
Philipp Mayer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/66399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linking biodegradation kinetics, microbial composition and test temperature – Testing 40 petroleum hydrocarbons using inocula collected in winter and summer. Environmental Sciences: Processes and Impacts, 2022, 24, 152-160.	1.7	5
2	In-Tube Passive Dosing of Hydrophobic Organic Chemicals: Controlling Freely Dissolved Concentrations in Flow-Through and Large-Volume Experiments. Environmental Science and Technology Letters, 2022, 9, 339-344.	3.9	1
3	Biodegradation Kinetics of Fragrances, Plasticizers, UV Filters, and PAHs in a Mixture─Changing Test Concentrations over 5 Orders of Magnitude. Environmental Science & Technology, 2022, 56, 293-301.	4.6	10
4	Fate-directed risk assessment of chemical mixtures: a case study for cedarwood essential oil. Environmental Sciences: Processes and Impacts, 2022, 24, 1133-1143.	1.7	0
5	Separating toxicity and shading in algal growth inhibition tests of nanomaterials and colored substances. Nanotoxicology, 2022, 16, 265-275.	1.6	3
6	Assessing toxicity of hydrophobic aliphatic and monoaromatic hydrocarbons at the solubility limit using novel dosing methods. Chemosphere, 2021, 265, 129174.	4.2	6
7	Passive Dosing of Petroleum and Essential Oil UVCBs—Whole Mixture Toxicity Testing at Controlled Exposure. Environmental Science & Technology, 2021, 55, 6150-6159.	4.6	10
8	Assessing the aquatic toxicity and environmental safety of tracer compounds Rhodamine B and Rhodamine WT. Water Research, 2021, 197, 117109.	5.3	82
9	Combining Headspace Solid-Phase Microextraction with Internal Benchmarking to Determine the Elimination Kinetics of Hydrophobic UVCBs. Environmental Science & Technology, 2021, 55, 11125-11132.	4.6	4
10	Determining the Temperature Dependency of Biodegradation Kinetics for 34 Hydrocarbons while Avoiding Chemical and Microbial Confounding Factors. Environmental Science & Technology, 2021, 55, 11091-11101.	4.6	8
11	Biodegradation of an essential oil UVCB - Whole substance testing and constituent specific analytics yield biodegradation kinetics of mixture constituents. Chemosphere, 2021, 278, 130409.	4.2	5
12	Sublethal Effect Concentrations for Nonpolar Narcosis in the Zebrafish Embryo. Environmental Toxicology and Chemistry, 2021, 40, 2802-2812.	2.2	4
13	Inter-laboratory comparison of water solubility methods applied to difficult-to-test substances. BMC Chemistry, 2021, 15, 52.	1.6	3
14	Atmospheric carbonation reduces bioaccessibility of PAHs in industrially contaminated soil. Journal of Hazardous Materials, 2020, 383, 121092.	6.5	15
15	Biodegradation testing of volatile hydrophobic chemicals in water-sediment systems – Experimental developments and challenges. Chemosphere, 2020, 238, 124516.	4.2	9
16	Membrane Enhanced Bioaccessibility Extraction (MEBE) of hydrophobic soil pollutants – Using a semipermeable membrane for separating desorption medium and acceptor solvent. Environmental Pollution, 2020, 257, 113470.	3.7	3
17	Effects of α-pinene on life history traits and stress tolerance in the springtail Folsomia candida. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 229, 108681.	1.3	5
18	Expression and localization of the aryl hydrocarbon receptors and cytochrome P450 1A during early development of Atlantic cod (Gadus morhua). Aquatic Toxicology, 2020, 226, 105558.	1.9	11

#	Article	IF	CITATIONS
19	Biodegradation kinetics testing of two hydrophobic UVCBs – potential for substrate toxicity supports testing at low concentrations. Environmental Sciences: Processes and Impacts, 2020, 22, 2172-2180.	1.7	10
20	Improving the Environmental Risk Assessment of Substances of Unknown or Variable Composition, Complex Reaction Products, or Biological Materials. Environmental Toxicology and Chemistry, 2020, 39, 2097-2108.	2.2	32
