Maurizio Prato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6639860/publications.pdf

Version: 2024-02-01

748 papers 77,053 citations

125 h-index 250 g-index

865 all docs 865
docs citations

865 times ranked 62779 citing authors

#	Article	IF	Citations
1	Bioresponsive, Electroactive, and Inkjetâ€Printable Grapheneâ€Based Inks. Advanced Functional Materials, 2022, 32, 2105028.	7.8	14
2	New insights into the exploitation of oxidized carbon nitrides as heterogeneous base catalysts. Inorganica Chimica Acta, 2022, 531, 120732.	1.2	8
3	Carbon Nanotube Membranes in Water Treatment Applications. Advanced Materials Interfaces, 2022, 9, 2101260.	1.9	39
4	Fast Visible-Light Photopolymerization in the Presence of Multiwalled Carbon Nanotubes: Toward 3D Printing Conducting Nanocomposites. ACS Macro Letters, 2022, 11, 303-309.	2.3	24
5	Protein-based (bio)materials: a way toward high-performance graphene enzymatic biosensors. Journal of Materials Chemistry C, 2022, 10, 5466-5473.	2.7	5
6	Elucidating the electronic properties of single-wall carbon nanohorns. Journal of Materials Chemistry C, 2022, 10, 5783-5786.	2.7	5
7	Nuclear Magnetic Resonance Reveals Molecular Species in Carbon Nanodot Samples Disclosing Flaws. Angewandte Chemie, 2022, 134, .	1.6	3
8	A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nature Nanotechnology, 2022, 17, 112-130.	15.6	370
9	Nuclear Magnetic Resonance Reveals Molecular Species in Carbon Nanodot Samples Disclosing Flaws. Angewandte Chemie - International Edition, 2022, 61, .	7.2	45
10	Unveiling the Synthetic Potential of Substituted Phenols as Fully Recyclable Organophotoredox Catalysts for the Iodosulfonylation of Olefins. ACS Catalysis, 2022, 12, 4290-4295.	5. 5	20
11	Is airborne graphene oxide a possible hazard for the sexual reproduction of wind-pollinated plants?. Science of the Total Environment, 2022, 830, 154625.	3.9	5
12	The Photochemical Activity of a Halogen-Bonded Complex Enables the Microfluidic Light-Driven Alkylation of Phenols. Organic Letters, 2022, 24, 2961-2966.	2.4	22
13	Transfer of Axial Chirality to the Nanoscale Endows Carbon Nanodots with Circularly Polarized Luminescence. Angewandte Chemie, 2022, 134, .	1.6	5
14	Transfer of Axial Chirality to the Nanoscale Endows Carbon Nanodots with Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
15	Phenanthrene-Extended Phenazine Dication: An Electrochromic Conformational Switch Presenting Dual Reactivity. Journal of the American Chemical Society, 2022, 144, 7295-7301.	6.6	13
16	Electrochemical modification of carbon nanotube fibres. Nanoscale, 2022, 14, 9313-9322.	2.8	2
17	Efficient and Stable Perovskite Solar Cells based on Nitrogenâ€Doped Carbon Nanodots. Energy Technology, 2022, 10, .	1.8	4
18	The era of nano-bionic: 2D materials for wearable and implantable body sensors. Advanced Drug Delivery Reviews, 2022, 186, 114315.	6.6	18

#	Article	IF	Citations
19	Hazard assessment of abraded thermoplastic composites reinforced with reduced graphene oxide. Journal of Hazardous Materials, 2022, 435, 129053.	6.5	16
20	CARBON-BASED nanomaterials and SKIN: An overview. Carbon, 2022, 196, 683-698.	5.4	17
21	Polyaromatic cores for the exfoliation of popular 2D materials. Nanoscale, 2022, 14, 8986-8994.	2.8	2
22	New Insights into the Exploitation of BODIPY Derivatives as Organic Photocatalysts. European Journal of Organic Chemistry, 2022, 2022, .	1.2	3
23	Lightâ€Controlled Regioselective Synthesis of Fullerene Bisâ€Adducts. Angewandte Chemie - International Edition, 2021, 60, 313-320.	7.2	26
24	Lightâ€Controlled Regioselective Synthesis of Fullerene Bisâ€Adducts. Angewandte Chemie, 2021, 133, 317-324.	1.6	2
25	2D materials production and generation of functional inks: general discussion. Faraday Discussions, 2021, 227, 141-162.	1.6	2
26	Nanocellulose/Fullerene Hybrid Films Assembled at the Air/Water Interface as Promising Functional Materials for Photo-electrocatalysis. Polymers, 2021, 13, 243.	2.0	7
27	Use of Perylene Diimides in Synthetic Photochemistry. European Journal of Organic Chemistry, 2021, 2021, 1193-1200.	1.2	25
28	Concluding remarks: Chemistry of 2-dimensional materials: beyond graphene. Faraday Discussions, 2021, 227, 383-395.	1.6	5
29	Tailored amorphization of graphitic carbon nitride triggers superior photocatalytic C–C coupling towards the synthesis of perfluoroalkyl derivatives. Materials Chemistry Frontiers, 2021, 5, 7267-7275.	3.2	21
30	Optical processes in carbon nanocolloids. CheM, 2021, 7, 606-628.	5.8	73
31	Metal-Free Photocatalysis: Two-Dimensional Nanomaterial Connection toward Advanced Organic Synthesis. ACS Nano, 2021, 15, 3621-3630.	7.3	81
32	Lighting up the Electrochemiluminescence of Carbon Dots through Pre―and Postâ€Synthetic Design. Advanced Science, 2021, 8, 2100125.	5.6	49
33	3D Printable Conducting and Biocompatible PEDOTâ€∢i>graftâ€PLA Copolymers by Direct Ink Writing. Macromolecular Rapid Communications, 2021, 42, e2100100.	2.0	30
34	Snapshots into carbon dots formation through a combined spectroscopic approach. Nature Communications, 2021, 12, 2640.	5.8	86
35	Microwaveâ€Assisted 1,3â€Dipolar Cycloaddition of Azomethine Ylides to [60]Fullerene: Thermodynamic Control of Bisâ€Addition with Ionic Liquids Additives. European Journal of Organic Chemistry, 2021, 2021, 3545-3551.	1.2	3
36	Graphene environmental biodegradation: Wood degrading and saprotrophic fungi oxidize few-layer graphene. Journal of Hazardous Materials, 2021, 414, 125553.	6.5	17

#	Article	IF	Citations
37	Turning the Light on Phenols: New Opportunities in Organic Synthesis. Chemistry - A European Journal, 2021, 27, 16062-16070.	1.7	33
38	Agarose-Based Fluorescent Waveguide with Embedded Silica Nanoparticle–Carbon Nanodot Hybrids for pH Sensing. ACS Applied Nano Materials, 2021, 4, 9738-9751.	2.4	16
39	Localized and Surface Plasmons Coupling for Ultrasensitive Dopamine Detection by means of SPRâ€Based Perylene Bisimide/Au Nanostructures Thin Film. Advanced Materials Interfaces, 2021, 8, 2101023.	1.9	8
40	Carbon nanotubes for cardiac tissue regeneration: State of the art and perspectives. Carbon, 2021, 184, 641-650.	5.4	17
41	Carbon-dots conductometric sensor for high performance gas sensing. Carbon Trends, 2021, 5, 100105.	1.4	14
42	New trends in nonconventional carbon dot synthesis. Trends in Chemistry, 2021, 3, 943-953.	4.4	28
43	Biomedical applications: general discussion. Faraday Discussions, 2021, 227, 245-258.	1.6	2
44	2D and 3D Immobilization of Carbon Nanomaterials into PEDOT via Electropolymerization of a Functional Bis-EDOT Monomer. Polymers, 2021, 13, 436.	2.0	5
45	Supramolecular organic–inorganic domains integrating fullerene-based acceptors with polyoxometalate-bis-pyrene tweezers for organic photovoltaic applications. Journal of Materials Chemistry C, 2021, 9, 16290-16297.	2.7	7
46	Electrochemiluminescent immunoassay enhancement driven by carbon nanotubes. Chemical Communications, 2021, 57, 9672-9675.	2.2	14
47	3-Dimensional graphene-like structures and applications: general discussion. Faraday Discussions, 2021, 227, 359-382.	1.6	0
48	Metal Nanoparticles/MoS ₂ Surface-Enhanced Raman Scattering-Based Sandwich Immunoassay for α-Fetoprotein Detection. ACS Applied Materials & Enterfaces, 2021, 13, 8823-8831.	4.0	45
49	Electrocatalytic CO ₂ reduction: role of the cross-talk at nano-carbon interfaces. Energy and Environmental Science, 2021, 14, 5816-5833.	15.6	25
50	Suspended graphene arrays for gas sensing applications. 2D Materials, 2021, 8, 025006.	2.0	15
51	Frontispiece: Turning the Light on Phenols: New Opportunities in Organic Synthesis. Chemistry - A European Journal, 2021, 27, .	1.7	0
52	Introduction to the themed issue in honour of Prof. Kees Hummelen. Journal of Materials Chemistry C, 2021, 9, 16057-16058.	2.7	0
53	Bidirectional Modulation of Neuronal Cells Electrical and Mechanical Properties Through Pristine and Functionalized Graphene Substrates. Frontiers in Neuroscience, 2021, 15, 811348.	1.4	3
54	Influence of the chirality of carbon nanodots on their interaction with proteins and cells. Nature Communications, 2021, 12, 7208.	5.8	31

#	Article	IF	Citations
55	Skin irritation potential of graphene-based materials using a non-animal test. Nanoscale, 2020, 12, 610-622.	2.8	42
56	Photoelectrochemical Properties of SnO ₂ Photoanodes Sensitized by Cationic Perylene-Di-Imide Aggregates for Aqueous HBr Splitting. Journal of Physical Chemistry C, 2020, 124, 1317-1329.	1.5	13
57	Tailored Methodology Based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering. ACS Biomaterials Science and Engineering, 2020, 6, 1269-1278.	2.6	31
58	Keratinocytes are capable of selectively sensing low amounts of graphene-based materials: Implications for cutaneous applications. Carbon, 2020, 159, 598-610.	5.4	16
59	Novel idebenone analogs block Shc's access to insulin receptor to improve insulin sensitivity. Biomedicine and Pharmacotherapy, 2020, 132, 110823.	2.5	3
60	Improving 2D-organization of fullerene Langmuir-SchÃfer thin films by interaction with cellulose nanocrystals. Carbon, 2020, 167, 906-917.	5.4	12
61	Electrochemically controlled cleavage of imine bonds on a graphene platform: towards new electro-responsive hybrids for drug release. Nanoscale, 2020, 12, 23824-23830.	2.8	12
62	Light-driven, heterogeneous organocatalysts for Câ \in "C bond formation toward valuable perfluoroalkylated intermediates. Science Advances, 2020, 6, .	4.7	75
63	Targeting G Proteinâ€Coupled Receptors with Magnetic Carbon Nanotubes: The Case of the A 3 Adenosine Receptor. ChemMedChem, 2020, 15, 1909-1920.	1.6	4
64	Ecotoxicological impact of graphene oxide: toxic effects on the model organism <i>Artemia franciscana</i> . Environmental Science: Nano, 2020, 7, 3605-3615.	2.2	20
65	Synthesis and excited state processes of arrays containing amine-rich carbon dots and unsymmetrical rylene diimides. Materials Chemistry Frontiers, 2020, 4, 3640-3648.	3.2	15
66	Effects of Few-Layer Graphene on the Sexual Reproduction of Seed Plants: An In Vivo Study with Cucurbita pepo L Nanomaterials, 2020, 10, 1877.	1.9	5
67	Partial Reversibility of the Cytotoxic Effect Induced by Graphene-Based Materials in Skin Keratinocytes. Nanomaterials, 2020, 10, 1602.	1.9	8
68	Synthesis and applications of amino-functionalized carbon nanomaterials. Chemical Communications, 2020, 56, 12698-12716.	2.2	36
69	Water-Mediated ElectroHydrogenation of CO ₂ at Near-Equilibrium Potential by Carbon Nanotubes/Cerium Dioxide Nanohybrids. ACS Applied Energy Materials, 2020, 3, 8509-8518.	2.5	23
70	Toward Spontaneous Neuronal Differentiation of SH-SY5Y Cells Using Novel Three-Dimensional Electropolymerized Conductive Scaffolds. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57330-57342.	4.0	16
71	Intracerebral Injection of Graphene Oxide Nanosheets Mitigates Microglial Activation Without Inducing Acute Neurotoxicity: A Pilot Comparison to Other Nanomaterials. Small, 2020, 16, e2004029.	5.2	19
72	Graphene, other carbon nanomaterials and the immune system: toward nanoimmunity-by-design. JPhys Materials, 2020, 3, 034009.	1.8	29

#	Article	IF	Citations
73	Tailoring the sensing abilities of carbon nanodots obtained from olive solid wastes. Carbon, 2020, 167, 696-708.	5.4	46
74	Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nature Nanotechnology, 2020, 15, 164-166.	15.6	69
75	Supramolecular Chiral Discrimination of D-Phenylalanine Amino Acid Based on a Perylene Bisimide Derivative. Frontiers in Bioengineering and Biotechnology, 2020, 8, 160.	2.0	9
76	Carbon Dots as Nano-Organocatalysts for Synthetic Applications. ACS Catalysis, 2020, 10, 8090-8105.	5.5	111
77	Concise, Singleâ€Step Synthesis of Sulfurâ€Enriched Graphene: Immobilization of Molecular Clusters and Battery Applications. Angewandte Chemie - International Edition, 2020, 59, 7836-7841.	7.2	16
78	Tuning Neuronal Circuit Formation in 3D Polymeric Scaffolds by Introducing Graphene at the Bio/Material Interface. Advanced Biology, 2020, 4, 1900233.	3.0	12
79	Into the carbon: A matter of core and shell in advanced electrocatalysis. APL Materials, 2020, 8, .	2.2	12
80	Beyond graphene oxide acidity: Novel insights into graphene related materials effects on the sexual reproduction of seed plants. Journal of Hazardous Materials, 2020, 393, 122380.	6.5	14
81	Photocatalytically Active Graphitic Carbon Nitride as an Effective and Safe 2D Material for In Vitro and In Vivo Photodynamic Therapy. Small, 2020, 16, e1904619.	5.2	53
82	Mass spectrometry of carbohydrate-protein interactions on a glycan array conjugated to CVD graphene surfaces. 2D Materials, 2020, 7, 024003.	2.0	10
83	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
84	Symmetryâ€Breaking Chargeâ€Transfer Chromophore Interactions Supported by Carbon Nanodots. Angewandte Chemie - International Edition, 2020, 59, 12779-12784.	7.2	28
85	Symmetryâ€Breaking Chargeâ€Transfer Chromophore Interactions Supported by Carbon Nanodots. Angewandte Chemie, 2020, 132, 12879-12884.	1.6	4
86	Concise, Singleâ€Step Synthesis of Sulfurâ€Enriched Graphene: Immobilization of Molecular Clusters and Battery Applications. Angewandte Chemie, 2020, 132, 7910-7915.	1.6	4
87	Mapping the Surface Groups of Amine-Rich Carbon Dots Enables Covalent Catalysis in Aqueous Media. CheM, 2020, 6, 3022-3037.	5.8	46
88	Functional rewiring across spinal injuries via biomimetic nanofiber scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25212-25218.	3.3	23
89	Tracking Ultrafast Charge Separation in a PBI-based Biomimetic Complex for Oxygen Evolution. , 2020, ,		0
90	The Rise of Hydrogen Peroxide as the Main Product by Metalâ€Free Catalysis in Oxygen Reductions. Advanced Materials, 2019, 31, e1802920.	11.1	251

