List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6638960/publications.pdf

Version: 2024-02-01

400 papers	24,127 citations	5268 83 h-index	12946 131 g-index
413	413	413	18547
all docs	docs citations	times ranked	citing authors

YONG YANG

#	Article	IF	CITATIONS
1	Modification of NASICON Electrolyte and Its Application in Real Na-Ion Cells. Engineering, 2022, 8, 170-180.	6.7	12
2	"Series and parallel―design of ether linkage and imidazolium cation synergistically regulated four-armed polymerized ionic liquid for all-solid-state polymer electrolyte. Chinese Chemical Letters, 2022, 33, 1407-1411.	9.0	10
3	The origins of kinetics hysteresis and irreversibility of monoclinic Li3V2(PO4)3. Journal of Energy Chemistry, 2022, 67, 593-603.	12.9	4
4	Insights into the local structure, microstructure and ionic conductivity of silicon doped NASICON-type solid electrolyte Li1.3Al0.3Ti1.7P3O12. Energy Storage Materials, 2022, 44, 190-196.	18.0	30
5	Exploring hybrid Mg2+/H+ reactions of C@MgMnSiO4 with boosted voltage in magnesium-ion batteries. Electrochimica Acta, 2022, 404, 139738.	5.2	10
6	Tuning interface stability of nickel-rich LiNi0.9Co0.05Mn0.05O2 cathode via a novel bis(vinylsulphonyl)methane additive. Journal of Power Sources, 2022, 521, 230917.	7.8	18
7	Regulating Interfacial Liâ€lon Transport via an Integrated Corrugated 3D Skeleton in Solid Composite Electrolyte for Allâ€Solidâ€State Lithium Metal Batteries. Advanced Science, 2022, 9, e2104506.	11.2	18
8	Enabling Fast Na ⁺ Transfer Kinetics in the Wholeâ€Voltageâ€Region of Hardâ€Carbon Anodes for Ultrahighâ€Rate Sodium Storage. Advanced Materials, 2022, 34, e2109282.	21.0	108
9	Improving interfacial stability of high voltage LiCoO2-based cells with 4-methylmorpholine-2,6-dione additive. Journal of Power Sources, 2022, 524, 231049.	7.8	15
10	Highly stable operation of LiCoO2 at cut-off ≥ 4.6ÂV enabled by synergistic structural and interfacial manipulation. Energy Storage Materials, 2022, 46, 406-416.	18.0	48
11	Size-Dependent Chemomechanical Failure of Sulfide Solid Electrolyte Particles during Electrochemical Reaction with Lithium. Nano Letters, 2022, 22, 411-418.	9.1	20
12	Poly(ionic liquid)@PEGMA Block Polymer Initiated Microphase Separation Architecture in Poly(ethylene oxide)-Based Solid-State Polymer Electrolyte for Flexible and Self-Healing Lithium Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 4173-4185.	6.7	23
13	Synergistical Stabilization of Li Metal Anodes and LiCoO ₂ Cathodes in High-Voltage Liâ^¥LiCoO ₂ Batteries by Potassium Selenocyanate (KSeCN) Additive. ACS Energy Letters, 2022, 7, 1364-1373.	17.4	49
14	The Contrasting Impacts of the Al ₂ O ₃ and Y ₂ O ₃ Insertion Layers on the Crystallization of ZrO ₂ Films for Dynamic Random Access Memory Capacitors. Advanced Electronic Materials, 2022, 8, .	5.1	4
15	Pushing Lithium Cobalt Oxides to 4.7ÂV by Latticeâ€Matched Interfacial Engineering. Advanced Energy Materials, 2022, 12, .	19.5	77
16	Temperature-dependence of calcination processes of Ni-rich layered oxides. Journal of Power Sources, 2022, 529, 231258.	7.8	3
17	A Cubic Mg2MnO4 Cathode for non-aqueous Magnesium Batteries. Energy Storage Materials, 2022, 48, 12-19.	18.0	14
18	Boosting high voltage cycling of LiCoO2 cathode via triisopropanolamine cyclic borate electrolyte additive Journal of Power Sources 2022 532 231372	7.8	14