21	Accelerated Passive Dosing of Hydrophobic Complex Mixtures–Controlling the Level and Composition in Aquatic Tests. Environmental Science & Technology, 2020, 54, 4974-4983.	4.6	23
22	Toxicity of dodecylbenzene to algae, crustacean, and fish – Passive dosing of highly hydrophobic liquids at the solubility limit. Chemosphere, 2020, 251, 126396.	4.2	7
23	Surface-Related Toxicity of Polystyrene Beads to Nematodes and the Role of Food Availability. Environmental Science & Technology, 2020, 54, 1790-1798.	4.6	94
24	Baseline Toxicity and Volatility Cutoff in Reporter Gene Assays Used for High-Throughput Screening. Chemical Research in Toxicology, 2019, 32, 1646-1655.	1.7	62
25	Bioaccumulation in Functionally Different Species: Ongoing Input of PCBs with Sediment Deposition to Activated Carbon Remediated Bed Sediments. Environmental Toxicology and Chemistry, 2019, 38, 2326-2336.	2.2	14
26	Determining the water solubility of difficult-to-test substances: A tutorial review. Analytica Chimica Acta, 2019, 1086, 16-28.	2.6	25
27	Headspace Passive Dosing of Volatile Hydrophobic Organic Chemicals from a Lipid Donor—Linking Their Toxicity to Well-Defined Exposure for an Improved Risk Assessment. Environmental Science & Technology, 2019, 53, 13468-13476.	4.6	15
28	Soil bacteria and protists show different sensitivity to polycyclic aromatic hydrocarbons at controlled chemical activity. FEMS Microbiology Letters, 2019, 366, .	0.7	12
29	Time-Resolved Freely Dissolved Concentrations of Semivolatile and Hydrophobic Test Chemicals in In Vitro Assays—Measuring High Losses and Crossover by Headspace Solid-Phase Microextraction. Chemical Research in Toxicology, 2019, 32, 1780-1790.	1.7	13
30	Accelerated equilibrium sampling of hydrophobic organic chemicals in solid matrices: A proof of concept on how to reach equilibrium for PCBs within 1 day. Chemosphere, 2019, 237, 124537.	4.2	11
31	When Fluorescence Is not a Particle: The Tissue Translocation of Microplastics in <i>Daphnia magna</i> Seems an Artifact. Environmental Toxicology and Chemistry, 2019, 38, 1495-1503.	2.2	126
32	Mixture Effects on Biodegradation Kinetics of Hydrocarbons in Surface Water: Increasing Concentrations Inhibited Degradation whereas Multiple Substrates Did Not. Environmental Science & Technology, 2019, 53, 3087-3094.	4.6	35
33	Biodegradation of Volatile Chemicals in Soil: Separating Volatilization and Degradation in an Improved Test Setup (OECDÂ307). Environmental Science & Technology, 2019, 53, 20-28.	4.6	8
34	Applying no-depletion equilibrium sampling and full-depletion bioaccessibility extraction to 35 historically polycyclic aromatic hydrocarbon contaminated soils. Chemosphere, 2018, 199, 409-416.	4.2	12
35	Determining Biodegradation Kinetics of Hydrocarbons at Low Concentrations: Covering 5 and 9 Orders of Magnitude of <i>K</i> _{ow} and <i>K</i> _{aw} . Environmental Science & Technology, 2018, 52, 2143-2151.	4.6	35
36	Metaâ€analysis of fish early life stage tests—Association of toxic ratios and acuteâ€ŧo hronic ratios with modes of action. Environmental Toxicology and Chemistry, 2018, 37, 955-969.	2.2	17

#	Article	IF	CITATIONS
37	Assessing PCB pollution in the Baltic Sea - An equilibrium partitioning based study. Chemosphere, 2018, 191, 886-894.	4.2	14
38	Thermodynamic assessment of (semi-)volatile hydrophobic organic chemicals in WWTP sludge – combining solid phase microextraction with non-target GC/MS. Environmental Sciences: Processes and Impacts, 2018, 20, 1728-1735.	1.7	4
39	Genotoxicity of three biofuel candidates compared to reference fuels. Environmental Toxicology and Pharmacology, 2018, 64, 131-138.	2.0	10
40	Equilibrium sampling reveals increasing thermodynamic potential of polycyclic aromatic hydrocarbons during sewage sludge digestion. Chemosphere, 2018, 207, 421-429.	4.2	4
