gen. nov., sp. nov. and Dendronalium phyllosphericum gen. nov., sp. nov., nostocacean cyanobacteria from Brazilian environments. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	30
29	Genomic and Genotypic Characterization of Cylindrospermopsis raciborskii: Toward an Intraspecific Phylogenetic Evaluation by Comparative Genomics. Frontiers in Microbiology, 2018, 9, 306.	3.5	26
30	Genetic Organization of Anabaenopeptin and Spumigin Biosynthetic Gene Clusters in the Cyanobacterium <i>Sphaerospermopsis torques-reginae</i> ITEP-024. ACS Chemical Biology, 2017, 12, 769-778.	3.4	25
31	Toxin-Antitoxin Gene Pairs Found in Tn <i>3</i> Family Transposons Appear To Be an Integral Part of the Transposition Module. MBio, 2020, 11, .	4.1	25
32	The mitochondrial genome of the terrestrial carnivorous plant Utricularia reniformis (Lentibulariaceae): Structure, comparative analysis and evolutionary landmarks. PLoS ONE, 2017, 12, e0180484.	2.5	24
33	Genetic diversity and molecular phylogeny of Anaplasma marginale studied longitudinally under natural transmission conditions in Rio de Janeiro, Brazil. Ticks and Tick-borne Diseases, 2015, 6, 499-507.	2.7	23
34	Metagenomic analysis of soil and freshwater from zoo agricultural area with organic fertilization. PLoS ONE, 2017, 12, e0190178.	2.5	23
35	Intraspecific Variation within the Utricularia amethystina Species Morphotypes Based on Chloroplast Genomes. International Journal of Molecular Sciences, 2019, 20, 6130.	4.1	23
36	A Phage-Like Plasmid Carrying blaKPC-2 Gene in Carbapenem-Resistant Pseudomonas aeruginosa. Frontiers in Microbiology, 2019, 10, 572.	3.5	22

ALESSANDRO VARANI

#	Article	IF	CITATIONS
37	A gene-rich fraction analysis of the Passiflora edulis genome reveals highly conserved microsyntenic regions with two related Malpighiales species. Scientific Reports, 2018, 8, 13024.	3.3	18
38	MudrA-like sequences from rice and sugarcane cluster as two bona fide transposon clades and two domesticated transposases. Gene, 2007, 392, 117-125.	2.2	17
39	Comparative genomic analysis of Genlisea (corkscrew plants—Lentibulariaceae) chloroplast genomes reveals an increasing loss of the ndh genes. PLoS ONE, 2018, 13, e0190321.	2.5	17
40	Unraveling a Lignocellulose-Decomposing Bacterial Consortium from Soil Associated with Dry Sugarcane Straw by Genomic-Centered Metagenomics. Microorganisms, 2021, 9, 995.	3.6	17
41	Evaluating methods for purifying cyanobacterial cultures by qPCR and high-throughput Illumina sequencing. Journal of Microbiological Methods, 2016, 129, 55-60.	1.6	16
42	A Practical Guide for Comparative Genomics of Mobile Genetic Elements in Prokaryotic Genomes. Methods in Molecular Biology, 2018, 1704, 213-242.	0.9	15
43	Biosynthesis of microcystin hepatotoxins in the cyanobacterial genus Fischerella. Toxicon, 2018, 141, 43-50.	1.6	15
44	Xylella fastidiosa comparative genomic database is an information resource to explore the annotation, genomic features, and biology of different strains. Genetics and Molecular Biology, 2012, 35, 149-152.	1.3	15
45	Analyses of Seven New Genomes of Xanthomonas citri pv. aurantifolii Strains, Causative Agents of Citrus Canker B and C, Show a Reduced Repertoire of Pathogenicity-Related Genes. Frontiers in Microbiology, 2019, 10, 2361.	3.5	14
46	<p>Antibiotic resistance and heavy metal tolerance plasmids: the antimicrobial bulletproof properties of Escherichia fergusonii isolated from poultry</p> . Infection and Drug Resistance, 2019, Volume 12, 1029-1033.	2.7	14
47	Analysis of expressed sequence tags from the agarophyte Gracilaria tenuistipitata (Rhodophyta). Journal of Applied Phycology, 2012, 24, 641-647.	2.8	12
48	Everyman's Guide to Bacterial Insertion Sequences. , 0, , 555-590.		12
49	A Step Forward to Empower Global Microbiome Research Through Local Leadership. Trends in Microbiology, 2016, 24, 767-771.	7.7	12
50	New Small Plasmid Harboring <i>bla</i> _{KPC-2} in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2016, 60, 3211-3214.	3.2	12
51	Bartonella machadoae sp. nov. isolated from wild rodents in the Pantanal wetland. Acta Tropica, 2022, 229, 106368.	2.0	12
52	Draft Genome Sequence of the Brazilian Toxic Bloom-Forming Cyanobacterium Microcystis aeruginosa Strain SPC777. Genome Announcements, 2013, 1, .	0.8	11
53	Molecular and phylogenetic characterization based on the complete genome of a virulent pathotype of Newcastle disease virus isolated in the 1970s in Brazil. Infection, Genetics and Evolution, 2014, 26, 160-167.	2.3	11
54	Hepatozoon caimani in Caiman crocodilus yacare (Crocodylia, Alligatoridae) from North Pantanal, Brazil. Brazilian Journal of Veterinary Parasitology, 2017, 26, 352-358.	0.7	11

