Ricardo M Biondi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6641716/publications.pdf

Version: 2024-02-01

68 papers 4,486 citations

30 h-index 102487 66 g-index

71 all docs

71 docs citations

71 times ranked

5539 citing authors

#	Article	IF	CITATIONS
1	A Common Phosphate Binding Site Explains the Unique Substrate Specificity of GSK3 and Its Inactivation by Phosphorylation. Molecular Cell, 2001, 7, 1321-1327.	9.7	618
2	The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB. EMBO Journal, 2001, 20, 4380-4390.	7.8	322
3	Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochemical Journal, 2003, 372, 1-13.	3.7	320
4	Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. EMBO Journal, 2000, 19, 979-988.	7.8	285
5	A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. EMBO Journal, 2002, 21, 5396-5407.	7.8	238
6	High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. EMBO Journal, 2002, 21, 4219-4228.	7.8	176
7	A 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) Docking Site Is Required for the Phosphorylation of Protein Kinase Cζ (PKCζ) and PKC-related Kinase 2 by PDK1. Journal of Biological Chemistry, 2000, 275, 20806-20813.	3.4	167
8	Differential Stability of Cell-Free Circulating microRNAs: Implications for Their Utilization as Biomarkers. PLoS ONE, 2013, 8, e75184.	2.5	167
9	AGC protein kinases: From structural mechanism of regulation to allosteric drug development for the treatment of human diseases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1302-1321.	2.3	137
10	Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1. Nature Chemical Biology, 2009, 5, 758-764.	8.0	134
11	Phosphoinositide-Regulated Kinases and Phosphoinositide Phosphatases. Chemical Reviews, 2001, 101, 2365-2380.	47.7	112
12	Allosteric activation of the protein kinase PDK1 with low molecular weight compounds. EMBO Journal, 2006, 25, 5469-5480.	7.8	104
13	AGC kinases, mechanisms of regulation ‎and innovative drug development. Seminars in Cancer Biology, 2018, 48, 1-17.	9.6	103
14	Epac Activation Converts cAMP from a Proliferative into a Differentiation Signal in PC12 Cells. Molecular Biology of the Cell, 2005, 16, 5639-5648.	2.1	102
15	Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation. EMBO Journal, 2007, 26, 2251-2261.	7.8	96
16	Phosphoinositide-dependent protein kinase 1, a sensor of protein conformation. Trends in Biochemical Sciences, 2004, 29, 136-142.	7.5	91
17	Cellular Phosphorylation of Anti-HIV Nucleosides. Journal of Biological Chemistry, 1996, 271, 7887-7890.	3.4	85
18	3,5-Diphenylpent-2-enoic Acids as Allosteric Activators of the Protein Kinase PDK1: Structureâ°'Activity Relationships and Thermodynamic Characterization of Binding as Paradigms for PIF-Binding Pocket-Targeting Compoundsâ€PDB code of ⟨b⟩2Z⟨/b⟩ with PDK1: 3HRF Journal of Medicinal Chemistry, 2009, 52, 4683-4693.	6.4	72

