Dengfeng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6642679/publications.pdf

Version: 2024-02-01

430874 377865 1,551 35 18 34 citations h-index g-index papers 35 35 35 1494 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature, 2019, 575, 473-479.	27.8	610
2	Micro-rocket robot with all-optic actuating and tracking in blood. Light: Science and Applications, 2020, 9, 84.	16.6	100
3	Electronic skin as wireless human-machine interfaces for robotic VR. Science Advances, 2022, 8, eabl6700.	10.3	88
4	Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nature Biomedical Engineering, 2021, 5, 759-771.	22.5	65
5	Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics. Nano Energy, 2021, 81, 105590.	16.0	57
6	Epidermal self-powered sweat sensors for glucose and lactate monitoring. Bio-Design and Manufacturing, 2022, 5, 201-209.	7.7	53
7	Skinâ€Integrated Grapheneâ€Embedded Lead Zirconate Titanate Rubber for Energy Harvesting and Mechanical Sensing. Advanced Materials Technologies, 2019, 4, 1900744.	5.8	52
8	Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing. Nano Energy, 2022, 99, 107442.	16.0	39
9	Grapheneâ€Based Lightâ€Driven Soft Robot with Snakeâ€Inspired Concertina and Serpentine Locomotion. Advanced Materials Technologies, 2019, 4, 1800366.	5.8	37
10	Implantable Electronic Medicine Enabled by Bioresorbable Microneedles for Wireless Electrotherapy and Drug Delivery. Nano Letters, 2022, 22, 5944-5953.	9.1	36
11	Electronic Skin from High-Throughput Fabrication of Intrinsically Stretchable Lead Zirconate Titanate Elastomer. Research, 2020, 2020, 1085417.	5.7	33
12	A fast and powerful swimming microrobot with a serrated tail enhanced propulsion interface. Nanoscale, 2018, 10, 19673-19677.	5.6	30
13	Bioinspired Ultrathin Piecewise Controllable Soft Robots. Advanced Materials Technologies, 2021, 6, 2001095.	5.8	27
14	Confocal visible/NIR photoacoustic microscopy of tumors with structural, functional, and nanoprobe contrasts. Photonics Research, 2020, 8, 1875.	7.0	25
15	Triboelectric Nanogenerator Tattoos Enabled by Epidermal Electronic Technologies. Advanced Functional Materials, 2022, 32, .	14.9	25
16	Mechanics designs-performance relationships in epidermal triboelectric nanogenerators. Nano Energy, 2020, 76, 105017.	16.0	24
17	Miniaturization of mechanical actuators in skin-integrated electronics for haptic interfaces. Microsystems and Nanoengineering, 2021, 7, 85.	7.0	24
18	Garment embedded sweat-activated batteries in wearable electronics for continuous sweat monitoring. Npj Flexible Electronics, 2022, 6, .	10.7	24

#	Article	IF	Citations
19	Recent advances in multi-mode haptic feedback technologies towards wearable interfaces. Materials Today Physics, 2022, 22, 100602.	6.0	19
20	Transient, Implantable, Ultrathin Biofuel Cells Enabled by Laser-Induced Graphene and Gold Nanoparticles Composite. Nano Letters, 2022, 22, 3447-3456.	9.1	19
21	Less-invasive non-embedded cell cutting by nanomanipulation and vibrating nanoknife. Applied Physics Letters, 2017, 110, .	3.3	18
22	Stretchable transparent conductive elastomers for skin-integrated electronics. Journal of Materials Chemistry C, 2020, 8, 15105-15111.	5.5	18
23	Recent progress of skin-integrated electronics for intelligent sensing. Light Advanced Manufacturing, 2021, 2, 39.	5.1	18
24	Inchworm-Inspired Soft Robot With Light-Actuated Locomotion. IEEE Robotics and Automation Letters, 2019, 4, 1647-1652.	5.1	16
25	Skin-Like Strain Sensors Enabled by Elastomer Composites for Human–Machine Interfaces. Coatings, 2020, 10, 711.	2.6	15
26	Thin, soft, <scp>garmentâ€integrated</scp> triboelectric nanogenerators for energy harvesting and human machine interfaces. EcoMat, 2021, 3, e12123.	11.9	15
27	A multifunctional targeted nanoprobe with high NIR-II PAI/MRI performance for precise theranostics of orthotopic early-stage hepatocellular carcinoma. Journal of Materials Chemistry B, 2021, 9, 8779-8792.	5.8	15
28	Origami-inspired folding assembly of dielectric elastomers for programmable soft robots. Microsystems and Nanoengineering, 2022, 8, 37.	7.0	14
29	Stretchable Triboelectric Nanogenerators for Energy Harvesting and Motion Monitoring. IEEE Open Journal of Nanotechnology, 2020, 1, 109-116.	2.0	11
30	Automatic Microwaveguide Coupling Based on Hybrid Position and Light Intensity Feedback. IEEE/ASME Transactions on Mechatronics, 2019, 24, 1166-1175.	5.8	7
31	Thin, soft, 3D printing enabled crosstalk minimized triboelectric nanogenerator arrays for tactile sensing. Fundamental Research, 2023, 3, 111-117.	3.3	6
32	In situbending and recovery characterization of hollow glass nanoneedle based on nanorobotic manipulation. Journal of Micromechanics and Microengineering, 2017, 27, 095011.	2.6	5
33	Bio-inspired ultra-thin microfluidics for soft sweat-activated batteries and skin electronics. Journal of Materials Chemistry A, 2022, 10, 19662-19670.	10.3	5
34	A Low-Cost Portable Nanophotonic Sensor Based on a Smartphone: A System Readily Available for Many Applications. IEEE Nanotechnology Magazine, 2019, 13, 6-12.	1.3	1
35	Chemically Self-Propelled 3D-Printed Microbots. , 2018, , .		0