#	Article	IF	CITATIONS
55	SPM-1-producing Pseudomonas aeruginosa ST277 carries a chromosomal pack of acquired resistance genes: An example of high-risk clone associated with †intrinsic resistome'. Journal of Global Antimicrobial Resistance, 2019, 16, 183-186.	2.2	11
56	Genomic comparisons and phylogenetic analysis of mastitis-related staphylococci with a focus on adhesion, biofilm, and related regulatory genes. Scientific Reports, 2021, 11, 17392.	3.3	11
57	An Atlas of Plant Transposable Elements. F1000Research, 2021, 10, 1194.	1.6	11
58	Serratia liquefaciens FG3 isolated from a metallophyte plant sheds light on the evolution and mechanisms of adaptive traits in extreme environments. Scientific Reports, 2019, 9, 18006.	3.3	10
59	The plasmidome of multidrug-resistant emergent Salmonella serovars isolated from poultry. Infection, Genetics and Evolution, 2021, 89, 104716.	2.3	10
60	Detection and identification of <i>Xanthomonas</i> pathotypes associated with citrus diseases using comparative genomics and multiplex PCR. PeerJ, 2019, 7, e7676.	2.0	10
61	A Genomic and Transcriptomic Overview of MATE, ABC, and MFS Transporters in Citrus sinensis Interaction with Xanthomonas citri subsp. citri. Plants, 2020, 9, 794.	3.5	9
62	A comparative genomic analysis of Xanthomonas arboricola pv. juglandis strains reveal hallmarks of mobile genetic elements in the adaptation and accelerated evolution of virulence. Genomics, 2021, 113, 2513-2525.	2.9	9
63	Complete genome sequence and analysis of Alcaligenes faecalis strain Mc250, a new potential plant bioinoculant. PLoS ONE, 2020, 15, e0241546.	2.5	9
64	Transposable element discovery and characterization of LTR-retrotransposon evolutionary lineages in the tropical fruit species Passiflora edulis. Molecular Biology Reports, 2019, 46, 6117-6133.	2.3	8
65	A genome sequence resource for the genus <i>Passiflora</i> , the genome of the wild diploid species <i>Passiflora organensis</i> . Plant Genome, 2021, 14, e20117.	2.8	8
66	Transposons and pathogenicity in <i>Xanthomonas</i> : acquisition of murein lytic transglycosylases by Tn <i>Xax1</i> enhances <i>Xanthomonas citri</i> subsp. <i>citri</i> 306 virulence and fitness. PeerJ, 2018, 6, e6111.	2.0	8
67	Draft Genome Sequence of Bacillus thuringiensis var. thuringiensis Strain T01-328, a Brazilian Isolate That Produces a Soluble Pesticide Protein, Cry1Ia. Genome Announcements, 2013, 1, .	0.8	7
68	The genome sequence of Dyella jiangningensis FCAV SCS01 from a lignocellulose-decomposing microbial consortium metagenome reveals potential for biotechnological applications. Genetics and Molecular Biology, 2018, 41, 507-513.	1.3	6
69	Gene expression during the germination of coffee seed. Journal of Seed Science, 2019, 41, 168-179.	0.7	6
70	Exploring the Potential of Two Bacterial Consortia to Degrade Cellulosic Biomass for Biotechnological Applications. Current Microbiology, 2020, 77, 3114-3124.	2.2	6
71	The complete chloroplast genome sequence of the leafy bladderwort, Utricularia foliosa L. (Lentibulariaceae). Conservation Genetics Resources, 2017, 9, 213-216.	0.8	5
72	Development of microsatellite markers for the carnivorous plant Genlisea aurea (Lentibulariaceae) using genomics data of NGS. Molecular Biology Reports, 2018, 45, 57-61.	2.3	4