#	Article	IF	Citations
91	Solar-driven chemistry: towards new catalytic solutions for a sustainable world. Rendiconti Lincei, 2019, 30, 443-452.	1.0	25
92	High-Yield Preparation of Exfoliated 1T-MoS ₂ with SERS Activity. Chemistry of Materials, 2019, 31, 5725-5734.	3.2	126
93	Design, Synthesis, and Functionalization Strategies of Tailored Carbon Nanodots. Accounts of Chemical Research, 2019, 52, 2070-2079.	7.6	172
94	Chemically Cross-Linked Carbon Nanotube Films Engineered to Control Neuronal Signaling. ACS Nano, 2019, 13, 8879-8889.	7.3	28
95	Graphene-based materials do not impair physiology, gene expression and growth dynamics of the aeroterrestrial microalga <i>Trebouxia gelatinosa</i> Nanotoxicology, 2019, 13, 492-509.	1.6	12
96	Use of Nitrogenâ€Doped Carbon Nanodots for the Photocatalytic Fluoroalkylation of Organic Compounds. Chemistry - A European Journal, 2019, 25, 16032-16036.	1.7	35
97	Preparation, functionalization and characterization of engineered carbon nanodots. Nature Protocols, 2019, 14, 2931-2953.	5.5	96
98	Ex-Solution Synthesis of Sub-5-nm FeO _{<i>x</i>} Nanoparticles on Mesoporous Hollow N,O-Doped Carbon Nanoshells for Electrocatalytic Oxygen Reduction. ACS Applied Nano Materials, 2019, 2, 6092-6097.	2.4	30
99	Singlet oxygen photo-production by perylene bisimide derivative Langmuir-Schaefer films for photodynamic therapy applications. Journal of Colloid and Interface Science, 2019, 553, 390-401.	5.0	13
100	Visible-Light-Mediated Iodoperfluoroalkylation of Alkenes in Flow and Its Application to the Synthesis of a Key Fulvestrant Intermediate. Organic Letters, 2019, 21, 5341-5345.	2.4	81
101	Biocompatibility and biodegradability of 2D materials: graphene and beyond. Chemical Communications, 2019, 55, 5540-5546.	2.2	158
102	Gold Nanoparticle-Functionalized Reverse Thermal Gel for Tissue Engineering Applications. ACS Applied Materials & Distriction (2019), 11, 18671-18680.	4.0	47
103	Advanced carbon nanomaterials for electrochemiluminescent biosensor applications. Current Opinion in Electrochemistry, 2019, 16, 66-74.	2.5	75
104	Carbon nanodot-based heterostructures for improving the charge separation and the photocurrent generation. Nanoscale, 2019, 11, 7414-7423.	2.8	22
105	Cross-Linked Carbon Nanotube Adsorbents for Water Treatment: Tuning the Sorption Capacity through Chemical Functionalization. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12920-12930.	4.0	45
106	The use of functionalized carbon xerogels in cells growth. Materials Science and Engineering C, 2019, 100, 598-607.	3.8	10
107	Perylene Bisimide Aggregates as Probes for Subnanomolar Discrimination of Aromatic Biogenic Amines. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17079-17089.	4.0	38
108	Graphene Oxide Flakes Tune Excitatory Neurotransmission in Vivo by Targeting Hippocampal Synapses. Nano Letters, 2019, 19, 2858-2870.	4.5	43

#	Article	IF	Citations
109	A Recyclable Chiral 2â€(Triphenylmethyl)pyrrolidine Organocatalyst Anchored to [60]Fullerene. Advanced Synthesis and Catalysis, 2019, 361, 2936-2944.	2.1	12
110	Carbon Nanostructures in Rotaxane Architectures. European Journal of Organic Chemistry, 2019, 2019, 3371-3383.	1.2	15
111	Highly Performing Iodoperfluoroalkylation of Alkenes Triggered by the Photochemical Activity of Perylene Diimides. ChemPhotoChem, 2019, 3, 193-197.	1.5	37
112	Selective Electrocatalytic H ₂ O ₂ Generation by Cobalt@Nâ€Doped Graphitic Carbon Coreâ€"Shell Nanohybrids. ChemSusChem, 2019, 12, 1664-1672.	3.6	40
113	Controlling Sizeâ€Dispersion of Single Walled Carbon Nanotubes by Interaction with Polyoxometalates Armed with a Tryptophan Tweezer. European Journal of Inorganic Chemistry, 2019, 2019, 374-379.	1.0	6
114	Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come?. Carbon, 2019, 143, 430-446.	5.4	135
115	The reactivity of reduced graphene depends on solvation. 2D Materials, 2019, 6, 025009.	2.0	12
116	Hierarchical organization of perylene bisimides and polyoxometalates for photo-assisted water oxidation. Nature Chemistry, 2019, 11, 146-153.	6.6	132
117	Customizing the Electrochemical Properties of Carbon Nanodots by Using Quinones in Bottomâ€Up Synthesis. Angewandte Chemie, 2018, 130, 5156-5161.	1.6	23
118	Graphene Oxide Nanosheets and Neural System: From Synaptic Modulation to Neuroinflammation. Biophysical Journal, 2018, 114, 672a.	0.2	1
119	Customizing the Electrochemical Properties of Carbon Nanodots by Using Quinones in Bottomâ€Up Synthesis. Angewandte Chemie - International Edition, 2018, 57, 5062-5067.	7.2	66
120	The idebenone metabolite QS10 restores electron transfer in complex I and coenzyme Q defects. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 901-908.	0.5	31
121	Pd@TiO ₂ /carbon nanohorn electrocatalysts: reversible CO ₂ hydrogenation to formic acid. Energy and Environmental Science, 2018, 11, 1571-1580.	15.6	47
122	Magnetic shepherding of nanocatalysts through hierarchically-assembled Fe-filled CNTs hybrids. Applied Catalysis B: Environmental, 2018, 227, 356-365.	10.8	29
123	Single Layer Graphene Promotes Neuronal Activity by Regulating Potassium Ion Channels in Cultured Neuronal Networks. Biophysical Journal, 2018, 114, 393a.	0.2	1
124	Production of ready-to-use few-layer graphene in aqueous suspensions. Nature Protocols, 2018, 13, 495-506.	5.5	62
125	Screening Supramolecular Interactions between Carbon Nanodots and Porphyrins. Journal of the American Chemical Society, 2018, 140, 904-907.	6.6	59
126	Nitrogen-Doped Carbon Nanodots-lonogels: Preparation, Characterization, and Radical Scavenging Activity. ACS Nano, 2018, 12, 1296-1305.	7.3	77

#	Article	IF	Citations
127	A water-soluble, bay-functionalized perylenediimide derivative – correlating aggregation and excited state dynamics. Nanoscale, 2018, 10, 2317-2326.	2.8	10
128	Microwave-induced covalent functionalization of few-layer graphene with arynes under solvent-free conditions. Chemical Communications, 2018, 54, 2086-2089.	2.2	29
129	Gas-Phase Functionalization of Macroscopic Carbon Nanotube Fiber Assemblies: Reaction Control, Electrochemical Properties, and Use for Flexible Supercapacitors. ACS Applied Materials & Electrochemical Properties, and Use for Flexible Supercapacitors. ACS Applied Materials & Electrochemical Properties & El	4.0	53
130	N-Doped Graphitized Carbon Nanohorns as a Forefront Electrocatalyst in Highly Selective O2 Reduction to H2O2. CheM, 2018, 4, 106-123.	5.8	348
131	Tuning the Carbon Nanotube Selectivity: Optimizing Reduction Potentials and Distortion Angles in Perylenediimides. Journal of the American Chemical Society, 2018, 140, 5427-5433.	6.6	12
132	Nanostructures to Engineer 3D Neuralâ€Interfaces: Directing Axonal Navigation toward Successful Bridging of Spinal Segments. Advanced Functional Materials, 2018, 28, 1700550.	7.8	26
133	Nanostructured carbon supported Pd-ceria as anode catalysts for anion exchange membrane fuel cells fed with polyalcohols. Inorganica Chimica Acta, 2018, 470, 213-220.	1.2	15
134	Sculpting neurotransmission during synaptic development by 2D nanostructured interfaces. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2521-2532.	1.7	28
135	Three-Dimensional Conductive Scaffolds as Neural Prostheses Based on Carbon Nanotubes and Polypyrrole. ACS Applied Materials & Interfaces, 2018, 10, 43904-43914.	4.0	45
136	Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano, 2018, 12, 10582-10620.	7.3	438
137	3D Carbon-Nanotube-Based Composites for Cardiac Tissue Engineering. ACS Applied Bio Materials, 2018, 1, 1530-1537.	2.3	57
138	Oxidized Nanocarbons-Tripeptide Supramolecular Hydrogels: Shape Matters!. ACS Nano, 2018, 12, 5530-5538.	7.3	61
139	Metal-free dual-phase full organic carbon nanotubes/g-C3N4 heteroarchitectures for photocatalytic hydrogen production. Nano Energy, 2018, 50, 468-478.	8.2	133
140	Graphene oxide impairs the pollen performance of <i>Nicotiana tabacum</i> and <i>Corylus avellana</i> suggesting potential negative effects on the sexual reproduction of seed plants. Environmental Science: Nano, 2018, 5, 1608-1617.	2.2	18
141	High-yield production of 2D crystals by wet-jet milling. Materials Horizons, 2018, 5, 890-904.	6.4	139
142	lonic liquids plus microwave irradiation: a general methodology for the retro-functionalization of single-walled carbon nanotubes. Nanoscale, 2018, 10, 15782-15787.	2.8	7
143	Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level. Nature Communications, 2018, 9, 3442.	5.8	169
144	Nitrogen-doped carbon nanodots for bioimaging and delivery of paclitaxel. Journal of Materials Chemistry B, 2018, 6, 5540-5548.	2.9	139

#	Article	IF	CITATIONS
145	Occupational exposure to graphene based nanomaterials: risk assessment. Nanoscale, 2018, 10, 15894-15903.	2.8	82
146	Inter-Backbone Charge Transfer as Prerequisite for Long-Range Conductivity in Perylene Bisimide Hydrogels. ACS Nano, 2018, 12, 5800-5806.	7.3	8
147	Single-layer graphene modulates neuronal communication and augments membrane ion currents. Nature Nanotechnology, 2018, 13, 755-764.	15.6	120
148	Graphene and graphene oxide induce ROS production in human HaCaT skin keratinocytes: the role of xanthine oxidase and NADH dehydrogenase. Nanoscale, 2018, 10, 11820-11830.	2.8	90
149	Ruthenium based photosensitizer/catalyst supramolecular architectures in light driven water oxidation. Inorganica Chimica Acta, 2017, 454, 171-175.	1.2	18
150	Nanocrystalline cellulose-fullerene: Novel conjugates. Carbohydrate Polymers, 2017, 164, 92-101.	5.1	17
151	How much does size really matter? Exploring the limits of graphene as Li ion battery anode material. Solid State Communications, 2017, 251, 88-93.	0.9	36
152	Few‣ayer Graphene Kills Selectively Tumor Cells from Myelomonocytic Leukemia Patients. Angewandte Chemie - International Edition, 2017, 56, 3014-3019.	7.2	59
153	Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Scientific Reports, 2017, 7, 40572.	1.6	141
154	Few‣ayer Graphene Kills Selectively Tumor Cells from Myelomonocytic Leukemia Patients. Angewandte Chemie, 2017, 129, 3060-3065.	1.6	9
155	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	7.3	4
156	Effect of the fullerene in the properties of thin PEDOT/C60 films obtained by co-electrodeposition. Inorganica Chimica Acta, 2017, 468, 239-244.	1.2	9
157	Multichromophoric hybrid species made of perylene bisimide derivatives and Ru(<scp>ii</scp>) and Os(<scp>ii</scp>) polypyridine subunits. Physical Chemistry Chemical Physics, 2017, 19, 14055-14065.	1.3	4
158	Interfacial charge transfer in functionalized multi-walled carbon nanotube@TiO ₂ nanofibres. Nanoscale, 2017, 9, 7911-7921.	2.8	71
159	Primary microglia maintain their capacity to function despite internalisation and intracellular loading with carbon nanotubes. Nanoscale Horizons, 2017, 2, 284-296.	4.1	7
160	Top-down and bottom-up approaches to transparent, flexible and luminescent nitrogen-doped carbon nanodot-clay hybrid films. Nanoscale, 2017, 9, 10256-10262.	2.8	41
161	Nanomaterials for stimulating nerve growth. Science, 2017, 356, 1010-1011.	6.0	62
162	Structural and optical properties of a perylene bisimide in aqueous media. Chemical Physics Letters, 2017, 683, 454-458.	1.2	11

#	Article	IF	CITATIONS
163	Rationally Designed Carbon Nanodots towards Pure Whiteâ€Light Emission. Angewandte Chemie, 2017, 129, 4234-4237.	1.6	22
164	Innenrýcktitelbild: Amineâ€Rich Nitrogenâ€Doped Carbon Nanodots as a Platform for Selfâ€Enhancing Electrochemiluminescence (Angew. Chem. 17/2017). Angewandte Chemie, 2017, 129, 4971-4971.	1.6	1
165	Rationally Designed Carbon Nanodots towards Pure Whiteâ€Light Emission. Angewandte Chemie - International Edition, 2017, 56, 4170-4173.	7.2	99
166	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
167	Direct visualization of carbon nanotube degradation in primary cells by photothermal imaging. Nanoscale, 2017, 9, 4642-4645.	2.8	25
168	Amineâ€Rich Nitrogenâ€Doped Carbon Nanodots as a Platform for Selfâ€Enhancing Electrochemiluminescence. Angewandte Chemie - International Edition, 2017, 56, 4757-4761.	7.2	201
169	Amineâ€Rich Nitrogenâ€Doped Carbon Nanodots as a Platform for Selfâ€Enhancing Electrochemiluminescence. Angewandte Chemie, 2017, 129, 4835-4839.	1.6	42
170	Ecotoxicological effects of graphene-based materials. 2D Materials, 2017, 4, 012001.	2.0	37
171	Evaluation of concentration and dispersion of functionalized carbon nanotubes in aqueous media by means of Low Field Nuclear Magnetic Resonance. Carbon, 2017, 113, 387-394.	5.4	6
172	Targeted killing of prostate cancer cells using antibody–drug conjugated carbon nanohorns. Journal of Materials Chemistry B, 2017, 5, 8821-8832.	2.9	20
173	A simple approach to synthetize folic acid decorated magnetite@SiO ₂ nanostructures for hyperthermia applications. Journal of Materials Chemistry B, 2017, 5, 7547-7556.	2.9	16
174	Graphene Improves the Biocompatibility of Polyacrylamide Hydrogels: 3D Polymeric Scaffolds for Neuronal Growth. Scientific Reports, 2017, 7, 10942.	1.6	87
175	Injectable Carbon Nanotube-Functionalized Reverse Thermal Gel Promotes Cardiomyocytes Survival and Maturation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31645-31656.	4.0	52
176	Promises, facts and challenges for graphene in biomedical applications. Chemical Society Reviews, 2017, 46, 4400-4416.	18.7	564
177	Porphyrin Antennas on Carbon Nanodots: Excited State Energy and Electron Transduction. Angewandte Chemie - International Edition, 2017, 56, 12097-12101.	7.2	58
178	Porphyrin Antennas on Carbon Nanodots: Excited State Energy and Electron Transduction. Angewandte Chemie, 2017, 129, 12265-12269.	1.6	16
179	Perylene Diimide Aggregates on Sb-Doped SnO ₂ : Charge Transfer Dynamics Relevant to Solar Fuel Generation. Journal of Physical Chemistry C, 2017, 121, 17737-17745.	1.5	22
180	Highly sensitive electrochemiluminescence detection of a prostate cancer biomarker. Journal of Materials Chemistry B, 2017, 5, 6681-6687.	2.9	65