#	Article	IF	CITATIONS
19	Substrate-Selective Inhibition of Protein Kinase PDK1 by Small Compounds that Bind to the PIF-Pocket Allosteric Docking Site. Chemistry and Biology, 2012, 19, 1152-1163.	6.0	70
20	Bidirectional Allosteric Communication between the ATP-Binding Site and the Regulatory PIF Pocket in PDK1 Protein Kinase. Cell Chemical Biology, 2016, 23, 1193-1205.	5.2	65
21	Mutations in the MutS \hat{i} ± interaction interface of MLH1 can abolish DNA mismatch repair. Nucleic Acids Research, 2006, 34, 6574-6586.	14.5	61
22	Allosteric Regulation of Protein Kinase PKCζ by the N-Terminal C1 Domain and Small Compounds to the PIF-Pocket. Chemistry and Biology, 2011, 18, 1463-1473.	6.0	61
23	Predicting protein targets for drug-like compounds using transcriptomics. PLoS Computational Biology, 2018, 14, e1006651.	3.2	51
24	Catalytic isoforms Tpk1 and Tpk2 of <i>Candida albicans</i> PKA have nonâ€redundant roles in stress response and glycogen storage. Yeast, 2009, 26, 273-285.	1.7	48
25	<i>Candida albicans</i> Tpk1p and Tpk2p isoforms differentially regulate pseudohyphal development, biofilm structure, cell aggregation and adhesins expression. Yeast, 2011, 28, 293-308.	1.7	40
26	InterAKTions with FKBPs - Mutational and Pharmacological Exploration. PLoS ONE, 2013, 8, e57508.	2.5	39
27	2-(3-Oxo-1,3-diphenylpropyl)malonic Acids as Potent Allosteric Ligands of the PIF Pocket of Phosphoinositide-Dependent Kinase-1: Development and Prodrug Concept. Journal of Medicinal Chemistry, 2012, 55, 9817-9830.	6.4	38
28	Molecular Basis of the Activity and the Regulation of the Eukaryotic-like S/T Protein Kinase PknG from Mycobacterium tuberculosis. Structure, 2015, 23, 1039-1048.	3.3	37
29	Renaissance of Allostery to Disrupt Protein Kinase Interactions. Trends in Biochemical Sciences, 2020, 45, 27-41.	7.5	36
30	Random insertion of GFP into the cAMP-dependent protein kinase regulatory subunit from Dictyostelium discoideum. Nucleic Acids Research, 1998, 26, 4946-4952.	14.5	35
31	4-Benzimidazolyl-3-Phenylbutanoic Acids As Novel Pif-Pocket-Targeting Allosteric Inhibitors of Protein Kinase PKCζ. Journal of Medicinal Chemistry, 2011, 54, 6714-6723.	6.4	35
32	ACE2, the Receptor that Enables Infection by SARSâ€CoVâ€2: Biochemistry, Structure, Allostery and Evaluation of the Potential Development of ACE2 Modulators. ChemMedChem, 2020, 15, 1682-1690.	3.2	34
33	X-ray analysis of azido-thymidine diphosphate binding to nucleoside diphosphate kinase. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7162-7165.	7.1	29
34	Identification of a Novel Type of cGMP Phosphodiesterase That Is Defective in the ChemotacticstmFMutants. Molecular Biology of the Cell, 2002, 13, 3870-3877.	2.1	29
35	Regulation of the Interaction between Protein Kinase C-related Protein Kinase 2 (PRK2) and Its Upstream Kinase, 3-Phosphoinositide-dependent Protein Kinase 1 (PDK1). Journal of Biological Chemistry, 2009, 284, 30318-30327.	3.4	28
36	Molecular Mechanism of Regulation of the Atypical Protein Kinase C by N-terminal Domains and an Allosteric Small Compound. Chemistry and Biology, 2014, 21, 754-765.	6.0	24

#	Article	IF	CITATIONS
37	Synergistic Allostery in Multiligand-Protein Interactions. Biophysical Journal, 2020, 119, 1833-1848.	0.5	24
38	Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2 Differential phosphorylation of NDP kinases in HeLa cells in culture. FEBS Letters, 1996, 399, 183-187.	2.8	23
39	Regulation of Protein Kinase C-related Protein Kinase 2 (PRK2) by an Intermolecular PRK2-PRK2 Interaction Mediated by Its N-terminal Domain. Journal of Biological Chemistry, 2012, 287, 20590-20602.	3.4	22
40	Discovery of a Potent Allosteric Kinase Modulator by Combining Computational and Synthetic Methods. Angewandte Chemie - International Edition, 2015, 54, 13933-13936.	13.8	22
41	Demonstrating Ligandability of the LC3A and LC3B Adapter Interface. Journal of Medicinal Chemistry, 2021, 64, 3720-3746.	6.4	22
42	Brain Specific Kinase-1 BRSK1/SAD-B associates with lipid rafts: modulation of kinase activity by lipid environment. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 1124-1135.	2.4	20
43	Activation of Adenylyl Cyclase Causes Stimulation of Adenosine Receptors. Cellular Physiology and Biochemistry, 2018, 45, 2516-2528.	1.6	20
44	Discrimination between Acid and Alkali-Labile Phosphorylated Residues on Immobilon: Phosphorylation Studies of Nucleoside Diphosphate Kinase. Analytical Biochemistry, 1996, 242, 165-171.	2.4	18
45	An Allosteric Inhibitor Scaffold Targeting the PIF-Pocket of Atypical Protein Kinase C Isoforms. ACS Chemical Biology, 2017, 12, 564-573.	3.4	18
46	Camptothecin and its analog SN-38, the active metabolite of irinotecan, inhibit binding of the transcriptional regulator and oncoprotein FUBP1 to its DNA target sequence FUSE. Biochemical Pharmacology, 2017, 146, 53-62.	4.4	18
47	Bi-functional, Substrate Mimicking RNA Inhibits MSK1-mediated cAMP-response Element-binding Protein Phosphorylation and Reveals Magnesium Ion-dependent Conformational Changes of the Kinase. Journal of Biological Chemistry, 2002, 277, 45793-45802.	3.4	17
48	Characterization of pomiferin triacetate as a novel mTOR and translation inhibitor. Biochemical Pharmacology, 2014, 88, 313-321.	4.4	17
49	Candida albicansNucleoside-Diphosphate Kinase: Purification and Characterization. Archives of Biochemistry and Biophysics, 1995, 323, 187-194.	3.0	13
50	PIF-Pocket as a Target for C. albicans Pkh Selective Inhibitors. ACS Chemical Biology, 2013, 8, 2283-2292.	3.4	13
51	Phosphorylationâ€dependent signaling controls degradation of DNA mismatch repair protein PMS2. Molecular Carcinogenesis, 2017, 56, 2663-2668.	2.7	12
52	Modulation of the Allosteric Communication between the Polo-Box Domain and the Catalytic Domain in Plk1 by Small Compounds. ACS Chemical Biology, 2018, 13, 1921-1931.	3.4	12
53	Inhibition of the Equilibrative Nucleoside Transporter 1 and Activation of A2A Adenosine Receptors by 8-(4-Chlorophenylthio)-modified cAMP Analogs and Their Hydrolytic Products. Journal of Biological Chemistry, 2009, 284, 32256-32263.	3.4	11
54	DNA mismatch repair activity of MutLα is regulated by CK2â€dependent phosphorylation of MLH1 (S477). Molecular Carcinogenesis, 2018, 57, 1723-1734.	2.7	11