#	Article	IF	CITATIONS
19	Dictating the interfacial stability of nickel-rich LiNi0.90Co0.05Mn0.05O2 via a diazacyclo electrolyte additive – 2-Fluoropyrazine. Journal of Colloid and Interface Science, 2022, 618, 431-441.	9.4	10
20	Stable cycling and fast charging of high-voltage lithium metal batteries enabled by functional solvation chemistry. Chemical Engineering Journal, 2022, 442, 136351.	12.7	23
21	Substantially Promoted Energy Density of Li CF _{<i>x</i>} Primary Battery Enabled by Li ⁺ -DMP Coordinated Structure. ACS Sustainable Chemistry and Engineering, 2022, 10, 6217-6229.	6.7	9
22	Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. National Science Review, 2022, 9, .	9.5	55
23	Guidelines for Air-Stable Lithium/Sodium Layered Oxide Cathodes. , 2022, 4, 1074-1086.		17
24	Combining NMR and molecular dynamics simulations for revealing the alkali-ion transport in solid-state battery materials. Current Opinion in Electrochemistry, 2022, 35, 101048.	4.8	1
25	Synthesis, Structure, Electrochemical Mechanisms, and Atmospheric Stability of Mn-Based Layered Oxide Cathodes for Sodium Ion Batteries. Accounts of Materials Research, 2022, 3, 709-720.	11.7	32
26	A machine learning protocol for revealing ion transport mechanisms from dynamic NMR shifts in paramagnetic battery materials. Chemical Science, 2022, 13, 7863-7872.	7.4	10
27	Mitigating the Surface Reconstruction of Ni-Rich Cathode <i>via</i> P2-Type Mn-Rich Oxide Coating for Durable Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 30398-30409.	8.0	7
28	In Situ Construction of a LiF-Enriched Interfacial Modification Layer for Stable All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2022, 14, 29878-29885.	8.0	5
29	Promoting the performances of P2-type sodium layered cathode by inducing Na site rearrangement. Nano Energy, 2022, 100, 107482.	16.0	25
30	Highly reversible Li ₂ RuO ₃ cathodes in sulfide-based all solid-state lithium batteries. Energy and Environmental Science, 2022, 15, 3470-3482.	30.8	17
31	Enhanced Cyclability of Lithium Metal Anodes Enabled by Anti-aggregation of Lithiophilic Seeds. Nano Letters, 2022, 22, 5874-5882.	9.1	26
32	Revealing the correlation between structure evolution and electrochemical performance of high-voltage lithium cobalt oxide. Journal of Energy Chemistry, 2021, 54, 786-794.	12.9	36
33	Counterâ€Intuitive Structural Instability Aroused by Transition Metal Migration in Polyanionic Sodium Ion Host. Advanced Energy Materials, 2021, 11, 2003256.	19.5	35
34	Modifying an ultrathin insulating layer to suppress lithium dendrite formation within garnet solid electrolytes. Journal of Materials Chemistry A, 2021, 9, 3576-3583.	10.3	36
35	A Case Study of Stereoisomerism with [6]Cyclo[4]helicenylenes. Chemistry Letters, 2021, 50, 110-112.	1.3	4
36	Bulk boron doping and surface carbon coating enabling fast-charging and stable Si anodes: from thin film to thick Si electrodes. Journal of Materials Chemistry A, 2021, 9, 3628-3636.	10.3	23

