
Thomas J Bracegirdle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6639202/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Climatology and variability of Southern Hemisphere marine cold-air outbreaks. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 62, 202.	1.7	21
2	Early-winter North Atlantic low-level jet latitude biases in climate models: implications for simulated regional atmosphere-ocean linkages. Environmental Research Letters, 2022, 17, 014025.	5.2	1
3	Antarctic Sea Ice Projections Constrained by Historical Ice Cover and Future Global Temperature Change. Geophysical Research Letters, 2022, 49, .	4.0	5
4	Earlyâ€ŧo‣ate Winter 20th Century North Atlantic Multidecadal Atmospheric Variability in Observations, CMIP5 and CMIP6. Geophysical Research Letters, 2022, 49, .	4.0	4
5	On Constraining Projections of Future Climate Using Observations and Simulations From Multiple Climate Models. Journal of the American Statistical Association, 2021, 116, 546-557.	3.1	5
6	Is our dynamical understanding of the circulation changes associated with the Antarctic ozone hole sensitive to the choice of reanalysis dataset?. Atmospheric Chemistry and Physics, 2021, 21, 7451-7472.	4.9	3
7	Future Sea Level Change Under Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland and Antarctic Ice Sheets. Geophysical Research Letters, 2021, 48, e2020GL091741.	4.0	28
8	The Evaluation of the North Atlantic Climate System in UKESM1 Historical Simulations for CMIP6. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002126.	3.8	8
9	CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica. Cryosphere, 2020, 14, 855-879.	3.9	58
10	Preliminary Evidence for the Role Played by South Westerly Wind Strength on the Marine Diatom Content of an Antarctic Peninsula Ice Core (1980–2010). Geosciences (Switzerland), 2020, 10, 87.	2.2	6
11	Improvements in Circumpolar Southern Hemisphere Extratropical Atmospheric Circulation in CMIP6 Compared to CMIP5. Earth and Space Science, 2020, 7, e2019EA001065.	2.6	36
12	Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6. Atmospheric Science Letters, 2020, 21, e984.	1.9	53
13	Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. Cryosphere, 2020, 14, 2331-2368.	3.9	72
14	Wintertime Southern Hemisphere Jet Streams Shaped by Interaction of Transient Eddies with Antarctic Orography. Journal of Climate, 2020, 33, 10505-10522.	3.2	7
15	Southern Hemisphere Atmospheric Blocking in CMIP5 and Future Changes in the Australiaâ€New Zealand Sector. Geophysical Research Letters, 2019, 46, 9281-9290.	4.0	16
16	West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nature Geoscience, 2019, 12, 718-724.	12.9	157
17	Back to the Future: Using Long-Term Observational and Paleo-Proxy Reconstructions to Improve Model Projections of Antarctic Climate. Geosciences (Switzerland), 2019, 9, 255.	2.2	27
18	Compensating Biases and a Noteworthy Success in the CMIP5 Representation of Antarctic Sea Ice Processes. Geophysical Research Letters, 2019, 46, 4299-4307.	4.0	17