#	Article	IF	CITATIONS
181	Selective Interaction of a Water Soluble Naphthalenediimide with Single-Walled Carbon Nanotubes. ECS Journal of Solid State Science and Technology, 2017, 6, M3132-M3134.	0.9	O
182	Making H ₂ from light and biomass-derived alcohols: the outstanding activity of newly designed hierarchical MWCNT/Pd@TiO ₂ hybrid catalysts. Green Chemistry, 2017, 19, 2379-2389.	4.6	37
183	H 2 O 2 sensing enhancement by mutual integration of single walled carbon nanohorns with metal oxide catalysts: The CeO 2 case. Sensors and Actuators B: Chemical, 2017, 239, 923-932.	4.0	84
184	Successful Regrowth of Retinal Neurons When Cultured Interfaced to Carbon Nanotube Platforms. Journal of Biomedical Nanotechnology, 2017, 13, 559-565.	0.5	11
185	Recent Advances of Graphene-based Hybrids with Magnetic Nanoparticles for Biomedical Applications. Current Medicinal Chemistry, 2017, 24, 529-536.	1.2	67
186	Triazineâ€Carbon Nanotubes: New Platforms for the Design of Flavin Receptors. Chemistry - A European Journal, 2016, 22, 8879-8888.	1.7	2
187	Production and stability of mechanochemically exfoliated graphene in water and culture media. Nanoscale, 2016, 8, 14548-14555.	2.8	46
188	Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead. Advanced Materials, 2016, 28, 6052-6074.	11.1	335
189	Sensor Properties of Pristine and Functionalized Carbon Nanohorns. Electroanalysis, 2016, 28, 2489-2499.	1.5	23
190	Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution. Nature Communications, 2016, 7, 13549.	5.8	98
191	Graphene Oxide Nanosheets Reshape Synaptic Function in Cultured Brain Networks. ACS Nano, 2016, 10, 4459-4471.	7.3	133
192	Mix and match metal oxides and nanocarbons for new photocatalytic frontiers. Catalysis Today, 2016, 277, 202-213.	2.2	29
193	3D meshes of carbon nanotubes guide functional reconnection of segregated spinal explants. Science Advances, 2016, 2, e1600087.	4.7	84
194	Synthesis and Catalytic Activity of Gold Nanoparticles Supported on Dendrimeric Nanocellulose Hybrids. European Journal of Organic Chemistry, 2016, 2016, 3186-3192.	1.2	18
195	Synthesis, Separation, and Characterization of Small and Highly Fluorescent Nitrogenâ€Doped Carbon NanoDots. Angewandte Chemie, 2016, 128, 2147-2152.	1.6	72
196	Shuttling as a Strategy to Control the Regiochemistry of Bisâ€Additions on Fullerene Derivatives. ChemPhysChem, 2016, 17, 1823-1828.	1.0	5
197	Single Walled Carbon Nanohorns as Catalytic Counter Electrodes for Co(III)/(II) Electron Mediators in Dye Sensitized Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14604-14612.	4.0	26
198	Synthesis, Separation, and Characterization of Small and Highly Fluorescent Nitrogenâ€Doped Carbon NanoDots. Angewandte Chemie - International Edition, 2016, 55, 2107-2112.	7.2	266

#	Article	IF	CITATIONS
199	From trash to resource: recovered-Pd from spent three-way catalysts as a precursor of an effective photo-catalyst for H ₂ production. Green Chemistry, 2016, 18, 2745-2752.	4.6	26
200	Intracellular degradation of chemically functionalized carbon nanotubes using a long-term primary microglial culture model. Nanoscale, 2016, 8, 590-601.	2.8	52
201	Carbon nanotubes for organ regeneration: An electrifying performance. Nano Today, 2016, 11, 398-401.	6.2	39
202	Single-Walled Carbon Nanotube–Polyamidoamine Dendrimer Hybrids for Heterogeneous Catalysis. ACS Nano, 2016, 10, 4627-4636.	7.3	107
203	Recognition of C ₆₀ by tetra- and tri-quinoxaline cavitands. Supramolecular Chemistry, 2016, 28, 601-607.	1.5	5
204	Facile and quick preparation of carbon nanohorn-based counter electrodes for efficient dye-sensitized solar cells. Nanoscale, 2016, 8, 7556-7561.	2.8	31
205	Kinetics of functionalised carbon nanotube distribution in mouse brain after systemic injection: Spatial to ultra-structural analyses. Journal of Controlled Release, 2016, 224, 22-32.	4.8	48
206	Graphene-Based Interfaces Do Not Alter Target Nerve Cells. ACS Nano, 2016, 10, 615-623.	7.3	208
207	[60]Fullerene–porphyrin [n]pseudorotaxanes: self-assembly, photophysics and third-order NLO response. Physical Chemistry Chemical Physics, 2016, 18, 11858-11868.	1.3	18
208	Gadolinium-functionalised multi-walled carbon nanotubes as a T 1 contrast agent for MRI cell labelling and tracking. Carbon, 2016, 97, 126-133.	5.4	50
209	Highly efficient hydrogen production through ethanol photoreforming by a carbon nanocone/Pd@TiO ₂ hybrid catalyst. Chemical Communications, 2016, 52, 764-767.	2.2	45
210	Carbon based substrates for interfacing neurons: Comparing pristine with functionalized carbon nanotubes effects on cultured neuronal networks. Carbon, 2016, 97, 87-91.	5.4	29
211	Unravelling Radicals Reactivity Towards Carbon Nanotubes Manipulation/Functionalization. Current Organic Chemistry, 2016, 20, 632-644.	0.9	3
212	Injectable Reverse Thermal Gel Biopolymers may Act as an Extracellular Matrix and Cell Vehicle for Cardiac Tissue Engineering. Biophysical Journal, 2015, 108, 486a.	0.2	0
213	Fast and Efficient Microwaveâ€Assisted Synthesis of Perylenebisimides. European Journal of Organic Chemistry, 2015, 2015, 5060-5063.	1.2	18
214	Supramolecular Macrostructures of UPyâ∈Functionalized Carbon Nanotubes. Chemistry - A European Journal, 2015, 21, 14179-14185.	1.7	12
215	Kohlenstoffâ€Nanopunkte: supramolekulare Elektronendonorâ€Akzeptorâ€Hybride mit Perylendiimiden. Angewandte Chemie, 2015, 127, 8410-8415.	1.6	12
216	The Covalent Functionalization of Graphene on Substrates. Angewandte Chemie - International Edition, 2015, 54, 10734-10750.	7.2	221

#	Article	IF	CITATIONS
217	Effects of Two Fullerene Derivatives on Monocytes and Macrophages. BioMed Research International, 2015, 2015, 1-13.	0.9	16
218	Carbon nanotubes and catalysis: the many facets of a successful marriage. Catalysis Science and Technology, 2015, 5, 3859-3875.	2.1	106
219	Study of the Cytotoxic Effects of the New Synthetic Isothiocyanate CM9 and Its Fullerene Derivative on Human T-Leukemia Cells. Toxins, 2015, 7, 535-552.	1.5	6
220	Design of Cationic Multiwalled Carbon Nanotubes as Efficient siRNA Vectors for Lung Cancer Xenograft Eradication. Bioconjugate Chemistry, 2015, 26, 1370-1379.	1.8	58
221	Improved activity and stability of Pd@CeO2 core–shell catalysts hybridized with multi-walled carbon nanotubes in the water gas shift reaction. Catalysis Today, 2015, 253, 142-148.	2.2	36
222	Carboxylated, Feâ€Filled Multiwalled Carbon Nanotubes as Versatile Catalysts for O ₂ Reduction and H ₂ Evolution Reactions at Physiological pH. Chemistry - A European Journal, 2015, 21, 12769-12777.	1.7	25
223	Synthesis of copper-platinum nanoparticles induce apoptosis in THP-1 cells. , 2015, , .		1
224	Efficient Microwaveâ€Assisted Synthesis of PCBM Methanofullerenes (C ₆₀ and) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 462
225	Under the lens: carbon nanotube and protein interaction at the nanoscale. Chemical Communications, 2015, 51, 4347-4359.	2.2	90
226	Chemical modification of carbon nanomaterials (SWCNTs, DWCNTs, MWCNTs and SWCNHs) with diphenyl dichalcogenides. Nanoscale, 2015, 7, 6007-6013.	2.8	18
227	Microglia Determine Brain Region-Specific Neurotoxic Responses to Chemically Functionalized Carbon Nanotubes. ACS Nano, 2015, 9, 7815-7830.	7.3	86
228	Perylene Derivatives As Useful SERRS Reporters, Including Multiplexing Analysis. ACS Applied Materials & Lamp; Interfaces, 2015, 7, 28042-28048.	4.0	14
229	Safety concerns on graphene and 2D materials: a Flagship perspective. 2D Materials, 2015, 2, 030201.	2.0	43
230	Oxygen vacancies and interfaces enhancing photocatalytic hydrogen production in mesoporous CNT/TiO2 hybrids. Applied Catalysis B: Environmental, 2015, 179, 574-582.	10.8	117
231	In situ growth of capping-free magnetic iron oxide nanoparticles on liquid-phase exfoliated graphene. Nanoscale, 2015, 7, 8995-9003.	2.8	6
232	Modification of Nanocrystalline WO ₃ with a Dicationic Perylene Bisimide: Applications to Molecular Level Solar Water Splitting. Journal of the American Chemical Society, 2015, 137, 4630-4633.	6.6	114
233	Nanocomposite Hydrogels: 3D Polymer–Nanoparticle Synergies for On-Demand Drug Delivery. ACS Nano, 2015, 9, 4686-4697.	7.3	624
234	From 2D to 3D: novel nanostructured scaffolds to investigate signalling in reconstructed neuronal networks. Scientific Reports, 2015, 5, 9562.	1.6	125

#	Article	lF	Citations
235	Wire Up on Carbon Nanostructures! How To Play a Winning Game. ACS Nano, 2015, 9, 9441-9450.	7.3	47
236	Carbon Nanodots: Supramolecular Electron Donor–Acceptor Hybrids Featuring Perylenediimides. Angewandte Chemie - International Edition, 2015, 54, 8292-8297.	7.2	80
237	Covalent Carbon Nanotube Functionalization. , 2015, , 480-487.		5
238	Carbon nanomaterials combined with metal nanoparticles for theranostic applications. British Journal of Pharmacology, 2015, 172, 975-991.	2.7	72
239	Società Chimica Italiana Prizes 2014. Angewandte Chemie - International Edition, 2015, 54, 1070-1071.	7.2	0
240	The winding road for carbon nanotubes in nanomedicine. Materials Today, 2015, 18, 12-19.	8.3	115
241	Synthesis and anti-HIV activity of carboxylated and drug-conjugated multi-walled carbon nanotubes. Carbon, 2015, 82, 548-561.	5.4	55
242	Carbon nanohorn-based electrolyte for dye-sensitized solar cells. Energy and Environmental Science, 2015, 8, 241-246.	15.6	49
243	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
244	PEDOT:PSS Interfaces Support the Development of Neuronal Synaptic Networks with Reduced Neuroglia Response In vitro. Frontiers in Neuroscience, 2015, 9, 521.	1.4	45
245	Liquid-phase exfoliated graphene: functionalization, characterization, and applications. Beilstein Journal of Nanotechnology, 2014, 5, 2328-2338.	1.5	28
246	Supramolecular Assemblies of Nucleoside Functionalized Carbon Nanotubes: Synthesis, Film Preparation, and Properties. Chemistry - A European Journal, 2014, 20, 5397-5402.	1.7	10
247	3. Functionalization of carbon nanotubes. , 2014, , 43-70.		4
248	Carbon Nanotube Facilitation of Myocardial Ablation with Radiofrequency Energy. Journal of Cardiovascular Electrophysiology, 2014, 25, 1385-1390.	0.8	25
249	Direct observation of spin-injection in tyrosinate-functionalized single-wall carbon nanotubes. Carbon, 2014, 67, 424-433.	5 . 4	7
250	Non-conventional methods and media for the activation and manipulation of carbon nanoforms. Chemical Society Reviews, 2014, 43, 58-69.	18.7	76
251	Highly selective detection of Epinephrine at oxidized Single-Wall Carbon Nanohorns modified Screen Printed Electrodes (SPEs). Biosensors and Bioelectronics, 2014, 59, 94-98.	5. 3	60
252	Graphene for multi-functional synthetic biology: The last †zeitgeist' in nanomedicine. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1638-1649.	1.0	56

#	Article	IF	Citations
253	Grapheneâ€Based Electroresponsive Scaffolds as Polymeric Implants for Onâ€Demand Drug Delivery. Advanced Healthcare Materials, 2014, 3, 1334-1343.	3.9	134
254	Positive graphene by chemical design: tuning supramolecular strategies for functional surfaces. Chemical Communications, 2014, 50, 885-887.	2.2	26
255	Exfoliation of Graphite with Triazine Derivatives under Ball-Milling Conditions: Preparation of Few-Layer Graphene <i>via</i> Selective Noncovalent Interactions. ACS Nano, 2014, 8, 563-571.	7.3	241
256	The Influence of Molecular Structure on the Selfâ€Assembly of Phenanthroline Derivatives into Crystalline Nanowires. Particle and Particle Systems Characterization, 2014, 31, 121-125.	1.2	3
257	The supramolecular design of low-dimensional carbon nano-hybrids encoding a polyoxometalate-bis-pyrene tweezer. Chemical Communications, 2014, 50, 4881-4883.	2.2	30
258	The relationship between the diameter of chemically-functionalized multi-walled carbon nanotubes and their organ biodistribution profiles inâvivo. Biomaterials, 2014, 35, 9517-9528.	5.7	57
259	A nanocellulose–dye conjugate for multi-format optical pH-sensing. Chemical Communications, 2014, 50, 9493-9496.	2.2	43
260	A Cationic [60] Fullerene Derivative Reduces Invasion and Migration of HT-29 CRC Cells in Vitro at Dose Free of Significant Effects on Cell Survival. Nano-Micro Letters, 2014, 6, 163-168.	14.4	14
261	Substituting TiCl ₄ â€"Carbon Nanohorn Interfaces for Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1301577.	10.2	20
262	Classification Framework for Grapheneâ€Based Materials. Angewandte Chemie - International Edition, 2014, 53, 7714-7718.	7.2	369
263	Carbon Nanostructures for Nanomedicine: Opportunities and Challenges. Fullerenes Nanotubes and Carbon Nanostructures, 2014, 22, 190-195.	1.0	36
264	Cyclopropanation Reactions of Carbon Nanotubes. European Journal of Organic Chemistry, 2014, 2014, 4225-4229.	1.2	1
265	Covalent Carbon Nanotube Functionalization. , 2014, , 1-8.		10
266	Carbon nanotubes in neuroregeneration and repair. Advanced Drug Delivery Reviews, 2013, 65, 2034-2044.	6.6	137
267	Nanocrystalline cellulose–porphyrin hybrids: synthesis, supramolecular properties, and singlet-oxygen production. Chemical Communications, 2013, 49, 8525.	2.2	22
268	Dynamic Motion of Ruâ€Polyoxometalate Ions (POMs) on Functionalized Few‣ayer Graphene. Small, 2013, 9, 3922-3927.	5.2	22
269	Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Advanced Drug Delivery Reviews, 2013, 65, 1899-1920.	6.6	206
270	Peptide-based carbon nanotubes for mitochondrial targeting. Nanoscale, 2013, 5, 9110.	2.8	56