#	Article	IF	CITATIONS
37	Quantifying the reaction mechanisms of a high-capacity CuP ₂ /C composite anode for potassium ion batteries. Journal of Materials Chemistry A, 2021, 9, 6274-6283.	10.3	19
38	Modification and regulation of electrode/electrolyte interface for high specific energy and long life lithium ion batteries. Chinese Science Bulletin, 2021, 66, 1170-1186.	0.7	3
39	All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries. Energy and Environmental Science, 2021, 14, 5044-5056.	30.8	41
40	Pillar-beam structures prevent layered cathode materials from destructive phase transitions. Nature Communications, 2021, 12, 13.	12.8	85
41	Electrochemoâ€Mechanical Effects on Structural Integrity of Niâ€Rich Cathodes with Different Microstructures in All Solid‣tate Batteries. Advanced Energy Materials, 2021, 11, 2003583.	19.5	112
42	Reversible potassium storage in ultrafine CF : A superior cathode material for potassium batteries and its mechanism. Journal of Energy Chemistry, 2021, 53, 347-353.	12.9	16
43	Research progress of fluorine-containing electrolyte additives for lithium ion batteries. Journal of Power Sources Advances, 2021, 7, 100043.	5.1	55
44	Kinetics of lithium dendrite growth in garnet-type solid electrolyte. Journal of Power Sources, 2021, 487, 229421.	7.8	23
45	Enhanced Cycle Life and Rate Capability of Single-Crystal, Ni-Rich LiNi _{0.9} Co _{0.05} Mn _{0.05} O ₂ Enabled by 1,2,4-1 <i>H</i> -Triazole Additive. ACS Applied Materials & Interfaces, 2021, 13, 16427-16436.	8.0	53
46	Insight into Ion Diffusion Dynamics/Mechanisms and Electronic Structure of Highly Conductive Sodium-Rich Na _{3+<i>x</i>} La _{<i>x</i>} Zr _{2–<i>x</i>} Si ₂ PO ₁₂ (0 ≤ti>x ≤0.5) Solid-State Electrolytes. ACS Applied Materials & amp; Interfaces, 2021, 13, 13132-13136	8.0 8.	27
47	Fluorinated graphite nanosheets for ultrahigh-capacity lithium primary batteries. Rare Metals, 2021, 40, 1708-1718.	7.1	35
48	Interfacial compatibility issues in rechargeable solid-state lithium metal batteries: a review. Science China Chemistry, 2021, 64, 879-898.	8.2	28
49	Solidâ€State NMR and MRI Spectroscopy for Li/Na Batteries: Materials, Interface, and In Situ Characterization. Advanced Materials, 2021, 33, e2005878.	21.0	35
50	Stabilizing Ni-Rich LiNi _{0.83} Co _{0.12} Mn _{0.05} O ₂ with Cyclopentyl Isocyanate as a Novel Electrolyte Additive. ACS Applied Materials & Interfaces, 2021, 13, 12069-12078.	8.0	43
51	Unravelling the Fast Alkaliâ€lon Dynamics in Paramagnetic Battery Materials Combined with NMR and Deepâ€Potential Molecular Dynamics Simulation. Angewandte Chemie - International Edition, 2021, 60, 12547-12553.	13.8	16
52	Initial Stages of Oxidation Reactions of Ethylene Carbonate and Fluoroethylene Carbonate on Li _x CoO ₂ Surfaces: A DFT Study. Journal of the Electrochemical Society, 2021, 168, 050505.	2.9	11
53	Uniformity of Flat Li-Ion Batteries Studied by Diffraction and Imaging of X-rays and Neutrons. ACS Applied Energy Materials, 2021, 4, 3110-3117.	5.1	8
54	Unravelling the Fast Alkaliâ€Ion Dynamics in Paramagnetic Battery Materials Combined with NMR and Deepâ€Potential Molecular Dynamics Simulation. Angewandte Chemie, 2021, 133, 12655-12661.	2.0	0