41	Linking algal growth inhibition to chemical activity: Excess toxicity below 0.1% of saturation. Chemosphere, 2018, 208, 880-886.	4.2	10
42	Headspace passive dosing of volatile hydrophobic chemicals – Aquatic toxicity testing exactly at the saturation level. Chemosphere, 2018, 211, 694-700.	4.2	14
43	Comparison of freely dissolved concentrations of PAHs in contaminated pot soils under saturated and unsaturated water conditions. Science of the Total Environment, 2018, 644, 835-843.	3.9	12
44	A chemical activity approach to exposure and risk assessment of chemicals. Environmental Toxicology and Chemistry, 2018, 37, 1235-1251.	2.2	40
45	Comment on "Assessing Aromatic-Hydrocarbon Toxicity to Fish Early Life Stages Using Passive-Dosing Methods and Target-Lipid and Chemical-Activity Models― Environmental Science & Technology, 2017, 51, 3584-3585.	4.6	4
46	Biodegradation testing of chemicals with high Henry's constants – Separating mass and effective concentration reveals higher rate constants. Chemosphere, 2017, 174, 716-721.	4.2	26
47	Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons from (post-pyrolytically) Tj ETQq1 1 0.7	84314 rgB1 4.2	Öygrlock 1
48	Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota. Integrated Environmental Assessment and Management, 2017, 13, 488-493.	1.6	443
49	Biodegradation of hydrocarbon mixtures in surface waters at environmentally relevant levels – Effect of inoculum origin on kinetics and sequence of degradation. Chemosphere, 2017, 184, 400-407.	4.2	27
50	Enhanced Accessibility of Polycyclic Aromatic Hydrocarbons (PAHs) and Heterocyclic PAHs in Industrially Contaminated Soil after Passive Dosing of a Competitive Sorbate. Environmental Science & Technology, 2017, 51, 8017-8026.	4.6	35
51	Partitioning of hydrophobic organic contaminants between polymer and lipids for two silicones and low density polyethylene. Chemosphere, 2017, 186, 948-957.	4.2	36
52	Cross Validation of Two Partitioning-Based Sampling Approaches in Mesocosms Containing PCB Contaminated Field Sediment, Biota, and Activated Carbon Amendment. Environmental Science & Technology, 2017, 51, 9996-10004.	4.6	19
53	Determining lower threshold concentrations for synergistic effects. Aquatic Toxicology, 2017, 182, 79-90.	1.9	27
54	Aquatic toxicity testing of liquid hydrophobic chemicals – Passive dosing exactly at the saturation limit. Chemosphere, 2017, 167, 551-558.	4.2	26

#	Article	IF	CITATIONS
55	Passive dosing of triclosan in multigeneration tests with copepods – stable exposure concentrations and effects at the low μg/L range. Environmental Toxicology and Chemistry, 2017, 36, 1254-1260.	2.2	19
56	Microscale In Vitro Assays for the Investigation of Neutral Red Retention and Ethoxyresorufin-O-Deethylase of Biofuels and Fossil Fuels. PLoS ONE, 2016, 11, e0163862.	1.1	14
57	Polymers as Reference Partitioning Phase: Polymer Calibration for an Analytically Operational Approach To Quantify Multimedia Phase Partitioning. Analytical Chemistry, 2016, 88, 5818-5826.	3.2	51
58	Including Bioconcentration Kinetics for the Prioritization and Interpretation of Regulatory Aquatic Toxicity Tests of Highly Hydrophobic Chemicals. Environmental Science & Technology, 2016, 50, 12004-12011.	4.6	16
59	Limited recovery of soil microbial activity after transient exposure to gasoline vapors. Environmental Pollution, 2016, 216, 826-835.	3.7	18
60	Utilizing the partitioning properties of silicone for the passive sampling of polychlorinated biphenyls (PCBs) in indoor air. Chemosphere, 2016, 160, 280-286.	4.2	15
61	Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment. Environmental Science & amp; Technology, 2016, 50, 3-17.	4.6	131
62	A passive dosing method to determine fugacity capacities and partitioning properties of leaves. Environmental Sciences: Processes and Impacts, 2016, 18, 1325-1332.	1.7	8