#	Article	IF	CITATIONS
271	Carbon Nanohorns as Integrative Materials for Efficient Dyeâ€Sensitized Solar Cells. Advanced Materials, 2013, 25, 6513-6518.	11.1	46
272	How do functionalized carbon nanotubes land on, bind to and pierce through model and plasma membranes. Nanoscale, 2013, 5, 10242.	2.8	61
273	Carbon Nanotubes in Tissue Engineering. Topics in Current Chemistry, 2013, 348, 181-204.	4.0	28
274	Catalysis-Material Crosstalk at Tailored Nano-Carbon Interfaces. Topics in Current Chemistry, 2013, 348, 139-180.	4.0	11
275	Knitting the Catalytic Pattern of Artificial Photosynthesis to a Hybrid Graphene Nanotexture. ACS Nano, 2013, 7, 811-817.	7.3	93
276	Asbestosâ€ike Pathogenicity of Long Carbon Nanotubes Alleviated by Chemical Functionalization. Angewandte Chemie - International Edition, 2013, 52, 2274-2278.	7.2	153
277	A Three-Level Luminescent Response in a Pyrene/Ferrocene Rotaxane. Organic Letters, 2013, 15, 84-87.	2.4	21
278	Nanomaterials for (Nano)medicine. ACS Medicinal Chemistry Letters, 2013, 4, 147-149.	1.3	105
279	Profiling the molecular mechanism of fullerene cytotoxicity on tumor cells by RNA-seq. Toxicology, 2013, 314, 183-192.	2.0	31
280	Carbon Nanotubes: Synthesis, Structure, Functionalization, and Characterization. Topics in Current Chemistry, 2013, 350, 65-109.	4.0	10
281	Ammonium and Guanidinium Dendron–Carbon Nanotubes by Amidation and Click Chemistry and their Use for siRNA Delivery. Small, 2013, 9, 3610-3619.	5.2	45
282	An Atomâ€Economical Approach to Functionalized Singleâ€Walled Carbon Nanotubes: Reaction with Disulfides. Angewandte Chemie - International Edition, 2013, 52, 6480-6483.	7.2	33
283	Organic Functionalization of Graphene in Dispersions. Accounts of Chemical Research, 2013, 46, 138-148.	7.6	229
284	Carbon Nanotubes Instruct Physiological Growth and Functionally Mature Syncytia: Nongenetic Engineering of Cardiac Myocytes. ACS Nano, 2013, 7, 5746-5756.	7.3	105
285	Rolling up a Graphene Sheet. ChemPhysChem, 2013, 14, 3447-3453.	1.0	49
286	Zn ^{II} â€Cyclen as a Supramolecular Probe for Tagging Thymidine Nucleosides on Carbon Nanotubes. European Journal of Organic Chemistry, 2013, 2013, 3685-3690.	1.2	4
287	A novel route towards high quality fullerene-pillared graphene. Carbon, 2013, 61, 313-320.	5.4	24
288	Sandwich ELISA Assay for the Quantitation of Palytoxin and Its Analogs in Natural Samples. Environmental Science & Environment	4.6	27

#	Article	IF	Citations
289	Functionalizing Carbon Nanotubes: An Indispensible Step towards Applications. ECS Journal of Solid State Science and Technology, 2013, 2, M3040-M3045.	0.9	29
290	Novel nanostructures based on the active interplay between nucleobases and carbon nanotubes. Supramolecular Chemistry, 2013, 25, 567-573.	1.5	6
291	Carbon Nanotube Scaffolds Instruct Human Dendritic Cells: Modulating Immune Responses by Contacts at the Nanoscale. Nano Letters, 2013, 13, 6098-6105.	4.5	54
292	Fullerene-Stoppered Bistable Rotaxanes. Topics in Current Chemistry, 2013, 348, 127-137.	4.0	2
293	Carbon nanotubes: a promise for nerve tissue engineering?. Nanotechnology Reviews, 2013, 2, 47-57.	2.6	36
294	An Atomâ€Economical Approach to Functionalized Singleâ€Walled Carbon Nanotubes: Reaction with Disulfides. Angewandte Chemie, 2013, 125, 6608-6611.	1.6	5
295	Adhesion to Carbon Nanotube Conductive Scaffolds Forces Action-Potential Appearance in Immature Rat Spinal Neurons. PLoS ONE, 2013, 8, e73621.	1.1	53
296	Functionalized Carbon Nanotubes in the Brain: Cellular Internalization and Neuroinflammatory Responses. PLoS ONE, 2013, 8, e80964.	1.1	89
297	Synthesis and Biological Properties of Fullerene-Containing Amino Acids and Peptides. Mini-Reviews in Medicinal Chemistry, 2012, 4, .	1.1	14
298	Production of large graphene sheets by exfoliation of graphite under high power ultrasound in the presence of tiopronin. Chemical Communications, 2012, 48, 12159.	2.2	37
299	Carbon Nanotubes: Artificial Nanomaterials to Engineer Single Neurons and Neuronal Networks. ACS Chemical Neuroscience, 2012, 3, 611-618.	1.7	103
300	Melting of Hydrogen Bonds in Uracil Derivatives Probed by Infrared Spectroscopy and ab Initio Molecular Dynamics. Journal of Physical Chemistry B, 2012, 116, 4626-4633.	1.2	8
301	Synthesis and Characterization of Highly Water-Soluble Dendrofulleropyrrolidine Bisadducts with DNA Binding Activity. Organic Letters, 2012, 14, 4450-4453.	2.4	8
302	Shaping the beating heart of artificial photosynthesis: oxygenic metal oxide nano-clusters. Energy and Environmental Science, 2012, 5, 5592.	15.6	93
303	A Molecular Shuttle Driven by Fullerene Radicalâ€Anion Recognition. Chemistry - A European Journal, 2012, 18, 14063-14068.	1.7	33
304	Spinal Cord Explants Use Carbon Nanotube Interfaces To Enhance Neurite Outgrowth and To Fortify Synaptic Inputs. ACS Nano, 2012, 6, 2041-2055.	7.3	127
305	Highly Sensitive Electrochemiluminescent Nanobiosensor for the Detection of Palytoxin. ACS Nano, 2012, 6, 7989-7997.	7.3	96
306	<i>In vivo</i> degradation of functionalized carbon nanotubes after stereotactic administration in the brain cortex. Nanomedicine, 2012, 7, 1485-1494.	1.7	104

#	Article	IF	Citations
307	Antibonding Plasmon Modes in Colloidal Gold Nanorod Clusters. Langmuir, 2012, 28, 8826-8833.	1.6	27
308	Targeting carbon nanotubes against cancer. Chemical Communications, 2012, 48, 3911.	2.2	248
309	Multiwalled Carbon Nanotubes Drive the Activity of Metal@oxide Core–Shell Catalysts in Modular Nanocomposites. Journal of the American Chemical Society, 2012, 134, 11760-11766.	6.6	107
310	A Simple Road for the Transformation of Few-Layer Graphene into MWNTs. Journal of the American Chemical Society, 2012, 134, 13310-13315.	6.6	58
311	Degree of Chemical Functionalization of Carbon Nanotubes Determines Tissue Distribution and Excretion Profile. Angewandte Chemie - International Edition, 2012, 51, 6389-6393.	7.2	109
312	Luminescent Blooming of Dendronic Carbon Nanotubes through Ionâ€Pairing Interactions with an Eu ^{III} Complex. Chemistry - A European Journal, 2012, 18, 5889-5897.	1.7	18
313	Carbon Nanotubes Promote Growth and Spontaneous Electrical Activity in Cultured Cardiac Myocytes. Nano Letters, 2012, 12, 1831-1838.	4.5	196
314	Multiple Hydrogen Bond Interactions in the Processing of Functionalized Multi-Walled Carbon Nanotubes. ACS Nano, 2012, 6, 23-31.	7.3	34
315	Carbon Nanotubes as Electrical Interfaces to Neurons. Fundamental Biomedical Technologies, 2012, , 187-207.	0.2	3
316	Study of a potential drug delivery system based on carbon nanoparticles: effects of fullerene derivatives in MCF7 mammary carcinoma cells. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	38
317	Carbon nanohorns functionalized with polyamidoamine dendrimers as efficient biocarrier materials for gene therapy. Carbon, 2012, 50, 2832-2844.	5.4	58
318	Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials, 2012, 33, 3334-3343.	5.7	224
319	Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale, 2011, 3, 2627.	2.8	110
320	Interfacing Strong Electron Acceptors with Single Wall Carbon Nanotubes. Journal of the American Chemical Society, 2011, 133, 4580-4586.	6.6	44
321	Antifungal Activity of Amphotericin B Conjugated to Carbon Nanotubes. ACS Nano, 2011, 5, 199-208.	7.3	114
322	Photophysics and transient nonlinear optical response of donorâ€"[60]fullerene hybrids. Journal of Materials Chemistry, 2011, 21, 2524.	6.7	29
323	Functionalised carbon nanotubes: high biocompatibility with lack of toxicity. International Journal of Nanotechnology, 2011, 8, 885.	0.1	14
324	Length-Dependent Retention of Carbon Nanotubes in the Pleural Space of Mice Initiates Sustained Inflammation and Progressive Fibrosis on the Parietal Pleura. American Journal of Pathology, 2011, 178, 2587-2600.	1.9	278

#	Article	IF	CITATIONS
325	Interfacing neurons with carbon nanotubes:. Progress in Brain Research, 2011, 194, 241-252.	0.9	26
326	Selective organic functionalization of graphene bulk or graphene edges. Chemical Communications, 2011, 47, 9330.	2.2	114
327	Artificial Photosynthesis Challenges: Water Oxidation at Nanostructured Interfaces. Topics in Current Chemistry, 2011, 303, 121-150.	4.0	34
328	Materials chemistry of fullerene C ₆₀ derivatives. Journal of Materials Chemistry, 2011, 21, 1305-1318.	6.7	159
329	Polyamine functionalized carbon nanotubes: synthesis, characterization, cytotoxicity and siRNA binding. Journal of Materials Chemistry, 2011, 21, 4850.	6.7	38
330	Oxygenic polyoxometalates: a new class of molecular propellers. Chemical Communications, 2011, 47, 1716.	2.2	47
331	Making carbon nanotubes biocompatible and biodegradable. Chemical Communications, 2011, 47, 10182.	2.2	323
332	Few-layer graphenes from ball-milling of graphite with melamine. Chemical Communications, 2011, 47, 10936.	2.2	299
333	Fred Wudl. Discovering new science through making new molecules. Journal of Materials Chemistry, 2011, 21, 1292-1294.	6.7	5
334	Charge Transfer Events in Semiconducting Single-Wall Carbon Nanotubes. Journal of the American Chemical Society, 2011, 133, 18696-18706.	6.6	28
335	Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale, 2011, 3, 4035.	2.8	263
336	Multiwalled Carbonâ€Nanotubeâ€Functionalized Microelectrode Arrays Fabricated by Microcontact Printing: Platform for Studying Chemical and Electrical Neuronal Signaling. Small, 2011, 7, 524-530.	5.2	39
337	Ballâ€Milling Modification of Singleâ€Walled Carbon Nanotubes: Purification, Cutting, and Functionalization. Small, 2011, 7, 665-674.	5.2	60
338	Antibody Covalent Immobilization on Carbon Nanotubes and Assessment of Antigen Binding. Small, 2011, 7, 2179-2187.	5.2	40
339	Cellular Uptake and Cytotoxic Impact of Chemically Functionalized and Polymerâ€Coated Carbon Nanotubes. Small, 2011, 7, 3230-3238.	5. 2	84
340	LDI and ESI MS as well as low energy CID of a selfâ€assembling nanorodâ€forming fullerene derivative. Journal of Mass Spectrometry, 2011, 46, 1108-1114.	0.7	1
341	Highly Conductive Redox Protein–Carbon Nanotube Complex for Biosensing Applications. Advanced Functional Materials, 2011, 21, 153-157.	7.8	15
342	Hyaluronan–Carbon Nanotube Derivatives: Synthesis, Conjugation with Model Drugs, and DOSY NMR Characterization. European Journal of Organic Chemistry, 2011, 2011, 5617-5625.	1.2	12

#	Article	IF	Citations
343	Tailored Functionalization of Carbon Nanotubes for Electrocatalytic Water Splitting and Sustainable Energy Applications. ChemSusChem, 2011, 4, 1447-1451.	3.6	64
344	Formation of Efficient Catalytic Silver Nanoparticles on Carbon Nanotubes by Adenine Functionalization. Angewandte Chemie - International Edition, 2011, 50, 9893-9897.	7.2	51
345	Oneâ€Pot Triple Functionalization of Carbon Nanotubes. Chemistry - A European Journal, 2011, 17, 3222-3227.	1.7	52
346	Carbon Nanotube–Nucleobase Hybrids: Nanorings from Uracilâ€Modified Singleâ€Walled Carbon Nanotubes. Chemistry - A European Journal, 2011, 17, 6772-6780.	1.7	41
347	Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10952-10957.	3.3	217
348	Carbon Nanotube Scaffolds Tune Synaptic Strength in Cultured Neural Circuits: Novel Frontiers in Nanomaterial–Tissue Interactions. Journal of Neuroscience, 2011, 31, 12945-12953.	1.7	142
349	Dendron-functionalized multiwalled carbon nanotubes incorporating polyoxometalates for water-splitting catalysis. Pure and Applied Chemistry, 2011, 83, 1529-1542.	0.9	23
350	Biomedical Applications I. , 2011, , 23-45.		0
351	Enhanced anticancer activity of multi-walled carbon nanotube–methotrexate conjugates using cleavable linkers. Chemical Communications, 2010, 46, 1494-1496.	2.2	131
352	Facile Synthesis of Highly Stable Tetraazaheptacene and Tetraazaoctacene Dyes. Chemistry - an Asian Journal, 2010, 5, 482-485.	1.7	65
353	Fullerene Unsymmetrical Bisâ€Adducts as Models for Novel Peptidomimetics. European Journal of Organic Chemistry, 2010, 2010, 476-483.	1.2	19
354	Synthesis of Fullereneâ€Stoppered Rotaxanes Bearing Ferrocene Groups on the Macrocycle. European Journal of Organic Chemistry, 2010, 2010, 1324-1332.	1.2	20
355	Functionalized Carbon Nanotubes for Probing and Modulating Molecular Functions. Chemistry and Biology, 2010, 17, 107-115.	6.2	104
356	Potentiometric titration as a straightforward method to assess the number of functional groups on shortened carbon nanotubes. Carbon, 2010, 48, 2447-2454.	5.4	48
357	Organic functionalization of carbon nanostructures via 1,3â€dipolar cycloadditions. Physica Status Solidi (B): Basic Research, 2010, 247, 2645-2648.	0.7	9
358	Neurons Are Able to Internalize Soluble Carbon Nanotubes: New Opportunities or Old Risks?. Small, 2010, 6, 2630-2633.	5.2	30
359	Controlled nanotube reactions. Nature, 2010, 465, 172-173.	13.7	44
360	Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces. Nature Chemistry, 2010, 2, 826-831.	6.6	459

#	Article	IF	CITATIONS
361	Complement monitoring of carbon nanotubes. Nature Nanotechnology, 2010, 5, 382-383.	15.6	13
362	Synthesis and Spectroscopic Properties of Porphyrin Derivatives of C60. Molecular Crystals and Liquid Crystals, 2010, 521, 253-264.	0.4	3
363	Photoluminescence and Electro-Optic Kerr Effect in Porphyrin Derivatives of C60. Molecular Crystals and Liquid Crystals, 2010, 522, 191/[491]-202/[502].	0.4	0
364	Functionalization of carbon nanotubes for applications in materials science and nanomedicine. Pure and Applied Chemistry, 2010, 82, 853-861.	0.9	18
365	Enhanced cellular internalization and gene silencing with a series of cationic dendronâ€multiwalled carbon nanotube:siRNA complexes. FASEB Journal, 2010, 24, 4354-4365.	0.2	71
366	Two-Dimensional Diffusion-Ordered NMR Spectroscopy as a Tool for Monitoring Functionalized Carbon Nanotube Purification and Composition. ACS Nano, 2010, 4, 2051-2058.	7.3	25
367	Gold Dendrimer Encapsulated Nanoparticles as Labeling Agents for Multiwalled Carbon Nanotubes. ACS Nano, 2010, 4, 905-912.	7.3	59
368	Light-Induced Selective Deposition of Au Nanoparticles on Single-Wall Carbon Nanotubes. ACS Nano, 2010, 4, 6105-6113.	7.3	32
369	Functionalization of Graphene <i>via</i> 1,3-Dipolar Cycloaddition. ACS Nano, 2010, 4, 3527-3533.	7.3	407
370	The alluring potential of functionalized carbon nanotubes in drug discovery. Expert Opinion on Drug Discovery, 2010, 5, 691-707.	2.5	53
371	Versatile microwave-induced reactions for the multiple functionalization of carbon nanotubes. Organic and Biomolecular Chemistry, 2010, 8, 1936.	1.5	26
372	Phthalocyanineâ^'Pyrene Conjugates: A Powerful Approach toward Carbon Nanotube Solar Cells. Journal of the American Chemical Society, 2010, 132, 16202-16211.	6.6	131
373	Multimode assembly of phenanthroline nanowires decorated with gold nanoparticles. Chemical Communications, 2010, 46, 9122.	2.2	13
374	Efficient receptor-independent intracellular translocation of aptamers mediated by conjugation to carbon nanotubes. Chemical Communications, 2010, 46, 7379.	2.2	41
375	Mechanically interlocked molecular architectures functionalised with fullerenes. Chemical Communications, 2010, 46, 9089.	2.2	44
376	Fullerenes Covalently Anchored On Si(100): An Experimental Study. , 2009, , .		0
377	Selective Formation of Biâ€Component Arrays Through Hâ€Bonding of Multivalent Molecular Modules. Advanced Functional Materials, 2009, 19, 1207-1214.	7.8	26
378	Nanomaterials for Neural Interfaces. Advanced Materials, 2009, 21, 3970-4004.	11.1	460