ALESSANDRO VARANI

#	Article	IF	CITATIONS
73	Closed Genome Sequence of Bacillus paralicheniformis Strain CBMAI 1303, a Bacterium Applied for Phytopathogen Biocontrol. Microbiology Resource Announcements, 2019, 8, .	0.6	4
74	Complete Genome Sequences of 11 Staphylococcus sp. Strains Isolated from Buffalo Milk and Milkers' Hands. Microbiology Resource Announcements, 2019, 8, .	0.6	4
75	Draft Genomic Sequences of Streptomyces misionensis ACT66 and Streptomyces albidoflavus ACT77, Bacteria with Potential Application for Phytopathogen Biocontrol. Microbiology Resource Announcements, 2019, 8, .	0.6	3
76	The complete mitochondrial genome of carnivorous Genlisea tuberosa (Lentibulariaceae): Structure and evolutionary aspects. Gene, 2022, 824, 146391.	2.2	3
77	Draft Genome Sequence of Salmonella enterica subsp. enterica Serovar Gallinarum Biovar Pullorum Strain FCAV198, a Brazilian Chicken Pathogen. Genome Announcements, 2014, 2, .	0.8	2
78	CitrusKB: a comprehensive knowledge base for transcriptome and interactome of <i>Citrus</i> spp. infected by <i>Xanthomonas citri</i> subsp. <i>citri</i> at different infection stages. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	3.0	2
79	Riboswitch theo/metE as a Transcription Regulation Tool for Xanthomonas citri subsp. citri. Microorganisms, 2021, 9, 329.	3.6	2
80	Evaluating Eucalyptus leaf colonization by Brasilonema octagenarum (Cyanobacteria,) Tj ETQq0 0 0 rgBT /Overlo	ck 10 Tf 50 2.0	0 462 Td (Sc
81	New insights into plant natriuretic peptide evolution: From the lysogenic conversion in Xanthomonas to the lateral transfer to the whitefly Bemisia tabaci. Gene, 2022, 821, 146326.	2.2	2
82	Draft Genome Sequence of a Novel Culturable Marine Chroococcalean Cyanobacterium from the South Atlantic Ocean. Genome Announcements, 2015, 3, .	0.8	1

83	Closed Genome Sequence of Phytopathogen Biocontrol Agent <i>Bacillus velezensis</i> Strain AGVL-005, Isolated from Soybean. Genome Announcements, 2018, 6, .	0.8	1
84	Microbiological quality assessment of a compost produced from animal waste and vegetables. WIT Transactions on Ecology and the Environment, 2014, , .	0.0	1
85	Response from Varani et al. to "Comment on â€~the IS6 family, a clinically important group of insertion sequences including IS26' by Ruth M. Hall― Mobile DNA, 2022, 13, 2.	3.6	Ο
86	Draft genome sequence of the cyanobacterium Sphaerospermopsis aphanizomenoides BCCUSP55 from the Brazilian semiarid region reveals potential for anti-cancer applications. Archives of Microbiology, 2022, 204, 4.	2.2	0
87	XAC4296 Is a Multifunctional and Exclusive Xanthomonadaceae Gene Containing a Fusion of Lytic Transglycosylase and Epimerase Domains. Microorganisms, 2022, 10, 1008.	3.6	0