63	Strategies for Transferring Mixtures of Organic Contaminants from Aquatic Environments into Bioassays. Environmental Science & Technology, 2016, 50, 5424-5431.	4.6	44
64	How to Determine the Environmental Exposure of PAHs Originating from Biochar. Environmental Science & Technology, 2016, 50, 1941-1948.	4.6	57
65	Response to Comment on "Application of the Activity Framework for Assessing Aquatic Ecotoxicology Data for Organic Chemicals― Environmental Science & Technology, 2016, 50, 4141-4142.	4.6	3
66	Fate of polychlorinated biphenyls in a contaminated lake ecosystem: Combining equilibrium passive sampling of sediment and water with total concentration measurements of biota. Environmental Toxicology and Chemistry, 2015, 34, 2463-2474.	2.2	28
67	Polyacrylate–water partitioning of biocidal compounds: Enhancing the understanding of biocide partitioning between render and water. Chemosphere, 2015, 119, 1021-1026.	4.2	17
68	A high throughput passive dosing format for the Fish Embryo Acute Toxicity test. Chemosphere, 2015, 139, 9-17.	4.2	39
69	Equilibrium passive sampling as a tool to study polycyclic aromatic hydrocarbons in Baltic Sea sediment pore-water systems. Marine Pollution Bulletin, 2015, 101, 296-303.	2.3	46
70	Bioaccumulation in aquatic systems: methodological approaches, monitoring and assessment. Environmental Sciences Europe, 2015, 27, 5.	2.6	48
71	Differential immunomodulatory responses to nine polycyclic aromatic hydrocarbons applied by passive dosing. Toxicology in Vitro, 2015, 29, 345-351.	1.1	14
72	Transfer and effects of 1,2,3,5,7-pentachloronaphthalene in an experimental food chain. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2015, 169, 46-54.	1.3	1

#	Article	IF	CITATIONS
73	Determining High-Quality Critical Body Residues for Multiple Species and Chemicals by Applying Improved Experimental Design and Data Interpretation Concepts. Environmental Science & Technology, 2015, 49, 1879-1887.	4.6	32
74	Differences between Lipids Extracted from Five Species Are Not Sufficient To Explain Biomagnification of Nonpolar Organic Chemicals. Environmental Science and Technology Letters, 2015, 2, 193-197.	3.9	9
75	Application of the Activity Framework for Assessing Aquatic Ecotoxicology Data for Organic Chemicals. Environmental Science & Technology, 2015, 49, 12289-12296.	4.6	26
76	Endocrine activity of persistent organic pollutants accumulated in human silicone implants — Dosing assays by partitioning from silicone. Environment International, 2015, 84, 107-114.	4.8	16
77	Equilibrium sampling of polychlorinated biphenyls in River Elbe sediments – Linking bioaccumulation in fish to sediment contamination. Chemosphere, 2015, 138, 856-862.	4.2	30
78	Linking algal growth inhibition to chemical activity: Baseline toxicity required 1% of saturation. Chemosphere, 2015, 120, 305-308.	4.2	27
79	Passive sampling methods for contaminated sediments: Scientific rationale supporting use of freely dissolved concentrations. Integrated Environmental Assessment and Management, 2014, 10, 197-209.	1.6	153
80	Impact of soil amendments and the plant rhizosphere on PAH behaviour in soil. Environmental Pollution, 2014, 188, 124-131.	3.7	34
81	PAH toxicity at aqueous solubility in the fish embryo test with Danio rerio using passive dosing. Chemosphere, 2014, 112, 77-84.	4.2	42
82	The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime. Environmental Pollution, 2014, 184, 435-442.	3.7	85
83	Silicone passive equilibrium samplers as â€~chemometers' in eels and sediments of a Swedish lake. Environmental Sciences: Processes and Impacts, 2014, 16, 464-472.	1.7	49
84	Co-Transport of Polycyclic Aromatic Hydrocarbons by Motile Microorganisms Leads to Enhanced Mass Transfer under Diffusive Conditions. Environmental Science & Technology, 2014, 48, 4368-4375.	4.6	35