#	Article	IF	Citations
379	Carbon Nanotubes Carrying Cellâ€Adhesion Peptides do not Interfere with Neuronal Functionality. Advanced Materials, 2009, 21, 2903-2908.	11.1	67
380	A Carbon Nanoâ€Onion–Ferrocene Donor–Acceptor System: Synthesis, Characterization and Properties. Chemistry - A European Journal, 2009, 15, 4419-4427.	1.7	58
381	Microwaveâ€Assisted Functionalization of Carbon Nanostructures in Ionic Liquids. Chemistry - A European Journal, 2009, 15, 12837-12845.	1.7	47
382	Antitumor Activity and Prolonged Survival by Carbonâ€Nanotubeâ€Mediated Therapeutic siRNA Silencing in a Human Lung Xenograft Model. Small, 2009, 5, 1176-1185.	5.2	153
383	Manipulating single-wall carbon nanotubes by chemical doping and charge transfer with perylene dyes. Nature Chemistry, 2009, 1, 243-249.	6.6	215
384	Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nature Nanotechnology, 2009, 4, 126-133.	15.6	473
385	Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nature Nanotechnology, 2009, 4, 627-633.	15.6	738
386	Multifunctional hybrid materials composed of [60]fullerene-based functionalized-single-walled carbon nanotubes. Carbon, 2009, 47, 578-588.	5.4	73
387	Cap removal and shortening of double-walled and very-thin multi-walled carbon nanotubes under mild oxidative conditions. Carbon, 2009, 47, 675-682.	5.4	46
388	Supramolecular aggregation of functionalized carbon nanotubes. Chemical Communications, 2009, , 6005.	2.2	41
389	Carbon Nanotubes and Microwaves: Interactions, Responses, and Applications. ACS Nano, 2009, 3, 3819-3824.	7.3	270
390	Synthesis and Characterization of a Carbon Nanotubeâ^'Dendron Series for Efficient siRNA Delivery. Journal of the American Chemical Society, 2009, 131, 9843-9848.	6.6	168
391	Synthesis and Characterization of Nucleobaseâ^'Carbon Nanotube Hybrids. Journal of the American Chemical Society, 2009, 131, 13555-13562.	6.6	71
392	Organic functionalisation and characterisation of single-walled carbon nanotubes. Chemical Society Reviews, 2009, 38, 2214.	18.7	557
393	Disaggregation of single-walled carbon nanotubes (SWNTs) promoted by the ionic liquid-based surfactant1-hexadecyl-3-vinyl-imidazolium bromide in aqueous solution. Soft Matter, 2009, 5, 62-66.	1.2	52
394	Electrostatic layer-by-layer construction and characterization of photoelectrochemical solar cells based on water soluble polythiophenes and carbon nanotubes. Journal of Materials Chemistry, 2009, 19, 4319.	6.7	39
395	Metal-free, retro-cycloaddition of fulleropyrrolidines in ionic liquids under microwave irradiation. Chemical Communications, 2009, , 3940.	2.2	26
396	Effect of carbon nanotube surface modification on dispersion and structural properties of electrospun fibers. Applied Physics Letters, 2009, 95, .	1.5	54

#	Article	IF	Citations
397	Diffusion-Ordered NMR Spectroscopy in the Structural Characterization of Functionalized Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 9086-9093.	6.6	37
398	Two-Dimensional Vibrational Spectroscopy of Rotaxane-Based Molecular Machines. Accounts of Chemical Research, 2009, 42, 1462-1469.	7.6	39
399	Engineering of Supramolecular H-Bonded Nanopolygons via Self-Assembly of Programmed Molecular Modules. Journal of the American Chemical Society, 2009, 131, 509-520.	6.6	105
400	Synthesis of Multifunctional Composite Microgels <i>via</i> of Ni Growth on pNIPAM-Coated Au Nanoparticles. ACS Nano, 2009, 3, 3184-3190.	7.3	76
401	Efficient functionalization of carbon nanohorns via microwave irradiation. Journal of Materials Chemistry, 2009, 19, 4407.	6.7	46
402	< > n Vitro< l> Behavior of Multifunctionalized Fullerene-Warfarin Conjugates. Journal of Nanoscience and Nanotechnology, 2009, 9, 6210-6221.	0.9	9
403	Interactions Between Cultured Neurons and Carbon Nanotubes: A Nanoneuroscience Vignette. Journal of Nanoneuroscience, 2009, 1, 10-16.	0.5	45
404	Functionalization of Si(100) with ferrocene derivatives via "click―chemistry. Electrochimica Acta, 2008, 53, 3903-3909.	2.6	66
405	Carbonâ€Nanotube Shape and Individualization Critical for Renal Excretion. Small, 2008, 4, 1130-1132.	5.2	172
406	Synthesis of dendrimer–carbon nanotube conjugates. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1402-1407.	0.8	12
407	Novel Hybrid Materials Consisting of Regioregular Poly(3â€octylthiophene)s Covalently Attached to Singleâ€Wall Carbon Nanotubes. Chemistry - A European Journal, 2008, 14, 8715-8724.	1.7	32
408	Improving Photocurrent Generation: Supramolecularly and Covalently Functionalized Singleâ€Wall Carbon Nanotubes–Polymer/Porphyrin Donor–Acceptor Nanohybrids. Chemistry - A European Journal, 2008, 14, 8837-8846.	1.7	65
409	Trimodular Engineering of Linear Supramolecular Miniatures on Ag(111) Surfaces Controlled by Complementary Triple Hydrogen Bonds. Angewandte Chemie - International Edition, 2008, 47, 7726-7730.	7.2	76
410	Dynamic Imaging of Functionalized Multiâ€Walled Carbon Nanotube Systemic Circulation and Urinary Excretion. Advanced Materials, 2008, 20, 225-230.	11.1	196
411	Interfacing Functionalized Carbon Nanohorns with Primary Phagocytic Cells. Advanced Materials, 2008, 20, 2421-2426.	11.1	48
412	Adsorption of carbon nanotubes on active carbon microparticles. Carbon, 2008, 46, 1091-1095.	5.4	41
413	Macromolecular properties of cepacian in water and in dimethylsulfoxide. Carbohydrate Research, 2008, 343, 81-89.	1.1	16
414	Voltammetric quantum charging capacitance behaviour of functionalised carbon nanotubes in solution. Electrochimica Acta, 2008, 53, 4059-4064.	2.6	14

#	Article	IF	CITATIONS
415	Core level photoemission of rotaxanes: A summary on binding energies. Journal of Electron Spectroscopy and Related Phenomena, 2008, 165, 42-45.	0.8	6
416	Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine, 2008, 3, 149-161.	1.7	149
417	Microwave-Induced Multiple Functionalization of Carbon Nanotubes. Journal of the American Chemical Society, 2008, 130, 8094-8100.	6.6	157
418	Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opinion on Drug Delivery, 2008, 5, 331-342.	2.4	147
419	Hype around nanotubes creates unrealistic hopes. Nature, 2008, 453, 280-280.	13.7	9
420	Functionalized Carbon Nanotubes in Drug Design and Discovery. Accounts of Chemical Research, 2008, 41, 60-68.	7.6	994
421	Biomedical Applications of Functionalised Carbon Nanotubes. Carbon Materials, 2008, , 23-50.	0.2	23
422	Multipurpose Organically Modified Carbon Nanotubes: From Functionalization to Nanotube Composites. Journal of the American Chemical Society, 2008, 130, 8733-8740.	6.6	209
423	Charge Transfer Reactions along a Supramolecular Redox Gradient. Journal of the American Chemical Society, 2008, 130, 14938-14939.	6.6	46
424	Redox-active Si(100) surfaces covalently functionalised with [60]fullerene conjugates: new hybrid materials for molecular-based devices. Journal of Materials Chemistry, 2008, 18, 1570.	6.7	33
425	S10.21 Quinones inhibit the mitochondrial permeability transition pore at two sites. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S63.	0.5	0
426	Nanomaterial/neuronal hybrid system for functional recovery of the CNS. Drug Discovery Today: Disease Models, 2008, 5, 37-43.	1.2	13
427	Efficient Modulation of the Third Order Nonlinear Optical Properties of Fullerene Derivatives. Journal of the American Chemical Society, 2008, 130, 1534-1535.	6.6	59
428	Recent Advances in the Covalent Functionalization of Carbon Nanotubes. Molecular Crystals and Liquid Crystals, 2008, 483, 21-32.	0.4	21
429	Immunological profile of a Plasmodium vivax AMA-1 N-terminus peptide-carbon nanotube conjugate in an infected Plasmodium berghei mouse model. Vaccine, 2008, 26, 5864-5873.	1.7	60
430	Carbon nanotube cell translocation and delivery of nucleic acidsin vitro and in vivo. Journal of Materials Chemistry, 2008, 18, 17-22.	6.7	71
431	Multiwalled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chemical Communications, 2008, , 459-461.	2.2	327
432	Facile Decoration of Functionalized Single-Wall Carbon Nanotubes with Phthalocyanines via "Click Chemistry― Journal of the American Chemical Society, 2008, 130, 11503-11509.	6.6	308

#	Article	IF	Citations
433	Singling out the Electrochemistry of Individual Single-Walled Carbon Nanotubes in Solution. Journal of the American Chemical Society, 2008, 130, 7393-7399.	6.6	99
434	Photophysical, electrochemical, and mesomorphic properties of a liquid-crystalline [60]fullerene–peralkylated ferrocene dyad. Journal of Materials Chemistry, 2008, 18, 1504.	6.7	32
435	Spectroscopic Characterization of Photolytically Generated Radical Ion Pairs in Single-Wall Carbon Nanotubes Bearing Surface-Immobilized Tetrathiafulvalenes. Journal of the American Chemical Society, 2008, 130, 66-73.	6.6	125
436	Pre-programmed bicomponent porous networks at the solid–liquid interface: the low concentration regime. Chemical Communications, 2008, , 5289.	2.2	69
437	Theme issue: carbon nanostructures. Journal of Materials Chemistry, 2008, 18, 1415.	6.7	4
438	Pyrene-tetrathiafulvalene supramolecular assembly with different types of carbon nanotubes. Journal of Materials Chemistry, 2008, 18, 1498.	6.7	63
439	Optical Characterization of Thiolate Self-Assembled Monolayers on Au(111). Journal of Physical Chemistry C, 2008, 112, 3899-3906.	1.5	70
440	Covalent Assembly and Micropatterning of Functionalized Multiwalled Carbon Nanotubes to Monolayer-Modified Si(111) Surfaces. Langmuir, 2008, 24, 6595-6602.	1.6	54
441	Immobilization of Oligoquinoline Chains on Single-Wall Carbon Nanotubes and Their Optical Behavior. Macromolecules, 2008, 41, 1825-1830.	2.2	27
442	Interfacing Neurons with Carbon Nanotubes: Electrical Signal Transfer and Synaptic Stimulation in Cultured Brain Circuits. Journal of Neuroscience, 2007, 27, 6931-6936.	1.7	329
443	One-step electrospun nanofiber-based composite ropes. Applied Physics Letters, 2007, 90, 083108.	1.5	39
444	Electronâ€Electron Bremsstrahlung Emission and the Inference of Electron Flux Spectra in Solar Flares. Astrophysical Journal, 2007, 670, 857-861.	1.6	29
445	Synthesis, Characterization, and Photoinduced Electron Transfer in Functionalized Single Wall Carbon Nanohorns. Journal of the American Chemical Society, 2007, 129, 3938-3945.	6.6	166
446	Dispersion of Single-Walled Carbon Nanotubes with an Extended Diazapentacene Derivative. Journal of Physical Chemistry A, 2007, 111, 12669-12673.	1.1	53
447	Synthesis, characterization and photophysical properties of a SWNT-phthalocyanine hybrid. Chemical Communications, 2007, , 2950.	2.2	86
448	Decorating carbon nanotubes with metal or semiconductor nanoparticles. Journal of Materials Chemistry, 2007, 17, 2679.	6.7	622
449	Reversible Microwave-Assisted Cycloaddition of Aziridines to Carbon Nanotubes. Journal of the American Chemical Society, 2007, 129, 14580-14581.	6.6	115
450	Multifunctionalised cationic fullerene adducts for gene transfer: design, synthesis and DNA complexation. Chemical Communications, 2007, , 3762.	2.2	51

#	Article	IF	Citations
451	Stabilization of fulleropyrrolidine N-oxides through intrarotaxane hydrogen bonding. Chemical Communications, 2007, , 1412.	2.2	35
452	An electrochemically driven molecular shuttle controlled and monitored by C60. Chemical Communications, 2007, , 1945.	2.2	40
453	Growth and Characterization of Films Containing Fullerenes and Water Soluble Porphyrins for Solar Energy Conversion Applications. Journal of the American Chemical Society, 2007, 129, 3148-3156.	6.6	58
454	Single-wall carbon nanotube porphyrin nanoconjugates. Journal of Porphyrins and Phthalocyanines, 2007, 11, 442-447.	0.4	15
455	Tuning Electron Transfer through Translational Motion in Molecular Shuttles. Angewandte Chemie - International Edition, 2007, 46, 3521-3525.	7.2	82
456	Fullerenes: Multitask Components in Molecular Machinery. Angewandte Chemie - International Edition, 2007, 46, 8120-8126.	7.2	125
457	Wet Adsorption of a Luminescent Eu ^{III} complex on Carbon Nanotubes Sidewalls. Advanced Functional Materials, 2007, 17, 2975-2982.	7.8	71
458	Intracellular Trafficking of Carbon Nanotubes by Confocal Laser Scanning Microscopy. Advanced Materials, 2007, 19, 1480-1484.	11.1	70
459	Tensile Mechanics of Electrospun Multiwalled Nanotube/Poly(methyl methacrylate) Nanofibers. Advanced Materials, 2007, 19, 1228-1233.	11.1	115
460	Nonlinear Optical Properties of Ferrocene- and Porphyrin–[60]Fullerene Dyads. ChemPhysChem, 2007, 8, 1056-1064.	1.0	64
461	Waterâ€Soluble Carbon Nanotubes by Redox Radical Polymerization. Macromolecular Rapid Communications, 2007, 28, 1553-1558.	2.0	35
462	Spectroscopic changes induced by sonication of porphyrin–carbon nanotube composites in chlorinated solvents. Carbon, 2007, 45, 2665-2671.	5.4	26
463	Cell-penetrating CNTs for delivery of therapeutics. Nano Today, 2007, 2, 38-43.	6.2	238
464	Optical spectra and covalent chemistry of fulleropyrrolidines. International Journal of Quantum Chemistry, 2007, 107, 2787-2802.	1.0	13
465	Separation of Metallic and Semiconducting Singleâ€Walled Carbon Nanotubes via Covalent Functionalization. Small, 2007, 3, 1672-1676.	5.2	94
466	Sonication of porphyrin–nanotube composites: a cautionary tale. Physica Status Solidi (B): Basic Research, 2007, 244, 4227-4230.	0.7	7
467	Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nature Nanotechnology, 2007, 2, 108-113.	15.6	1,035
468	Chapter 7. Fullerenes for Material Science. RSC Nanoscience and Nanotechnology, 2007, , 191-220.	0.2	5