#	Article	IF	CITATIONS
55	O3-Type NaCrO ₂ as a Superior Cathode Material for Sodium/Potassium-Ion Batteries Ensured by High Structural Reversibility. ACS Applied Materials & Interfaces, 2021, 13, 22635-22645.	8.0	20
56	Origin of High Ionic Conductivity of Scâ€Doped Sodiumâ€Rich NASICON Solidâ€State Electrolytes. Advanced Functional Materials, 2021, 31, 2102129.	14.9	49
57	State of health (SoH) estimation and degradation modes analysis of pouch NMC532/graphite Li-ion battery. Journal of Power Sources, 2021, 498, 229884.	7.8	24
58	Reversible Multi-Electron Storage Enabled by Na5V(PO4)2F2 for Rechargeable Magnesium Batteries. Energy Storage Materials, 2021, 38, 462-472.	18.0	21
59	Lithium Host:Advanced architecture components for lithium metal anode. Energy Storage Materials, 2021, 38, 276-298.	18.0	89
60	Insights of the Electrochemical Reversibility of P2-Type Sodium Manganese Oxide Cathodes via Modulation of Transition Metal Vacancies. ACS Applied Materials & Interfaces, 2021, 13, 38305-38314.	8.0	13
61	Engineering Na+-layer spacings to stabilize Mn-based layered cathodes for sodium-ion batteries. Nature Communications, 2021, 12, 4903.	12.8	109
62	Constructing a High-Energy and Durable Single-Crystal NCM811 Cathode for All-Solid-State Batteries by a Surface Engineering Strategy. ACS Applied Materials & Interfaces, 2021, 13, 41669-41679.	8.0	35
63	Interfacial Enhancement of Silicon-Based Anode by a Lactam-Type Electrolyte Additive. ACS Applied Energy Materials, 2021, 4, 10323-10332.	5.1	14
64	Understanding the effect of Nb substitution on Li-Mn-rich layered oxides. Electrochimica Acta, 2021, 390, 138801.	5.2	5
65	Enhanced Interfacial Stability of a LiNi _{0.9} Co _{0.05} Mn _{0.05} O ₂ Cathode by a Diboron Additive. ACS Applied Energy Materials, 2021, 4, 11051-11061.	5.1	18
66	In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes. Nature Communications, 2021, 12, 5320.	12.8	197
67	Fluorinated cyclic siloxane additives for high energy density Li-ion batteries with high nickel cathodes and silicon–carbon anodes. Journal of Power Sources, 2021, 511, 230437.	7.8	18
68	Tailoring the redox-active transition metal content to enhance cycling stability in cation-disordered rock-salt oxides. Energy Storage Materials, 2021, 43, 275-283.	18.0	11
69	Research Progresses of Sodium Cobalt Oxide as Cathode in Sodium Ion Batteries. Acta Chimica Sinica, 2021, 79, 1232.	1.4	3
70	Stabilizing the LiCoO ₂ Interface at High Voltage with an Electrolyte Additive 2,4,6-Tris(4-fluorophenyl)boroxin. ACS Sustainable Chemistry and Engineering, 2021, 9, 15042-15052.	6.7	22
71	Mechanistic Probing of Encapsulation and Confined Growth of Lithium Crystals in Carbonaceous Nanotubes. Advanced Materials, 2021, 33, e2105228.	21.0	14
72	Electrolyte Additive <i>cis</i> -1,2,3,6-Tetrahydrophthalic Anhydride Enhanced the Cycle Life of Nickel-Rich LiNi _{0.9} Co _{0.05} Mn _{0.05} O ₂ . ACS Applied Energy Materials, 2021, 4, 12275-12284.	5.1	15

#	Article	IF	CITATIONS
73	Enhancing the Reduction Kinetics of LiSF ₆ Batteries by Dispersed Cobalt Phthalocyanines on Porous Carbon. Small, 2021, 17, e2103778.	10.0	3
74	Compatibility of Various Electrolytes with Cation Disordered Rocksalt Cathodes in Lithium Ion Batteries. ACS Applied Energy Materials, 2021, 4, 10909-10920.	5.1	9
75	Linking the Defects to the Formation and Growth of Li Dendrite in Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2021, 11, 2102148.	19.5	61
76	A novel trimethylsilyl 2-(fluorosulfonyl)difluoroacetate additive for stabilizing the Ni-rich LiNi0.9Co0.05Mn0.05O2/electrolyte interface. Journal of Power Sources, 2021, 515, 230618.	7.8	30
77	Formulating a New Electrolyte: Synergy between Low-Polar and Non-polar Solvents in Tailoring the Solid Electrolyte Interface for the Silicon Anode. ACS Applied Materials & Interfaces, 2021, 13, 55700-55711.	8.0	7
78	Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Science Advances, 2021, 7, eabj3423.	10.3	84
79	Boosting the Energy Density of Li CF <i>_x</i> Primary Batteries Using a 1,3-Dimethyl-2-imidazolidinone-Based Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 57470-57480.	8.0	21
80	Exploring high-voltage fluorinated carbonate electrolytes for LiNi0.5Mn1.5O4 cathode in Li-ion batteries. Journal of Energy Chemistry, 2020, 42, 62-70.	12.9	51
81	Facile one-pot synthesis of low cost MnO2 nanosheet/Super P Li composites with high oxygen reduction reaction activity for Zn-air batteries. Journal of Power Sources, 2020, 448, 227385.	7.8	37
82	Unraveling (electro)-chemical stability and interfacial reactions of Li10SnP2S12 in all-solid-state Li batteries. Nano Energy, 2020, 67, 104252.	16.0	59
83	New Dimorphs of Na ₅ V(PO ₄) ₂ F ₂ as an Ultrastable Cathode Material for Sodium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 1181-1189.	5.1	16
84	Tailoring the interfaces of silicon/carbon nanotube for high rate lithium-ion battery anodes. Journal of Power Sources, 2020, 450, 227593.	7.8	45
85	Flexible free-standing sulfurized polyacrylonitrile electrode for stable Li/Na storage. Electrochimica Acta, 2020, 333, 135493.	5.2	29
86	Good practice guide for papers on supercapacitors and related hybrid capacitors for the Journal of Power Sources. Journal of Power Sources, 2020, 450, 227636.	7.8	41
87	Highly dispersed Ni ₂ P nanoparticles on N,P-codoped carbon for efficient cross-dehydrogenative coupling to access alkynyl thioethers. Green Chemistry, 2020, 22, 651-656.	9.0	16
88	Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy, 2020, 70, 104450.	16.0	397
89	Additives synergy for stable interface formation on rechargeable lithium metal anodes. Energy Storage Materials, 2020, 29, 377-385.	18.0	66
90	Highly-stable P2–Na0.67MnO2 electrode enabled by lattice tailoring and surface engineering. Energy Storage Materials, 2020, 26, 503-512.	18.0	101