85	Simultaneous Control of Phenanthrene and Drought by Dual Exposure System: The Degree of Synergistic Interactions in Springtails was Exposure Dependent. Environmental Science & Technology, 2014, 48, 9737-9744.	4.6	12
86	Equilibrium Sampling to Determine the Thermodynamic Potential for Bioaccumulation of Persistent Organic Pollutants from Sediment. Environmental Science & Technology, 2014, 48, 11352-11359.	4.6	40
87	Advancing passive sampling of contaminants in environmental science. Environmental Sciences: Processes and Impacts, 2014, 16, 366.	1.7	9
88	Physiological and molecular responses of springtails exposed to phenanthrene and drought. Environmental Pollution, 2014, 184, 370-376.	3.7	14
89	Baseline Toxic Mixtures of Non-Toxic Chemicals: "Solubility Addition―Increases Exposure for Solid Hydrophobic Chemicals. Environmental Science & Technology, 2013, 47, 2026-2033.	4.6	68
90	Changes in Lumbriculus variegatus metabolites under hypoxic exposure to benzo(a)pyrene, chlorpyrifos and pentachlorophenol: Consequences on biotransformation. Chemosphere, 2013, 93, 302-310.	4.2	8

#	Article	IF	CITATIONS
91	Is there sufficient â€~sink' in current bioaccessibility determinations of organic pollutants in soils?. Environmental Pollution, 2013, 181, 128-132.	3.7	45
92	Loss of artemisinin produced by Artemisia annua L. to the soil environment. Industrial Crops and Products, 2013, 43, 132-140.	2.5	23
93	Sorptive Physiologically Based Extraction of Contaminated Solid Matrices: Incorporating Silicone Rod As Absorption Sink for Hydrophobic Organic Contaminants. Environmental Science & Technology, 2013, 47, 941-948.	4.6	52
94	Uptake and toxicity of polycyclic aromatic hydrocarbons in terrestrial springtails—studying bioconcentration kinetics and linking toxicity to chemical activity. Environmental Toxicology and Chemistry, 2013, 32, 361-369.	2.2	23
95	Methods to assess bioavailability of hydrophobic organic contaminants: Principles, operations, and limitations. Environmental Pollution, 2013, 172, 223-234.	3.7	188
96	The dosing determines mutagenicity of hydrophobic compounds in the Ames II assay with metabolic transformation: Passive dosing versus solvent spiking. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2013, 750, 12-18.	0.9	29
97	Passive Dosing of Polycyclic Aromatic Hydrocarbon (PAH) Mixtures to Terrestrial Springtails: Linking Mixture Toxicity to Chemical Activities, Equilibrium Lipid Concentrations, and Toxic Units. Environmental Science & Technology, 2013, 47, 7020-7027.	4.6	34
98	Passive Equilibrium Sampler for in Situ Measurements of Freely Dissolved Concentrations of Hydrophobic Organic Chemicals in Sediments. Environmental Science & Technology, 2013, 47, 7830-7839.	4.6	51
99	Partitioning of fluoranthene between free and bound forms in stormwater runoff and other urban discharges using passive dosing. Water Research, 2012, 46, 6002-6012.	5.3	7
100	Pulmonary Surfactant Suppressed Phenanthrene Adsorption on Carbon Nanotubes through Solubilization and Competition As Examined by Passive Dosing Technique. Environmental Science & Technology, 2012, 46, 5369-5377.	4.6	56
101	Sensitive Equilibrium Sampling To Study Polychlorinated Biphenyl Disposition in Baltic Sea Sediment. Environmental Science & Technology, 2012, 46, 10114-10122.	4.6	68
102	Sorptive Bioaccessibility Extraction (SBE) of Soils: Combining a Mobilization Medium with an Absorption Sink. Environmental Science & amp; Technology, 2012, 46, 10682-10689.	4.6	56
103	Dynamic Passive Dosing for Studying the Biotransformation of Hydrophobic Organic Chemicals: Microbial Degradation as an Example. Environmental Science & Technology, 2012, 46, 4852-4860.	4.6	50
104	Measuring Binding and Speciation of Hydrophobic Organic Chemicals at Controlled Freely Dissolved Concentrations and without Phase Separation. Analytical Chemistry, 2012, 84, 1601-1608.	3.2	61