#	Article	IF	CITATIONS
469	[60]Fullereneâ^'Pyrrolidine-N-oxides. Journal of Organic Chemistry, 2006, 71, 2014-2020.	1.7	25
470	Electronically interacting single wall carbon nanotube–porphyrin nanohybrids. Journal of Materials Chemistry, 2006, 16, 62-65.	6.7	127
471	Carbon nanotube-functionalized silicon surfaces with efficient redox communication. Chemical Communications, 2006, , 4536.	2.2	22
472	Photophysical and electrochemical properties of a fullerene-stoppered rotaxane. Photochemical and Photobiological Sciences, 2006 , 5 , 1173 .	1.6	20
473	250 good reasons to read Journal of Materials Chemistry Journal of Materials Chemistry, 2006, 16, 2865.	6.7	0
474	Functionalisation of carbon nanohorns. Chemical Communications, 2006, , 2129.	2.2	85
475	Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3357-3362.	3.3	995
476	Synthesis and applications of amphiphilic fulleropyrrolidine derivatives. Organic and Biomolecular Chemistry, 2006, 4, 1629.	1.5	52
477	Dendrimer-Functionalized Single-Wall Carbon Nanotubes:Â Synthesis, Characterization, and Photoinduced Electron Transfer. Journal of the American Chemical Society, 2006, 128, 12544-12552.	6.6	254
478	Interactions in Single Wall Carbon Nanotubes/Pyrene/Porphyrin Nanohybrids. Journal of the American Chemical Society, 2006, 128, 11222-11231.	6.6	320
479	Functionalized Carbon Nanotubes Are Non-Cytotoxic and Preserve the Functionality of Primary Immune Cells. Nano Letters, 2006, 6, 1522-1528.	4.5	652
480	Design and activity of cationic fullerene derivatives as inhibitors of acetylcholinesterase. Organic and Biomolecular Chemistry, 2006, 4, 2556.	1.5	55
481	A dendritic fullerene–porphyrin dyad. Photochemical and Photobiological Sciences, 2006, 5, 1137-1141.	1.6	17
482	Electronic and Geometric Characterization of thel-Cysteine Paired-Row Phase on Au(110). Langmuir, 2006, 22, 11193-11198.	1.6	40
483	Clayâ°'Fulleropyrrolidine Nanocomposites. Journal of the American Chemical Society, 2006, 128, 6154-6163.	6.6	46
484	Liquid-Crystalline Bisadducts of [60] Fullerene. Journal of Organic Chemistry, 2006, 71, 7603-7610.	1.7	33
485	Functionalized Carbon Nanotubes Are Non-Cytotoxic and Preserve the Functionality of Primary Immune Cells. Nano Letters, 2006, 6, 3003-3003.	4.5	34
486	Element-Specific Probe of the Magnetic and Electronic Properties of Dyincar-Fullerenes. Journal of Physical Chemistry B, 2006, 110, 7289-7295.	1.2	21

#	Article	IF	CITATIONS
487	Microscopic and Spectroscopic Characterization of Paintbrush-like Single-walled Carbon Nanotubes. Nano Letters, 2006, 6, 1408-1414.	4.5	95
488	CNTâ^'CdTe Versatile Donorâ^'Acceptor Nanohybrids. Journal of the American Chemical Society, 2006, 128, 2315-2323.	6.6	219
489	Reverse Shuttling in a Fullerene-Stoppered Rotaxane. Organic Letters, 2006, 8, 5173-5176.	2.4	40
490	Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 404-412.	1.4	477
491	Double functionalisation of carbon nanotubes for multimodal drug delivery. Chemical Communications, 2006, , 1182.	2.2	374
492	Fullerenes and Their Derivatives. , 2006, , .		5
493	Functionalization of CNT: synthesis and applications in photovoltaics and biology. Journal of Physical Organic Chemistry, 2006, 19, 531-539.	0.9	79
494	Fullerene photoactive dyads assembled byÂaxial coordination with metals. Comptes Rendus Chimie, 2006, 9, 944-951.	0.2	38
495	Carbon nanotubes on HPLC silica microspheres. Carbon, 2006, 44, 1609-1613.	5.4	55
496	Structural and electrochemical characterization of fullerene-based surfaces of C60 mono- or bis-adducts grafted onto self-assembled monolayers. Carbon, 2006, 44, 3014-3021.	5.4	9
497	X-ray photoemission spectroscopy study on the effects of functionalization in fulleropyrrolidine and pyrrolidine derivatives. Carbon, 2006, 44, 2896-2903.	5.4	41
498	Synthesis of a soluble fullerene–rotaxane incorporating a furamide template. Tetrahedron, 2006, 62, 2003-2007.	1.0	24
499	Self-organization of amphiphilic [60]fullerene derivatives in nanorod-like morphologies. Tetrahedron, 2006, 62, 2110-2114.	1.0	24
500	Chemistry of Carbon Nanotubes. Chemical Reviews, 2006, 106, 1105-1136.	23.0	3,905
501	Carbon nanotubes as nanomedicines: From toxicology to pharmacologyâ ⁻ †. Advanced Drug Delivery Reviews, 2006, 58, 1460-1470.	6.6	749
502	Versatile Coordination Chemistry towards Multifunctional Carbon Nanotube Nanohybrids. Chemistry - A European Journal, 2006, 12, 2152-2161.	1.7	73
503	Supramolecular Hybrids of [60]Fullerene and Single-Wall Carbon Nanotubes. Chemistry - A European Journal, 2006, 12, 3975-3983.	1.7	82
504	Control over Electron Transfer in Tetrathiafulvalene-Modified Single-Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2006, 45, 4478-4482.	7.2	91

#	Article	IF	Citations
505	Luminescence of Functionalized Carbon Nanotubes as a Tool to Monitor Bundle Formation and Dissociation in Water: The Effect of Plasmid-DNA Complexation. Advanced Functional Materials, 2006, 16, 1839-1846.	7.8	55
506	Supramolecular Assemblies of Different Carbon Nanotubes for Photoconversion Processes. Advanced Materials, 2006, 18, 2264-2269.	11.1	108
507	Anti-Inflammatory and Anti-Oxidant Activity of a New Class of Phenyl- Pyrazolone Derivatives. Current Drug Discovery Technologies, 2006, 3, 67-73.	0.6	4
508	Functionalization and applications of [60]fullerene., 2006,, 155-189.		16
509	Fullerenes and Their Derivatives. Advanced Materials and Technologies, 2006, , 1-39.	0.4	1
510	Functionalized Carbon Nanotubes: Towards the Delivery of Therapeutic Molecules. Journal of Biomedical Nanotechnology, 2005, 1, 133-142.	0.5	38
511	Nanosized inorganic/organic composites for solar energy conversion. Journal of Materials Chemistry, 2005, 15, 114.	6.7	60
512	Soluble carbon nanotube ensembles for light-induced electron transfer interactions. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 29, 546-550.	1.3	31
513	Separation and purification of functionalised water-soluble multi-walled carbon nanotubes by flow field-flow fractionation. Carbon, 2005, 43, 1984-1989.	5.4	35
514	Applications of carbon nanotubes in drug delivery. Current Opinion in Chemical Biology, 2005, 9, 674-679.	2.8	1,705
515	Protein surface recognition and proteomimetics: mimics of protein surface structure and function. Current Opinion in Chemical Biology, 2005, 9, 632-638.	2.8	122
516	Multifrequency EPR study and DFT calculations of a C60 bisadduct anion. Chemical Physics Letters, 2005, 412, 470-476.	1.2	5
517	Self-assembled monolayers of a novel diacetylene on gold. Applied Surface Science, 2005, 246, 403-408.	3.1	7
518	Binding and Condensation of Plasmid DNA onto Functionalized Carbon Nanotubes:Â Toward the Construction of Nanotube-Based Gene Delivery Vectors. Journal of the American Chemical Society, 2005, 127, 4388-4396.	6.6	726
519	Synthesis and biological evaluation of new phenidone analogues as potential dual cyclooxygenase (COX-1 and COX-2) and human lipoxygenase (5-LOX) inhibitors. Il Farmaco, 2005, 60, 7-13.	0.9	9
520	Synthesis and biological evaluation of a new class of acyl derivatives of 3-amino-1-phenyl-4,5-dihydro-1H-pyrazol-5-one as potential dual cyclooxygenase (COX-1 and COX-2) and human lipoxygenase (5-LOX) inhibitors. Il Farmaco, 2005, 60, 327-332.	0.9	17
521	The Associative Properties of Some Amphiphilic Fullerene Derivatives. European Journal of Organic Chemistry, 2005, 2005, 1884-1891.	1.2	17
522	Single-Wall Carbon Nanotubes as Integrative Building Blocks for Solar-Energy Conversion. Angewandte Chemie - International Edition, 2005, 44, 2015-2018.	7.2	232

#	Article	IF	Citations
523	Targeted Delivery of Amphotericin B to Cells by Using Functionalized Carbon Nanotubes. Angewandte Chemie - International Edition, 2005, 44, 6358-6362.	7.2	592
524	Novel Photoactive Single-Walled Carbon Nanotube-Porphyrin Polymer Wraps: Efficient and Long-Lived Intracomplex Charge Separation. Advanced Materials, 2005, 17, 871-875.	11.1	207
525	Ordering Fullerene Materials at Nanometer Dimensions. ChemInform, 2005, 36, no.	0.1	0
526	Synthesis and Biological Evaluation of New Phenidone Analogues as Potential Dual Cyclooxygenase (COX-1 and COX-2) and Human Lipoxygenase (5-LOX) Inhibitors ChemInform, 2005, 36, no.	0.1	0
527	Organofullerene Materials. ChemInform, 2005, 36, no.	0.1	O
528	Anti-HIV properties of cationic fullerene derivatives. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3615-3618.	1.0	133
529	Dispersable Carbon Nanotube/Gold Nanohybrids: Evidence for Strong Electronic Interactions. Small, 2005, 1, 527-530.	5.2	100
530	Soluble Carbon Nanotubes for Functional Devices. ECS Meeting Abstracts, 2005, , .	0.0	0
531	Oligonucleotides and Oligonucleotide Conjugates: A New Approach for Cancer Treatment. Current Medicinal Chemistry, 2005, 12, 71-88.	1.2	60
532	Carbon Nanotubes: On the Road to Deliver. Current Drug Delivery, 2005, 2, 253-259.	0.8	53
533	Thermal Stripping of Supramolecular Structures: C60 Nanorods. Journal of Nanoscience and Nanotechnology, 2005, 5, 198-203.	0.9	O
534	Biomedical applications of functionalised carbon nanotubes. Chemical Communications, 2005, , 571.	2.2	953
535	Functional Single-Wall Carbon Nanotube NanohybridsAssociating SWNTs with Water-Soluble Enzyme Model Systems. Journal of the American Chemical Society, 2005, 127, 9830-9838.	6.6	186
536	Multiwalled carbon nanotubes in donor–acceptor nanohybrids—towards long-lived electron transfer products. Chemical Communications, 2005, , 2038-2040.	2.2	76
537	Isolation and Characterization of Nine Tris-adducts of N-Methylfulleropyrrolidine Derivatives. Journal of Organic Chemistry, 2005, 70, 4706-4713.	1.7	46
538	Combining Single Wall Carbon Nanotubes and Photoactive Polymers for Photoconversion. Journal of the American Chemical Society, 2005, 127, 10051-10057.	6.6	130
539	Cationic Carbon Nanotubes Bind to CpG Oligodeoxynucleotides and Enhance Their Immunostimulatory Properties. Journal of the American Chemical Society, 2005, 127, 58-59.	6.6	269
540	Fullerene non-linear excited state absorption induced by gold nanoparticles light harvesting. Synthetic Metals, 2005, 155, 283-286.	2.1	30

#	Article	IF	CITATIONS
541	Carbon Nanotubes in Electron Donorâ^'Acceptor Nanocomposites. Accounts of Chemical Research, 2005, 38, 871-878.	7.6	453
542	Carbon Nanotube Substrates Boost Neuronal Electrical Signaling. Nano Letters, 2005, 5, 1107-1110.	4.5	614
543	Carbon-based materials: From fullerene nanostructures to functionalized carbon nanotubes. Pure and Applied Chemistry, 2005, 77, 1675-1684.	0.9	39
544	Nanoscale Organization of a Phthalocyanineâ^Fullerene System:  Remarkable Stabilization of Charges in Photoactive 1-D Nanotubules. Journal of the American Chemical Society, 2005, 127, 5811-5813.	6.6	145
545	Ordering Fullerene Materials at Nanometer Dimensions. Accounts of Chemical Research, 2005, 38, 38-43.	7.6	177
546	Arachidonic Acid Released by Phospholipase A2 Activation Triggers Ca2+-dependent Apoptosis through the Mitochondrial Pathway. Journal of Biological Chemistry, 2004, 279, 25219-25225.	1.6	151
547	Incorporation of Fullerene Derivatives into Smectite Clays:Â A New Family of Organicâ^Inorganic Nanocomposites. Journal of the American Chemical Society, 2004, 126, 8561-8568.	6.6	47
548	Functionalized Carbon Nanotubes for Plasmid DNA Gene Delivery. Angewandte Chemie - International Edition, 2004, 43, 5242-5246.	7.2	977
549	Integrating Single-Wall Carbon Nanotubes into Donor-Acceptor Nanohybrids. Angewandte Chemie - International Edition, 2004, 43, 5526-5530.	7.2	244
550	Modulating Charge-Transfer Interactions in Topologically Different Porphyrinâ€"C60 Dyads ChemInform, 2004, 35, no.	0.1	0
551	Synthesis and anti-HIV Properties of New Water-Soluble Bis-functionalized [60] fullerene Derivatives ChemInform, 2004, 35, no.	0.1	0
552	Fullerene Derivatives: An Attractive Tool for Biological Applications. ChemInform, 2004, 35, no.	0.1	1
553	Supramolecular Organized Structures of Fullerene-Based Materials and Organic Functionalization of Carbon Nanotubes. ChemInform, 2004, 35, no.	0.1	0
554	Langmuir-ShÃfer Transfer of Fullerenes and Porphyrins: Formation, Deposition, and Application of Versatile Films. Chemistry - A European Journal, 2004, 10, 6523-6530.	1.7	39
555	Time-resolved EPR study of fullerene C60 adducts at 240 GHz. Chemical Physics Letters, 2004, 398, 228-234.	1.2	20
556	Scanning probe microscopy and spectroscopy of carbon nanorods grown by self assembly. Carbon, 2004, 42, 953-960.	5.4	16
557	Electrostatic interactions by design. Versatile methodology towards multifunctional assemblies/nanostructured electrodes. Chemical Communications, 2004, , 2517.	2.2	67
558	Multicomponent redox gradients on photoactive electrode surfacesElectronic supplementary information (ESI) available: experimental section. See http://www.rsc.org/suppdata/cc/b4/b400027g/. Chemical Communications, 2004, , 726.	2.2	54