THOMAS J BRACEGIRDLE

#	Article	IF	CITATIONS
19	Arctic Sea Ice Loss in Different Regions Leads to Contrasting Northern Hemisphere Impacts. Geophysical Research Letters, 2018, 45, 945-954.	4.0	58
20	Cross-disciplinarity in the advance of Antarctic ecosystem research. Marine Genomics, 2018, 37, 1-17.	1.1	70
21	CMIP5 Diversity in Southern Westerly Jet Projections Related to Historical Sea Ice Area: Strong Link to Strengthening and Weak Link to Shift. Journal of Climate, 2018, 31, 195-211.	3.2	44
22	Critical Southern Ocean climate model biases traced to atmospheric model cloud errors. Nature Communications, 2018, 9, 3625.	12.8	109
23	Polar Climate Change as Manifest in Atmospheric Circulation. Current Climate Change Reports, 2018, 4, 383-395.	8.6	123
24	Do CMIP5 Models Reproduce Observed Lowâ€Frequency North Atlantic Jet Variability?. Geophysical Research Letters, 2018, 45, 7204-7212.	4.0	22
25	Sensitivity of an apparently hurricaneâ€like polar low to seaâ€surface temperature. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 966-973.	2.7	17
26	Atmosphereâ€oceanâ€ice interactions in the Amundsen Sea Embayment, West Antarctica. Reviews of Geophysics, 2017, 55, 235-276.	23.0	92
27	Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophysical Research Letters, 2017, 44, 6868-6875.	4.0	198
28	Assessment of sea ice-atmosphere links in CMIP5 models. Climate Dynamics, 2017, 49, 683-702.	3.8	13
29	Climate change drives expansion of Antarctic ice-free habitat. Nature, 2017, 547, 49-54.	27.8	297
30	Stratospheric Response to the 11-Yr Solar Cycle: Breaking Planetary Waves, Internal Reflection, and Resonance. Journal of Climate, 2017, 30, 7169-7190.	3.2	16
31	Variability and trends in the Southern Hemisphere high latitude, quasiâ€stationary planetary waves. International Journal of Climatology, 2017, 37, 2325-2336.	3.5	21
32	A Synergistic Approach for Evaluating Climate Model Output for Ecological Applications. Frontiers in Marine Science, 2017, 4, .	2.5	37
33	More losers than winners in a century of future Southern Ocean seafloor warming. Nature Climate Change, 2017, 7, 749-754.	18.8	92
34	Sea ice led to poleward-shifted winds at the Last Glacial Maximum: the influence of state dependency on CMIP5 and PMIP3 models. Climate of the Past, 2016, 12, 2241-2253.	3.4	37
35	A Multidisciplinary Perspective on Climate Model Evaluation For Antarctica. Bulletin of the American Meteorological Society, 2016, 97, ES23-ES26.	3.3	7
36	Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 2016, 535, 411-415.	27.8	538

#	Article	IF	CITATIONS
37	Future circulation changes off West Antarctica: Sensitivity of the Amundsen Sea Low to projected anthropogenic forcing. Geophysical Research Letters, 2016, 43, 367-376.	4.0	59
38	Reâ€examining the roles of surface heat flux and latent heat release in a "hurricaneâ€like―polar low over the Barents Sea. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7853-7867.	3.3	16
39	Antarctic sea ice increase consistent with intrinsic variability of the Amundsen Sea Low. Climate Dynamics, 2016, 46, 2391-2402.	3.8	97
40	The importance of sea ice area biases in 21st century multimodel projections of Antarctic temperature and precipitation. Geophysical Research Letters, 2015, 42, 10,832.	4.0	39
41	An examination of the relationship between the Southern Annular Mode and Antarctic surface air temperatures in the CMIP5 historical runs. Climate Dynamics, 2015, 45, 1513-1535.	3.8	27
42	A Comparative Study of Wave Forcing Derived from the ERA-40 and ERA-Interim Reanalysis Datasets. Journal of Climate, 2015, 28, 2291-2311.	3.2	9
43	Recent changes in Antarctic Sea Ice. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140163.	3.4	122
44	The Southern Ocean ecosystem under multiple climate change stresses ―an integrated circumpolar assessment. Global Change Biology, 2015, 21, 1434-1453.	9.5	190
45	Precipitation pathways for five new ice core sites in Ellsworth Land, West Antarctica. Climate Dynamics, 2015, 44, 2067-2078.	3.8	27
46	From Ice to Penguins: The Role of Mathematics in Antarctic Research. CIM Series in Mathematical Sciences, 2015, , 389-414.	0.4	4
47	Sources of uncertainty in projections of twenty-first century westerly wind changes over the Amundsen Sea, West Antarctica, in CMIP5 climate models. Climate Dynamics, 2014, 43, 2093-2104.	3.8	23
48	Mechanisms for the Holton-Tan relationship and its decadal variation. Journal of Geophysical Research D: Atmospheres, 2014, 119, 2811-2830.	3.3	51
49	Antarctic climate change and the environment: an update. Polar Record, 2014, 50, 237-259.	0.8	411
50	Climatology and recent increase of westerly winds over the Amundsen Sea derived from six reanalyses. International Journal of Climatology, 2013, 33, 843-851.	3.5	53
51	Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. Journal of Geophysical Research D: Atmospheres, 2013, 118, 547-562.	3.3	173
52	A 308 year record of climate variability in West Antarctica. Geophysical Research Letters, 2013, 40, 5492-5496.	4.0	43
53	An Initial Assessment of Antarctic Sea Ice Extent in the CMIP5 Models. Journal of Climate, 2013, 26, 1473-1484.	3.2	261
54	Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response. Journal of Geophysical Research: Oceans, 2013, 118, 1830-1844.	2.6	164