105	Recreating the seawater mixture composition of HOCs in toxicity tests with Artemia franciscana by passive dosing. Aquatic Toxicology, 2012, 120-121, 27-34.	1.9	34
106	Time-Weighted Average SPME Analysis for <i>in Planta</i> Determination of cVOCs. Environmental Science & Technology, 2012, 46, 3319-3325.	4.6	21
107	Soil microbial and physical properties and their relations along a steep copper gradient. Agriculture, Ecosystems and Environment, 2012, 159, 9-18.	2.5	37
108	A flow-through passive dosing system for continuously supplying aqueous solutions of hydrophobic chemicals to bioconcentration and aquatic toxicity tests. Chemosphere, 2012, 86, 593-599.	4.2	18

#	Article	IF	CITATIONS
109	Towards a renewed research agenda in ecotoxicology. Environmental Pollution, 2012, 160, 201-206.	3.7	78
110	Occurrence of organochlorine pesticides in indoor dust. Journal of Environmental Monitoring, 2011, 13, 522.	2.1	25
111	A Contaminant Trap as a Tool for Isolating and Measuring the Desorption Resistant Fraction of Soil Pollutants. Environmental Science & Technology, 2011, 45, 2932-2937.	4.6	36
112	Equilibrium Sampling of Persistent and Bioaccumulative Compounds in Soil and Sediment: Comparison of Two Approaches To Determine Equilibrium Partitioning Concentrations in Lipids. Environmental Science & Technology, 2011, 45, 1041-1047.	4.6	64
113	Aquatic toxicity of PAHs and PAH mixtures at saturation to benthic amphipods: Linking toxic effects to chemical activity. Aquatic Toxicology, 2011, 102, 142-149.	1.9	93
114	Equilibrium sampling of environmental pollutants in fish: Comparison with lipidâ€normalized concentrations and homogenization effects on chemical activity. Environmental Toxicology and Chemistry, 2011, 30, 1515-1521.	2.2	32
115	Crucial role of mechanisms and modes of toxic action for understanding tissue residue toxicity and internal effect concentrations of organic chemicals. Integrated Environmental Assessment and Management, 2011, 7, 28-49.	1.6	121
116	Low accessibility and chemical activity of PAHs restrict bioremediation and risk of exposure in a manufactured gas plant soil. Environmental Pollution, 2010, 158, 1214-1220.	3.7	50
117	Do complex matrices modify the sorptive properties of polydimethylsiloxane (PDMS) for non-polar organic chemicals?. Journal of Chromatography A, 2010, 1217, 4765-4770.	1.8	66
118	Passive Dosing for Producing Defined and Constant Exposure of Hydrophobic Organic Compounds during in Vitro Toxicity Tests. Chemical Research in Toxicology, 2010, 23, 55-65.	1.7	117
119	Response to Comment on "More of EPA's SPARC Online Calculator—The Need for High Quality Predictions of Chemical Properties†Environmental Science & Technology, 2010, 44, 7746-7747.	4.6	3
120	Passive Dosing to Determine the Speciation of Hydrophobic Organic Chemicals in Aqueous Samples. Analytical Chemistry, 2010, 82, 1142-1146.	3.2	62
121	Controlling and maintaining exposure of hydrophobic organic compounds in aquatic toxicity tests by passive dosing. Aquatic Toxicology, 2010, 98, 15-24.	1.9	143
122	Bioavailability of organochlorine compounds in aqueous suspensions of fullerene: Evaluated with medaka (Oryzias latipes) and negligible depletion solid-phase microextraction. Chemosphere, 2010, 80, 693-700.	4.2	24
123	More of EPA's SPARC Online Calculatorâ~'The Need for High-Quality Predictions of Chemical Properties. Environmental Science & Technology, 2010, 44, 4400-4401.	4.6	18
124	Effect of vegetable oil addition on bioaccessibility and biodegradation of polycyclic aromatic hydrocarbons in historically contaminated soils. Journal of Chemical Technology and Biotechnology, 2009, 84, 827-835.	1.6	30
125	In Situ Silicone Tube Microextraction: A New Method for Undisturbed Sampling of Root-exuded Thiophenes from Marigold (Tagetes erecta L.) in Soil. Journal of Chemical Ecology, 2009, 35, 1279-1287.	0.9	49