#	Article	IF	CITATIONS
559	Ringâ^'Ribbon Transition and Parallel Alignment in SWNT Films on Polyelectrolytes. Journal of Physical Chemistry B, 2004, 108, 8770-8772.	1.2	17
560	Functionalised single wall carbon nanotubes/polypyrrole composites for the preparation of amperometric glucose biosensors. Journal of Materials Chemistry, 2004, 14, 807-810.	6.7	89
561	Liquid-crystalline fullerene–ferrocene dyads. Journal of Materials Chemistry, 2004, 14, 1266-1272.	6.7	90
562	Cyclic Voltammetry and Bulk Electronic Properties of Soluble Carbon Nanotubes. Journal of the American Chemical Society, 2004, 126, 1646-1647.	6.6	80
563	Langmuir–Blodgett and layer-by-layer films of photoactive fullerene–porphyrin dyads. Journal of Materials Chemistry, 2004, 14, 303-309.	6.7	63
564	Translocation of bioactive peptides across cell membranes by carbon nanotubesElectronic supplementary information (ESI) available: details of the synthesis and characterization, cell culture, TEM, epifluorescence and confocal microscopy images of CNTs 1, 2 and fluorescein. See http://www.rsc.org/suppdata/cc/b3/b311254c/. Chemical Communications, 2004, , 16.	2.2	1,000
565	Functionalization of carbon nanotubes via 1,3-dipolar cycloadditions. Journal of Materials Chemistry, 2004, 14, 437.	6.7	275
566	Versatile Organic (Fullerene)â^'Inorganic (CdTe Nanoparticle) Nanoensembles. Journal of the American Chemical Society, 2004, 126, 14340-14341.	6.6	65
567	Hemolytic Effects of Water-Soluble Fullerene Derivatives. Journal of Medicinal Chemistry, 2004, 47, 6711-6715.	2.9	114
568	Donor–acceptor nanoensembles of soluble carbon nanotubes. Chemical Communications, 2004, , 2034.	2.2	94
569	Synthesis and biological properties of fullerene-containing amino acids and peptides. Mini-Reviews in Medicinal Chemistry, 2004, 4, 805-14.	1.1	46
570	Electrical Rectification in a Langmuirâ^'Blodgett Monolayer of Dimethyanilinoazafullerene Sandwiched between Gold Electrodes. Journal of Physical Chemistry B, 2003, 107, 1021-1027.	1.2	102
571	Synthesis and Water Solubility of Novel Fullerene Bisadduct Derivatives. European Journal of Organic Chemistry, 2003, 2003, 4741-4747.	1.2	34
572	Can Carbon Nanotubes be Considered Useful Tools for Biological Applications?. Advanced Materials, 2003, 15, 1765-1768.	11.1	323
573	Production, Isolation and Structural Characterization of [92]Fullerene Isomers ChemInform, 2003, 34, no.	0.1	O
574	The Addition of Azomethine Ylides to [60]Fullerene Leading to Fulleropyrrolidines. ChemInform, 2003, 34, no.	0.1	1
575	Soluble Carbon Nanotubes. ChemInform, 2003, 34, no.	0.1	1
576	Electrostatic Complexation and Photoinduced Electron Transfer between Zn-Cytochrome c and Polyanionic Fullerene Dendrimers. Chemistry - A European Journal, 2003, 9, 3867-3875.	1.7	91

#	Article	IF	CITATIONS
577	Soluble Carbon Nanotubes. Chemistry - A European Journal, 2003, 9, 4000-4008.	1.7	558
578	Modulating Charge-Transfer Interactions in Topologically Different Porphyrin–C60 Dyads. Chemistry - A European Journal, 2003, 9, 4968-4979.	1.7	110
579	Large Enhancement of the Nonlinear Optical Response of Reduced Fullerene Derivatives. Chemistry - A European Journal, 2003, 9, 1529-1534.	1.7	39
580	Electrostatic Complexation and Photoinduced Electron Transfer between Zn-Cytochrome c and Polyanionic Fullerene Dendrimers. Chemistry - A European Journal, 2003, 9, 5176-5176.	1.7	5
581	Single-Wall Carbon Nanotube–Ferrocene Nanohybrids: Observing Intramolecular Electron Transfer in Functionalized SWNTs. Angewandte Chemie - International Edition, 2003, 42, 4206-4209.	7.2	188
582	Immunization with Peptide-Functionalized Carbon Nanotubes Enhances Virus-Specific Neutralizing Antibody Responses. Chemistry and Biology, 2003, 10, 961-966.	6.2	492
583	Synthesis and Anti-HIV properties of new water-soluble bis-functionalized [60] fullerene derivatives. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 4437-4440.	1.0	114
584	Fullerene derivatives: an attractive tool for biological applications. European Journal of Medicinal Chemistry, 2003, 38, 913-923.	2.6	780
585	Absorption spectra of the mono-adduct and eight bis-adduct regioisomers of pyrrolidine derivatives of C60. Chemical Physics, 2003, 293, 263-280.	0.9	27
586	Supramolecular organized structures of fullerene-based materials and organic functionalization of carbon nanotubes. Comptes Rendus Chimie, 2003, 6, 597-602.	0.2	18
587	Synthesis, Structural Characterization, and Immunological Properties of Carbon Nanotubes Functionalized with Peptides. Journal of the American Chemical Society, 2003, 125, 6160-6164.	6.6	507
588	Zwitterionic Acceptor Moieties: Small Reorganization Energy and Unique Stabilization of Charge Transfer Productsâ€. Journal of Physical Chemistry B, 2003, 107, 7293-7298.	1.2	31
589	Organic Functionalization and Optical Properties of Carbon Onions. Journal of the American Chemical Society, 2003, 125, 14268-14269.	6.6	93
590	Modulation of the Reduction Potentials of Fullerene Derivatives. Journal of the American Chemical Society, 2003, 125, 7139-7144.	6.6	66
591	Hydrogen Bond-Assembled Fullerene Molecular Shuttle. Organic Letters, 2003, 5, 689-691.	2.4	108
592	Solid-phase synthesis and characterization of a novel fullerene-peptide derived from histone H3. Organic and Biomolecular Chemistry, 2003, 1, 4141.	1.5	18
593	Anion recognition by functionalized single wall carbon nanotubes. Chemical Communications, 2003, , 2576-2577.	2.2	35
594	First comparative emission assay of single-wall carbon nanotubesâ€"solutions and dispersions. Chemical Communications, 2003, , 1130-1131.	2.2	54

#	Article	IF	Citations
595	A topologically new ruthenium porphyrin–fullerene donor–acceptor ensemble. Photochemical and Photobiological Sciences, 2003, 2, 1067-1073.	1.6	41
596	Organic Functionalization of Carbon Nanotubes. AIP Conference Proceedings, 2003, , .	0.3	1
597	SideWall Electrophilic Functionalization of Carbon Nanotubes. AIP Conference Proceedings, 2003, , .	0.3	О
598	Supramolecular self-assembled fullerene nanostructures. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5075-5080.	3.3	191
599	Small reorganisation energy and unique stabilisation of zwitterionic C60–acceptor moieties. Chemical Communications, 2002, , 2320-2321.	2.2	14
600	Mitochondria Are Direct Targets of the Lipoxygenase Inhibitor MK886. Journal of Biological Chemistry, 2002, 277, 31789-31795.	1.6	53
601	Organic Functionalized Carbon Nanotubes. AIP Conference Proceedings, 2002, , .	0.3	0
602	Layer-by-Layer Construction of Nanostructured Porphyrinâ^Fullerene Electrodes. Nano Letters, 2002, 2, 965-968.	4.5	62
603	Permanent Chiral Twisting of Nonchiral Carbon Nanotubes. Journal of Physical Chemistry A, 2002, 106, 4795-4797.	1.1	13
604	Organic Functionalization of Carbon Nanotubes. Journal of the American Chemical Society, 2002, 124, 760-761.	6.6	1,193
605	C60 in the box. A supramolecular C60–porphyrin assembly. Journal of Materials Chemistry, 2002, 12, 2001-2008.	6.7	43
606	Optical Limiting Applications. Developments in Fullerence Science, 2002, , 295-326.	0.5	5
607	Purification of HiPCO Carbon Nanotubes via Organic Functionalization. Journal of the American Chemical Society, 2002, 124, 14318-14319.	6.6	210
608	A glutathione amperometric biosensor based on an amphiphilic fullerene redox mediator immobilised within an amphiphilic polypyrrole film. Journal of Materials Chemistry, 2002, 12, 1996-2000.	6.7	31
609	Photoactive Nanowires in Fullereneâ°'Ferrocene Dyad Polyelectrolyte Multilayers. Nano Letters, 2002, 2, 775-780.	4.5	52
610	Reversible zinc phthalocyanine fullerene ensembles. Chemical Communications, 2002, , 2774-2775.	2.2	125
611	Electrochemical properties of a liquid-crystalline mixed fullerene–ferrocene material and related species. Journal of Materials Chemistry, 2002, 12, 829-833.	6.7	20
612	Production, isolation and structural characterization of [92] fullerene isomers. Chemical Communications, 2002, , 2992-2993.	2.2	19

#	Article	IF	Citations
613	Microwave-assisted purification of HIPCO carbon nanotubes. Chemical Communications, 2002, , 2308-2309.	2.2	59
614	Solid-Phase Synthesis of Fullerene-peptides. Journal of the American Chemical Society, 2002, 124, 12543-12549.	6.6	78
615	Resonance Raman Properties of Pristine and Intercalated HiPCO SWNTs. AIP Conference Proceedings, 2002, , .	0.3	0
616	[60] Fullerene as a Substituent. Chemistry - A European Journal, 2002, 8, 1015.	1.7	53
617	A New Multi-Charged C60 Derivative: Synthesis and Biological Properties. European Journal of Organic Chemistry, 2002, 2002, 2928-2934.	1.2	44
618	Synthesis and Molecular Modeling Studies of Fullereneâ°'5,6,7-Trimethoxyindoleâ°'Oligonucleotide Conjugates as Possible Probes for Study of Photochemical Reactions in DNA Triple Helices. European Journal of Organic Chemistry, 2002, 2002, 405-413.	1.2	26
619	Design, synthesis and biological properties of fulleropyrrolidine derivatives as potential DNA photo-probes. Journal of Supramolecular Chemistry, 2002, 2, 327-334.	0.4	10
620	Radical anions of fullerene bisadducts: a multifrequency CW-EPR study. Journal of Magnetic Resonance, 2002, 159, 226-236.	1.2	7
621	Photochemical hole-burning in C60–H2TPP supramolecule doped polymer: a comparative study with the behaviour of separated H2TPP and C60 entities. Journal of Luminescence, 2002, 98, 237-243.	1.5	2
622	Optical spectroscopy and photochemical hole burning studies of the supramolecule C60–H2TPP in poly vinylbutiral at low temperatures. Journal of Luminescence, 2002, 99, 355-359.	1.5	0
623	Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nature Materials, 2002, 1, 190-194.	13.3	949
624	Sidewall functionalization of single-walled carbon nanotubes through electrophilic additionElectronic supplementary information (ESI) available: Fig. S1: TEM views of functionalized nanotubes 1. Fig. S2: 1H NMR spectrum of functionalized SWNTs 2 material. See http://www.rsc.org/suppdata/cc/b2/b204366a/. Chemical Communications, 2002, , 2010-2011.	2.2	72
625	Amino acid functionalisation of water soluble carbon nanotubes. Chemical Communications, 2002, , 3050-3051.	2.2	312
626	Variation of triplet state properties of N-mTEG[60]fulleropyrrolidine bis-adducts as a function of the bond path between the addends. Research on Chemical Intermediates, 2002, 28, 871-877.	1.3	1
627	A detailed Raman study on thin single-wall carbon nanotubes prepared by the HiPCO process. European Physical Journal B, 2002, 28, 223-230.	0.6	113
628	Current Chemistry: Fullerene Derivatives as Potential DNA Photoprobes. Australian Journal of Chemistry, 2001, 54, 223.	0.5	14
629	A Novel [60]Fullerene Amino Acid for Use in Solid-Phase Peptide Synthesis. Organic Letters, 2001, 3, 1845-1848.	2.4	75
630	Parallel (Face-to-Face) Versus Perpendicular (Edge-to-Face) Alignment of Electron Donors and Acceptors in Fullerene Porphyrin Dyads:Â The Importance of Orientation in Electron Transfer. Journal of the American Chemical Society, 2001, 123, 9166-9167.	6.6	157

#	Article	IF	CITATIONS
631	DNA-Photocleavage Agents. Current Pharmaceutical Design, 2001, 7, 1781-821.	0.9	51
632	Synthesis of a hybrid fullerene–trimethoxyindole–oligonucleotide conjugate. Chemical Communications, 2001, , 17-18.	2.2	31
633	Evidence of high charge mobility in photoirradiated polythiophene–fullerene composites. Journal of Materials Chemistry, 2001, 11, 981-983.	6.7	31
634	Time-resolved EPR investigation of intramolecular photoinduced electron transfer in spin-labeled fullerene/ferrocene dyads. Physical Chemistry Chemical Physics, 2001, 3, 3526-3531.	1.3	15
635	Isolation and Characterization of All Eight Bisadducts of Fulleropyrrolidine Derivatives. Journal of Organic Chemistry, 2001, 66, 2802-2808.	1.7	121
636	Synthesis of novel fullerene derivatives for materials applications. AIP Conference Proceedings, 2001, ,	0.3	1
637	Novel Functional Fullerene Materials: Fullerenes as Energy Acceptors. Monatshefte Für Chemie, 2001, 132, 63-69.	0.9	9
638	Spin correlated radical ion pairs generated by photoinduced electron transfer in composites of sexithiophene/fullerene derivatives: a transient EPR study. Chemical Physics, 2001, 263, 83-94.	0.9	26
639	Fullerene-based amino acids and peptides. Journal of Peptide Science, 2001, 7, 208-219.	0.8	113
640	Efficient Charge Separation in Porphyrin-Fullerene-Ligand Complexes. Chemistry - A European Journal, 2001, 7, 816-827.	1.7	128
641	A Mixed Fullerene–Ferrocene Thermotropic Liquid Crystal: Synthesis, Liquid-Crystalline Properties, Supramolecular Organization and Photoinduced Electron Transfer. Chemistry - A European Journal, 2001, 7, 2595-2604.	1.7	91
642	Triplet state properties of N-mTEG[60]fulleropyrrolidine mono and bisadduct derivatives. Chemical Physics Letters, 2001, 334, 221-228.	1.2	27
643	Photophysical properties of novel water soluble fullerene derivatives. Chemical Physics Letters, 2001, 350, 198-205.	1.2	21
644	Novel Versatile Fullerene Synthons. Journal of Organic Chemistry, 2001, 66, 4915-4920.	1.7	136
645	Synthesis of Fullerene Derivatives for Incorporation in Sol-Gel Glasses. Journal of Sol-Gel Science and Technology, 2001, 22, 237-244.	1.1	12
646	Novel Functional Fullerene Materials: Fullerenes as Energy Acceptors. , 2001, , 63-69.		1
647	Stepwise Assembled Photoactive Films Containing Donor-Linked Fullerenes. Angewandte Chemie - International Edition, 2000, 39, 3905-3909.	7.2	85
648	Optical limiting and non linear optical properties of fullerene derivatives embedded in hybrid sol–gel glasses. Carbon, 2000, 38, 1653-1662.	5.4	56