YONG YANG

#	Article	IF	CITATIONS
91	SnSe2 nanocrystals coupled with hierarchical porous carbon microspheres for long-life sodium ion battery anode. Science China Materials, 2020, 63, 483-491.	6.3	30
92	Insights of the anionic redox in P2–Na0.67Ni0.33Mn0.67O2. Nano Energy, 2020, 78, 105285.	16.0	49
93	Li2S@NC composite enable high active material loading and high Li2S utilization for all-solid-state lithium sulfur batteries. Journal of Power Sources, 2020, 479, 228792.	7.8	21
94	Fieldâ€Induced Ferroelectric Hf _{1â€} <i>_x</i> Zr <i>_x</i> O ₂ Thin Films for Highâ€ <i>k</i> Dynamic Random Access Memory. Advanced Electronic Materials, 2020, 6, 2000631.	5.1	19
95	The stability of P2-layered sodium transition metal oxides in ambient atmospheres. Nature Communications, 2020, 11, 3544.	12.8	204
96	Fluorination effect for stabilizing cationic and anionic redox activities in cation-disordered cathode materials. Energy Storage Materials, 2020, 32, 234-243.	18.0	42
97	Rh-catalyzed highly regioselective hydroformylation to linear aldehydes by employing porous organic polymer as a ligand. RSC Advances, 2020, 10, 29263-29267.	3.6	16
98	Mn ⁴⁺ -Substituted Li-Rich Li _{1.2} Mn _{0.4} ³⁺ Mn <i>_x</i> ⁴⁺ Ti _{0.4–<i Materials with High Energy Density. ACS Applied Materials & Interfaces, 2020, 12, 40347-40354.</i }	⊳x <b &⊚/sub	>Qtssub>2 </td
99	Suppression of voltage-decay in Li ₂ MnO ₃ cathode <i>via</i> reconstruction of layered-spinel coexisting phases. Journal of Materials Chemistry A, 2020, 8, 18687-18697.	10.3	10
10	Visualizing the growth process of sodium microstructures in sodium batteries by in-situ 23Na MRI and NMR spectroscopy. Nature Nanotechnology, 2020, 15, 883-890.	31.5	95
10	Advances in soft X-ray RIXS for studying redox reaction states in batteries. Dalton Transactions, 2020, 49, 13519-13527.	3.3	19
10	2 Enabling Stable Highâ€Voltage LiCoO ₂ Operation by Using Synergetic Interfacial Modification Strategy. Advanced Functional Materials, 2020, 30, 2004664.	14.9	119
10	3 Interfaces in Garnetâ€Based Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2020, 10, 20013	18. 19.5	85
10	Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques. Energy and Environmental Science, 2020, 13, 4450-4497.	30.8	219
10	On the Interface Design of Si and Multilayer Graphene for a High-Performance Li-Ion Battery Anode. ACS Applied Materials & amp; Interfaces, 2020, 12, 44840-44849.	8.0	36
10	A facile synthesis of non-aqueous LiPO2F2 solution as the electrolyte additive for high performance lithium ion batteries. Chinese Chemical Letters, 2020, 31, 3209-3212.	9.0	19
10	Chemomechanical Failure Mechanism Study in NASICON-Type 7 Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ Solid-State Lithium Batteries. Chemistry of Materials, 2020, 32, 4998-5008.	6.7	104
10	 Synthesis and stereoisomerism of [n]cyclo-2,9-phenanthrenylene congeners possessing alternating E/Z- and R/S-biaryl linkages. Organic and Biomolecular Chemistry, 2020, 18, 4949-4955. 	2.8	3