126	COMBINED CHEMICAL (FLUORANTHENE) AND DROUGHT EFFECTS ON LUMBRICUS RUBELLUS DEMONSTRATE THE APPLICABILITY OF THE INDEPENDENT ACTION MODEL FOR MULTIPLE STRESSOR ASSESSMENT. Environmental Toxicology and Chemistry, 2009, 28, 629.	2.2	29

#	Article	IF	CITATIONS
127	MEASURING PYRETHROIDS IN SEDIMENT PORE WATER USING MATRIX-SOLID PHASE MICROEXTRACTION. Environmental Toxicology and Chemistry, 2009, 28, 36.	2.2	33
128	Silicone Membrane Equilibrator: Measuring Chemical Activity of Nonpolar Chemicals with Poly(dimethylsiloxane) Microtubes Immersed Directly in Tissue and Lipids. Analytical Chemistry, 2009, 81, 1536-1542.	3.2	57
129	Matrix solid-phase microextraction for measuring freely dissolved concentrations and chemical activities of PAHs in sediment cores from the western Baltic Sea. Chemosphere, 2009, 74, 522-529.	4.2	60
130	Development of a dynamic delivery method for in vitro bioassays. Chemosphere, 2009, 76, 83-90.	4.2	54
131	Equilibrium sampling through membranes (ESTM) of acidic organic pollutants using hollow fibre modules in continuous steady-state mode. Chemosphere, 2009, 76, 1213-1220.	4.2	10
132	Possibilities and limitations of equilibrium sampling using polydimethylsiloxane in fish tissue. Chemosphere, 2009, 77, 764-770.	4.2	63
133	Determining the chemical activity of hydrophobic organic compounds in soil using polymer coated vials. Chemistry Central Journal, 2008, 2, 8.	2.6	82
134	Field testing of equilibrium passive samplers to determine freely dissolved native polycyclic aromatic hydrocarbon concentrations. Environmental Toxicology and Chemistry, 2008, 27, 499-508.	2.2	155
135	Impacts of some environmentally relevant parameters on the sorption of polycyclic aromatic hydrocarbons to aqueous suspensions of fullerene. Environmental Toxicology and Chemistry, 2008, 27, 1868-1874.	2.2	80
136	Immersed solid phase microextraction to measure chemical activity of lipophilic organic contaminants in fatty tissue samples. Chemosphere, 2008, 71, 1502-1510.	4.2	44
137	Equilibrium sampling: Partitioning of organochlorine compounds from lipids into polydimethylsiloxane. Chemosphere, 2008, 73, 1575-1581.	4.2	82
138	Passive Dosing of Soil Invertebrates with Polycyclic Aromatic Hydrocarbons: Limited Chemical Activity Explains Toxicity Cutoff. Environmental Science & Technology, 2008, 42, 7516-7521.	4.6	102
139	Isomer-Specific Biodegradation of Methylphenanthrenes by Soil Bacteria. Environmental Science & Technology, 2008, 42, 4790-4796.	4.6	21
140	Multivariate Analysis of Selected Metal Ion Transport through a Hollowâ€Fiber Supported Liquid Membrane Device used for Passive Sampling Monitoring. Solvent Extraction and Ion Exchange, 2008, 26, 602-623.	0.8	8
141	Dynamic Permeation Method To Determine Partition Coefficients of Highly Hydrophobic Chemicals between Poly(dimethylsiloxane) and Water. Analytical Chemistry, 2007, 79, 6816-6822.	3.2	79
142	Diffusion of PAH in Potato and Carrot Slices and Application for a Potato Model. Environmental Science & Technology, 2007, 41, 3103-3108.	4.6	82
143	Determining Chemical Activity of (Semi)volatile Compounds by Headspace Solid-Phase Microextraction. Analytical Chemistry, 2007, 79, 2869-2876.	3.2	44
144	Enhanced Diffusion of Polycyclic Aromatic Hydrocarbons in Artificial and Natural Aqueous Solutions. Environmental Science & Technology, 2007, 41, 6148-6155.	4.6	130

#	Article	IF	CITATIONS
145	Passive extraction and clean-up of phenoxy acid herbicides in samples from a groundwater plume using hollow fiber supported liquid membranes. Journal of Chromatography A, 2007, 1160, 56-63.	1.8	61
146	EFFECTS OF DILUTION ON THE EXPOSURE IN SEDIMENT TOXICITY TESTS— BUFFERING OF FREELY DISSOLVED CONCENTRATIONS AND CHANGES IN MIXTURE COMPOSITION. Environmental Toxicology and Chemistry, 2007, 26, 2187.	2.2	8