#	Article	IF	Citations
649	Charge separation in fullerene containing donor–bridge–acceptor molecules. Carbon, 2000, 38, 1615-1623.	5.4	32
650	Synthetic approaches towards the preparation of water-soluble fulleropyrrolidines. Carbon, 2000, 38, 1551-1555.	5.4	14
651	Synthesis and electrochemical properties of ionic fullerene derivatives. Carbon, 2000, 38, 1557-1563.	5.4	8
652	Electrochemical properties of soluble fullerene derivatives. Electrochimica Acta, 2000, 46, 265-269.	2.6	10
653	Synthesis, electrochemistry, Langmuir–Blodgett deposition and photophysics of metal-coordinated fullerene–porphyrin dyads. Journal of Organometallic Chemistry, 2000, 599, 62-68.	0.8	39
654	Antimycobacterial activity of ionic fullerene derivatives. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1043-1045.	1.0	125
655	Fullerene derivatives embedded in poly(methylmethacrylate): a laser flash photolysis and time-resolved EPR study. Chemical Physics, 2000, 253, 105-113.	0.9	7
656	Ultrafast photogeneration of inter-chain charge pairs in polythiophene films. Chemical Physics Letters, 2000, 322, 136-142.	1.2	82
657	Optical Limiting Devices Based on C60 Derivatives in Sol-Gel Hybrid Organic-Inorganic Materials. Journal of Sol-Gel Science and Technology, 2000, 19, 263-266.	1.1	29
658	Excited-State Properties of C60 Fullerene Derivatives. Accounts of Chemical Research, 2000, 33, 695-703.	7.6	1,063
659	Photoinduced electron transfer in multicomponent arrays of a π-stacked fullerene porphyrin dyad and diazabicyclooctane or a fulleropyrrolidine ligand. Chemical Communications, 2000, , 375-376.	2.2	67
660	Additions of Azomethine Ylides to Fullerene C60Assisted by a Removable Anchor. Journal of Organic Chemistry, 2000, 65, 4289-4297.	1.7	57
661	Charge-transfer in a π-stacked fullerene porphyrin dyad: evidence for back electron transfer in the 'Marcus-inverted' region. Chemical Communications, 2000, , 373-374.	2.2	89
662	Novel fulleropyrrolidiniumâ€based materials. Journal of Materials Chemistry, 2000, 10, 269-273.	6.7	24
663	Anion Radicals of Mono- and Bisfulleropyrrolidines:Â g Tensors, Spin Density Distribution and Spinâ°'Lattice Relaxation. Journal of Physical Chemistry A, 2000, 104, 9853-9863.	1.1	27
664	Design and Synthesis of Novel [60] Fullerene Derivatives as Potential HIV Aspartic Protease Inhibitors. Organic Letters, 2000, 2, 3955-3958.	2.4	110
665	Molecular and Material Engineering for Optical Limiting with Fullerene Based Sol-Gel Materials. , 2000, , 83-98.		2
666	Combinatorial Chemistry Approach to Development of Molecular Plastic Solar Cells., 1999,,.		0

#	Article	IF	Citations
667	Optical limiting materials based on fullerene derivatives. , 1999, , .		O
668	Fullerene Materials. Topics in Current Chemistry, 1999, , 173-187.	4.0	113
669	Synthesis and Optical-Limiting Behavior of Hybrid Inorganic-Organic Materials from the Sol-Gel Processing of Organofullerenes. Chemistry - A European Journal, 1999, 5, 2501-2510.	1.7	52
670	Photoinduced electron transfer in sexithiophene/fullerene derivative blends: evidence of long-lived spin correlated radical pairs. Chemical Communications, 1999, , 429-430.	2.2	12
671	Optical limiting of multilayer sol-gel structures containing fullerenes. Synthetic Metals, 1999, 103, 2474-2475.	2.1	10
672	Medicinal chemistry with fullerenes and fullerene derivatives. Chemical Communications, 1999 , , $663-669$.	2.2	430
673	Preferential Orientation of Fulleropyrrolidine Bisadducts in E7 Liquid Crystal:Â A Time-Resolved Electron Paramagnetic Resonance Study. Journal of Physical Chemistry B, 1999, 103, 11275-11281.	1.2	12
674	A noncovalently linked, dynamic fullerene porphyrin dyad. Efficient formation of long-lived charge separated states through complex dissociation. Chemical Communications, 1999, , 635-636.	2.2	74
675	Synthesis and Properties of Novel Functional Fullerene Derivatives. , 1999, , 331-337.		0
676	Enzymatic modification of fullerene derivatives. Tetrahedron Letters, 1998, 39, 7791-7794.	0.7	25
677	Trans-cis amide bond isomerization in fulleroprolines. , 1998, 4, 364-368.		12
678	Enhanced Acceptor Character in Fullerene Derivatives. Synthesis and Electrochemical Properties of Fulleropyrrolidinium Salts. Journal of the American Chemical Society, 1998, 120, 11645-11648.	6.6	94
679	Fulleropyrrolidines:  A Family of Full-Fledged Fullerene Derivatives. Accounts of Chemical Research, 1998, 31, 519-526.	7.6	816
680	Synthesis and properties of novel fullerene derivatives. , 1998, , .		0
681	EPR studies of electron transfer processes in composites of substituted sexithiophenes with fullerene derivatives., 1997, 3142, 112.		0
682	Preparation and deposition of stable monolayers of fullerene derivatives. Journal of Materials Chemistry, 1997, 7, 2397-2400.	6.7	36
683	Transient EPR Studies of Excited Triplet States in Polyadducts of C60 and Bis(ethoxycarbonyl)methylene. Journal of the American Chemical Society, 1997, 119, 12902-12905.	6.6	16
684	Through bond mechanism versus exciplex formation in the photochemistry of fullerene / ferrocene donor-bridge-acceptor dyads. Research on Chemical Intermediates, 1997, 23, 561-573.	1.3	10

#	Article	IF	CITATIONS
685	Cycloaddition of nitrile oxides to [60]fullerene. Chemical Communications, 1997, , 59-60.	2.2	25
686	Use of Transient EPR Spectroscopy of Excited Triplet State for the Structural Assignment of Bisadducts of Fullerene C60. Journal of the American Chemical Society, 1997, 119, 12896-12901.	6.6	58
687	Synthesis and EPR Studies of Radicals and Biradical Anions of C60Nitroxide Derivatives. Journal of the American Chemical Society, 1997, 119, 789-795.	6.6	65
688	Molecular Recognition by a Silica-Bound Fullerene Derivative. Journal of the American Chemical Society, 1997, 119, 7550-7554.	6.6	101
689	Intramolecular Electron Transfer in Fullerene/Ferrocene Based Donorâ^Bridgeâ^Acceptor Dyads. Journal of the American Chemical Society, 1997, 119, 974-980.	6.6	327
690	Sol-gel materials embedding fullerene derivatives for optical limiting. Synthetic Metals, 1997, 86, 2353-2354.	2.1	28
691	[60]Fullerene chemistry for materials science applications. Journal of Materials Chemistry, 1997, 7, 1097-1109.	6.7	780
692	Preparation and Characterization of Fullerenes Containing Sol-Gel Glass. Journal of Sol-Gel Science and Technology, 1997, 8, 609-613.	1.1	0
693	Preparation and characterization of fullerences containing sol-gel glass. Journal of Sol-Gel Science and Technology, 1997, 8, 609-613.	1.1	7
694	l̂²â€Turn induction by C ₆₀ â€based fulleroproline: synthesis and conformational characterization of Fpr/Pro small peptides. Chemical Biology and Drug Design, 1997, 50, 159-170.	1.2	24
695	Fullerene Derivatives in Poly(methylmethacrylate):Â An EPR and Zero-Field ODMRStudy of Their Photoexcited Triplet States. The Journal of Physical Chemistry, 1996, 100, 13416-13420.	2.9	20
696	Synthesis, Chiroptical Properties, and Configurational Assignment of Fulleroproline Derivatives and Peptides. Journal of the American Chemical Society, 1996, 118, 4072-4080.	6.6	136
697	Synthesis and applications of fulleropyrrolidines. Synthetic Metals, 1996, 77, 89-91.	2.1	20
698	Easy Access to Water-Soluble Fullerene Derivatives via 1,3-Dipolar Cycloadditions of Azomethine Ylides to C60. Journal of Organic Chemistry, 1996, 61, 9070-9072.	1.7	169
699	Optical limiting properties of soluble fullerene derivatives for incorporation in sol–gel materials. Chemical Communications, 1996, , 1891-1892.	2.2	49
700	Stereoselective additions to [60]fullerene. Chemical Communications, 1996, , 903.	2.2	33
701	<title>Fullerene derivatives embedded in sol-gel materials for optical limiting</title> ., 1996, 2854, 130.		6
702	Synthesis and electrochemical properties of substituted fulleropyrrolidines. Tetrahedron, 1996, 52, 5221-5234.	1.0	272

#	Article	IF	Citations
703	Optical Limiting of Fullerene Derivatives Embedded in Sol-Gel Materials. , 1996, , 159-174.		8
704	C60 derivatives embedded in sol-gel silica films. Advanced Materials, 1995, 7, 404-406.	11,1	86
705	Ringexpansion des Fullerenger $\tilde{A}^1\!\!/\!\!$ stes durch hochregioselektive Bildung von Diazafulleroiden. Angewandte Chemie, 1995, 107, 1462-1464.	1.6	55
706	Ring Expansion of the Fullerene Core by Highly Regioselective Formation of Diazafulleroids. Angewandte Chemie International Edition in English, 1995, 34, 1343-1345.	4.4	152
707	Electrochemical Evidence for Through-Space Orbital Interactions in Spiromethanofullerenes. Angewandte Chemie International Edition in English, 1995, 34, 1591-1594.	4.4	92
708	Synthesis and characterization of both enantiomers of a chiral C60 derivative with C2 symmetry. Tetrahedron Letters, 1995, 36, 2845-2846.	0.7	26
709	C60 Derivative Covalently Linked to a Nitroxide Radical: Time-Resolved EPR Evidence of Electron Spin Polarization by Intramolecular Radical-Triplet Pair Interaction. Journal of the American Chemical Society, 1995, 117, 8857-8858.	6.6	179
710	Electrochemical Monitoring of Valence Bond Isomers Interconversion in Bipyridyl-C61 Anions. Journal of the American Chemical Society, 1995, 117, 6572-6580.	6.6	64
711	There Is a Hole in My Bucky. Journal of the American Chemical Society, 1995, 117, 7003-7004.	6.6	251
712	A New C60 Polymer via Ring-Opening Metathesis Polymerization. Chemistry of Materials, 1995, 7, 441-442.	3.2	61
713	Synthesis of a [60]fullerene derivative covalently linked to a ruthenium(II) tris(bipyridine) complex. Journal of the Chemical Society Chemical Communications, 1995, .	2.0	65
714	Photoinduced electron transfer and long lived charge separation in a donor-bridge-acceptor supramolecular †diad†consisting of ruthenium(II) tris(bipyridine) functionalized C60. Chemical Physics Letters, 1995, 247, 510-514.	1.2	99
715	The Addition of Diazo Compounds to C60 as a Way to the Understanding of the Electronic and Magnetic Properties of Fullerenes. , 1994, , 97-116.		3
716	Synthesis of N-acylated fulleropyrrolidines: New materials for the preparation of Langmuir-Blodgett films containing fullerenes. Tetrahedron Letters, 1994, 35, 2985-2988.	0.7	96
717	Addition reactions of C60 leading to fulleroprolines. Journal of the Chemical Society Chemical Communications, 1994, , 305.	2.0	77
718	A Bioactive Fullerene Peptide. Journal of Medicinal Chemistry, 1994, 37, 4558-4562.	2.9	120
719	Ferrocenyl fulleropyrrolidines: a cyclic voltammetry study. Journal of the Chemical Society Chemical Communications, 1994, , 589-590.	2.0	86
720	Electrochemically Induced Isomerization of a Fulleroid to a Methanofullerene. Journal of the American Chemical Society, 1994, 116, 8364-8365.	6.6	87

#	Article	IF	CITATIONS
721	Incorporation of an Acyl Group in Fulleropyrrolidines: Effects on Langmuir Monolayers. Langmuir, 1994, 10, 4164-4166.	1.6	54
722	Embedding Fullerenes in Thin Sol-Gel Films. Materials Research Society Symposia Proceedings, 1994, 359, 351.	0.1	1
723	Energetic preference in 5,6 and 6,6 ring junction adducts of C60: fulleroids and methanofullerenes. Journal of the American Chemical Society, 1993, 115, 8479-8480.	6.6	151
724	Addition of azomethine ylides to C60: synthesis, characterization, and functionalization of fullerene pyrrolidines. Journal of the American Chemical Society, 1993, 115, 9798-9799.	6.6	1,261
725	Addition of azides to fullerene C60: synthesis of azafulleroids. Journal of the American Chemical Society, 1993, 115, 1148-1150.	6.6	349
726	[3+2] and $[4+2]$ Cycloadditions of fullerene C60. Journal of the American Chemical Society, 1993, 115, 1594-1595.	6.6	163
727	Probing the properties of C60 through fulleroids ABC61. Synthetic Metals, 1993, 59, 297-305.	2.1	45
728	Experimental evidence for segregated ring currents in C60. Journal of the American Chemical Society, 1993, 115, 7876-7877.	6.6	92
729	Chemical derivatization of organofullerenes through oxidation, reduction, and carbon-oxygen and carbon-carbon bond-forming reactions. Journal of Organic Chemistry, 1993, 58, 4796-4798.	1.7	37
730	Synthesis and characterization of the first fullerene-peptide. Journal of Organic Chemistry, 1993, 58, 5578-5580.	1.7	79
731	Addition of quadricyclane to C60: easy access to fullerene derivatives bearing a reactive double bond in the side chain. Journal of Organic Chemistry, 1993, 58, 3613-3615.	1.7	31
732	A simple Soxhlet chromatographic method for the isolation of pure fullerenes C60 and C70. Journal of Organic Chemistry, 1992, 57, 3254-3256.	1.7	79
733	Acid-catalysed addition of N-aryl imines to dihydrofuran. Postulated dependence of the reaction mechanism on the relative face of approach of reactants. Journal of the Chemical Society Perkin Transactions II, 1992, , 259.	0.9	37
734	Synthesis of (\hat{a}^2) -8-deoxy-7-hydroxy-swainsonine and $(\hat{A}\pm)$ -6,8-dideoxy-castanospermine. Tetrahedron Letters, 1992, 33, 6537-6540.	0.7	39
735	A general procedure for the fluorodenitration of aromatic substrates. Journal of Organic Chemistry, 1991, 56, 6406-6411.	1.7	40
736	2-azanorbornadiene. Tetrahedron Letters, 1991, 32, 6957-6960.	0.7	4
737	Oxidation of diazo compounds by dimethyl dioxirane: an extremely mild and efficient method for the preparation of labile \hat{l} ±-oso-aldehydes. Tetrahedron Letters, 1991, 32, 6215-6218.	0.7	51
738	Imino Diels-Alder cycloadditions: An application to the synthesis of $(\hat{A}\pm)$ -aristeromycin. Tetrahedron Letters, 1990, 31, 6243-6246.	0.7	46

#	ARTICLE	IF	CITATIONS
739	A New Synthesis of 3-Fluorophthalic Anhydride. Journal of Fluorine Chemistry, 1990, 50, 251-255.	0.9	5
740	The aza-robinson annulation: An application to the synthesis of iso-A58365A. Tetrahedron Letters, 1989, 30, 3625-3628.	0.7	60
741	Diastereofacial selectivity in the cycloaddition of chiral glyoxylate imines to cyclopentadiene and indene: synthesis of optically active tetrahydroquinolines. Journal of the Chemical Society Perkin Transactions 1, 1989, , 2245.	0.9	41
742	Synthesis and cycloaddition reactions of ethyl glyoxylate imines. Synthesis of substituted furoâ∈[3,2â€ <i>c</i>]quinolines and 7 <i>H</i> â€indeno[2,1â€ <i>c</i>]quinolines. Journal of Heterocyclic Chemistry, 1988, 25, 1831-1835.	1.4	54
743	Cycloaddition reactions of .alphaketo imines. Regio- and stereoselectivities in the dienic and dienophilic additions to conjugated dienes. Journal of Organic Chemistry, 1988, 53, 2251-2258.	1.7	79
744	Cycloaddition reactions of ketoimines. Part II. Synthesis of substituted phenanthridines and cyclopenta[<i>c]quinolines. Journal of Heterocyclic Chemistry, 1986, 23, 1135-1139.</i>	1.4	9
745	The reaction of anils with conjugated dienes. Journal of the Chemical Society Chemical Communications, 1984, , 48.	2.0	11
746	Reduction and substitution in the reaction of 4-chloronitrobenzene with alkoxides. Journal of Organic Chemistry, 1980, 45, 2263-2264.	1.7	16
747	Functionalization of Carbon Nanotubes. , 0, , 1-57.		11
748	One-dimensional heterostructure: The selective decoration of single-walled carbon nanotube tips with metallic nanoparticles. MRS Bulletin, 0, , .	1.7	0