#	Article	IF	Citations
55	Role of Mg2+in Nucleoside Diphosphate Kinase Autophosphorylation. Archives of Biochemistry and Biophysics, 1998, 353, 85-92.	3.0	10
56	Extended interaction networks with HCV protease NS3-4A substrates explain the lack of adaptive capability against protease inhibitors. Journal of Biological Chemistry, 2020, 295, 13862-13874.	3.4	10
57	Lipid regulators of Pkh2 in Candida albicans, the protein kinase ortholog of mammalian PDK1. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 249-259.	2.4	9
58	Cross regulation between Candida albicans catalytic and regulatory subunits of protein kinase A. Fungal Genetics and Biology, 2012, 49, 74-85.	2.1	8
59	Identification of Key Phospholipids That Bind and Activate Atypical PKCs. Biomedicines, 2021, 9, 45.	3.2	8
60	Crizotinib acts as ABL1 inhibitor combining ATP-binding with allosteric inhibition and is active against native BCR-ABL1 and its resistance and compound mutants BCR-ABL1T315I and BCR-ABL1T315I-E255K. Annals of Hematology, 2021, 100, 2023-2029.	1.8	6
61	Use of a Fluorescent ATP Analog to Probe the Allosteric Conformational Change in the Active Site of the Protein Kinase PDK1. Methods in Molecular Biology, 2012, 928, 133-141.	0.9	5
62	Pyrazolo[1,5a]pyrimidines as a new class of FUSE binding protein 1 (FUBP1) inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 5717-5729.	3.0	5
63	Allosteric Regulation of Protein Kinases Downstream of PI3-Kinase Signalling. Advances in Experimental Medicine and Biology, 2019, 1163, 279-311.	1.6	5
64	Depletion of yeast PDK1 orthologs triggers a stress-like transcriptional response. BMC Genomics, 2015, 16, 719.	2.8	3
65	Epistatic interactions promote persistence of NS3-Q80K inÂHCV infection by compensating for protein folding instability. Journal of Biological Chemistry, 2021, 297, 101031.	3.4	2
66	Alternative AKT2 splicing produces protein lacking the hydrophobic motif regulatory region. PLoS ONE, 2020, 15, e0242819.	2.5	2
67	A Tetratricopeptide Repeat Scaffold Couples Signal Detection to Odhl Phosphorylation in Metabolic Control by the Protein Kinase PknG. MBio, 2021, 12, e0171721.	4.1	2
68	Small compounds modulating biâ€directional allostery in protein kinases: a new grip with an old trick. FASEB Journal, 2018, 32, 797.2.	0.5	0