147	Degradation of PCB congeners by bacterial strains. Applied Microbiology and Biotechnology, 2007, 77, 469-481.	1.7	37
148	Equilibrium Sampling of Freely Dissolved Alkylphenols into a Thin Film of 1-Octanol Supported on a Hollow Fiber Membrane. Analytical Chemistry, 2006, 78, 8526-8534.	3.2	35
149	TWO COMPLEMENTARY SIDES OF BIOAVAILABILITY: ACCESSIBILITY AND CHEMICAL ACTIVITY OF ORGANIC CONTAMINANTS IN SEDIMENTS AND SOILS. Environmental Toxicology and Chemistry, 2006, 25, 1239.	2.2	420
150	CAN HIGHLY HYDROPHOBIC ORGANIC SUBSTANCES CAUSE AQUATIC BASELINE TOXICITY AND CAN THEY CONTRIBUTE TO MIXTURE TOXICITY?. Environmental Toxicology and Chemistry, 2006, 25, 2639.	2.2	127
151	Equilibrium Sampling through Membranes of Freely Dissolved Copper Concentrations with Selective Hollow Fiber Membranes and the Spectrophotometric Detection of a Metal Stripping Agent. Analytical Chemistry, 2005, 77, 7605-7611.	3.2	35
152	Sediment Dilution Method to Determine Sorption Coefficients of Hydrophobic Organic Chemicals. Environmental Science & Technology, 2005, 39, 4220-4225.	4.6	16
153	Equilibrium Sampling through Membranes of Freely Dissolved Chlorophenols in Water Samples with Hollow Fiber Supported Liquid Membrane. Analytical Chemistry, 2005, 77, 4800-4809.	3.2	82
154	Quantifying the Effect of Medium Composition on the Diffusive Mass Transfer of Hydrophobic Organic Chemicals through Unstirred Boundary Layers. Environmental Science & Technology, 2005, 39, 6123-6129.	4.6	87
155	Measured Pore-Water Concentrations Make Equilibrium Partitioning Work A Data Analysis. Environmental Science & Technology, 2003, 37, 268-274.	4.6	213
156	Peer Reviewed: Equilibrium Sampling Devices. Environmental Science & Technology, 2003, 37, 184A-191A.	4.6	286
157	Algal growth inhibition test in filled, closed bottles for volatile and sorptive materials. Environmental Toxicology and Chemistry, 2000, 19, 2551-2556.	2.2	46
158	Comments on "Adsorption versus Absorption of Polychlorinated Biphenyls onto Solid-Phase Microextraction Coatings― Analytical Chemistry, 2000, 72, 639-641.	3.2	19
159	Absorption of Hydrophobic Compounds into the Poly(dimethylsiloxane) Coating of Solid-Phase Microextraction Fibers:Â High Partition Coefficients and Fluorescence Microscopy Images. Analytical Chemistry, 2000, 72, 459-464.	3.2	172
160	Nonequilibrium Solid-Phase Microextraction for Determination of the Freely Dissolved Concentration of Hydrophobic Organic Compounds:Â Matrix Effects and Limitations. Analytical Chemistry, 2000, 72, 2802-2808.	3.2	115
161	Sensing Dissolved Sediment Porewater Concentrations of Persistent and Bioaccumulative Pollutants Using Disposable Solid-Phase Microextraction Fibers. Environmental Science & Technology, 2000, 34, 5177-5183.	4.6	285
162	Algal growth inhibition of Chlorella pyrenoidosa by polar narcotic pollutants: toxic cell concentrations and QSAR modeling. Aquatic Toxicology, 1999, 46, 1-10.	1.9	30

#	Article	IF	CITATIONS
163	Establishing and Controlling Dissolved Concentrations of Hydrophobic Organics by Partitioning from a Solid Phase. Environmental Science & Technology, 1999, 33, 2284-2290.	4.6	99
164	Influence of growth conditions on the results obtained in algal toxicity tests. Environmental Toxicology and Chemistry, 1998, 17, 1091-1098.	2.2	56
165	Bioconcentration kinetics of hydrophobic chemicals in different densities of <i>Chlorella pyrenoidosa</i> . Environmental Toxicology and Chemistry, 1998, 17, 1695-1704.	2.2	50
166	Toxic cell concentrations of three polychlorinated biphenyl congeners in the green alga <i>Selenastrum capricornutum</i> . Environmental Toxicology and Chemistry, 1998, 17, 1848-1851.	2.2	25
167	A simple in vitro fluorescence method for biomass measurements in algal growth inhibition tests. Water Research, 1997, 31, 2525-2531.	5.3	121