THOMAS J BRACEGIRDLE

#	Article	IF	CITATIONS
55	Assessment of Southern Ocean mixedâ€layer depths in CMIP5 models: Historical bias and forcing response. Journal of Geophysical Research: Oceans, 2013, 118, 1845-1862.	2.6	136
56	Strong Dynamical Modulation of the Cooling of the Polar Stratosphere Associated with the Antarctic Ozone Hole. Journal of Climate, 2012, 26, 662-668.	3.2	18
57	On the Robustness of Emergent Constraints Used in Multimodel Climate Change Projections of Arctic Warming. Journal of Climate, 2012, 26, 669-678.	3.2	68
58	Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios. Journal of Geophysical Research, 2012, 117, .	3.3	97
59	Higher precision estimates of regional polar warming by ensemble regression of climate model projections. Climate Dynamics, 2012, 39, 2805-2821.	3.8	75
60	Possible Dynamical Mechanisms for Southern Hemisphere Climate Change due to the Ozone Hole. Journals of the Atmospheric Sciences, 2012, 69, 2917-2932.	1.7	30
61	The Reliability of Antarctic Tropospheric Pressure and Temperature in the Latest Global Reanalyses. Journal of Climate, 2012, 25, 7138-7146.	3.2	207
62	A â€~hurricaneâ€like' polar low fuelled by sensible heat flux: highâ€resolution numerical simulations. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 1308-1324.	2.7	33
63	Detection and attribution of Antarctic climate change. Anales Del Instituto De La Patagonia, 2012, 40, 51-56.	0.1	1
64	The seasonal cycle of stratosphere-troposphere coupling at southern high latitudes associated with the semi-annual oscillation in sea-level pressure. Climate Dynamics, 2011, 37, 2323-2333.	3.8	6
65	Limited polar low sensitivity to seaâ€surface temperature. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 58-69.	2.7	5
66	Harmonic analysis of climatological temperature over Antarctica: present day and greenhouse warming perspectives. International Journal of Climatology, 2011, 31, 514-530.	3.5	13
67	Ice core evidence for a 20th century decline of sea ice in the Bellingshausen Sea, Antarctica. Journal of Geophysical Research, 2010, 115, .	3.3	80
68	Climatology and variability of Southern Hemisphere marine cold-air outbreaks. Tellus, Series A: Dynamic Meteorology and Oceanography, 2010, , .	1.7	0
69	Marine cold-air outbreaks in the North Atlantic: temporal distribution and associations with large-scale atmospheric circulation. Climate Dynamics, 2009, 33, 187-197.	3.8	92
70	The dynamics of a polar low assessed using potential vorticity inversion. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 880-893.	2.7	30
71	lce core evidence for significant 100â€year regional warming on the Antarctic Peninsula. Geophysical Research Letters, 2009, 36, .	4.0	91
72	Improving ice core interpretation using in situ and reanalysis data. Journal of Geophysical Research, 2009. 114.	3.3	29

#	Article	IF	CITATIONS
73	Marine cold-air outbreaks in the future: an assessment of IPCC AR4 model results for the Northern Hemisphere. Climate Dynamics, 2008, 30, 871-885.	3.8	95
74	An objective climatology of the dynamical forcing of polar lows in the Nordic seas. International Journal of Climatology, 2008, 28, 1903-1919.	3.5	76
75	Antarctic climate change over the twenty first century. Journal of Geophysical Research, 2008, 113, .	3.3	172
76	An Antarctic assessment of IPCC AR4 coupled models. Geophysical Research Letters, 2007, 34, .	4.0	81