#	Article	IF	CITATIONS
109	Al and Fe-containing Mn-based layered cathode with controlled vacancies for high-rate sodium ion batteries. Nano Energy, 2020, 76, 104997.	16.0	54
110	Optimized Al Doping Improves Both Interphase Stability and Bulk Structural Integrity of Ni-Rich NMC Cathode Materials. ACS Applied Energy Materials, 2020, 3, 3369-3377.	5.1	66
111	Highly-efficient conversion of SF6 via an eight-electron transfer process in lithium batteries. Nano Energy, 2020, 72, 104679.	16.0	10
112	Restraining the polarization increase of Ni-rich and low-Co cathodes upon cycling by Al-doping. Journal of Materials Chemistry A, 2020, 8, 6893-6901.	10.3	100
113	Soft-Mode Parameter as an Indicator for the Activation Energy Spectra in Metallic Glass. Journal of Physical Chemistry Letters, 2020, 11, 2781-2787.	4.6	8
114	Revealing the correlation between structural evolution and Li ⁺ diffusion kinetics of nickel-rich cathode materials in Li-ion batteries. Journal of Materials Chemistry A, 2020, 8, 8540-8547.	10.3	132
115	Anionic Redox Processes in Maricite- and Triphylite-NaFePO ₄ of Sodium-Ion Batteries. ACS Omega, 2020, 5, 5192-5201.	3.5	16
116	Recognition of V3+/V4+/V5+ Multielectron Reactions in Na3V(PO4)2: A Potential High Energy Density Cathode for Sodium-Ion Batteries. Molecules, 2020, 25, 1000.	3.8	7
117	Construction of a Stable LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ (NCM811) Cathode Interface by a Multifunctional Organosilicon Electrolyte Additive. ACS Applied Energy Materials, 2020, 3, 2837-2845.	5.1	80
118	Identifying the anionic redox activity in cation-disordered Li _{1.25} Nb _{0.25} Fe _{0.50} O ₂ /C oxide cathodes for Li-ion batteries. Journal of Materials Chemistry A, 2020, 8, 5115-5127.	10.3	32
119	Advanced characterization techniques for solid state lithium battery research. Materials Today, 2020, 36, 139-157.	14.2	86
120	Tuning Oxygen Redox Reaction through the Inductive Effect with Proton Insertion in Li-Rich Oxides. ACS Applied Materials & Interfaces, 2020, 12, 7277-7284.	8.0	33
121	Cood practice guide for papers on batteries for the Journal of Power Sources. Journal of Power Sources, 2020, 452, 227824.	7.8	34
122	Recent advances and historical developments of high voltage lithium cobalt oxide materials for rechargeable Li-ion batteries. Journal of Power Sources, 2020, 460, 228062.	7.8	150
123	Ab initio calculations on the electronic structures and electrochemical properties of LiVO2 and NaVO2. Journal of Solid State Chemistry, 2020, 288, 121383.	2.9	3
124	Low temperature growth of graphitic carbon on porous silicon for high-capacity lithium energy storage. Journal of Power Sources, 2020, 463, 228245.	7.8	13
125	Electrochemical investigation of multi-electron reactions in NaVOPO4 cathode for sodium-ion batteries. Electrochimica Acta, 2020, 351, 136454.	5.2	17
126	High-Efficiency Lithium Metal Anode Enabled by a Concentrated/Fluorinated Ester Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 27794-27802.	8.0	31

#	Article	IF	CITATIONS
127	Synthesis of Single Crystal LiNi _{0.92} Co _{0.06} Mn _{0.01} Al _{0.01} O ₂ Cathode Materials with Superior Electrochemical Performance for Lithium Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 120514.	2.9	21
128	Insights into the lithiation mechanism of CF _x by a joint high-resolution ¹⁹ F NMR, <i>in situ</i> TEM and ⁷ Li NMR approach. Journal of Materials Chemistry A, 2019, 7, 19793-19799.	10.3	33
129	Scaling the Equivalent Oxide Thickness by Employing a TiO ₂ Thin Film on a ZrO ₂ –Al ₂ O ₃ â€Based Dielectric for Further Scaling of Dynamic Random Access Memory. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900282.	2.4	9
130	Exploring the high-voltage Mg ²⁺ /Na ⁺ co-intercalation reaction of Na ₃ VCr(PO ₄) ₃ in Mg-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18081-18091.	10.3	29
131	Double-shelled microscale porous Si anodes for stable lithium-ion batteries. Journal of Power Sources, 2019, 436, 226794.	7.8	24
132	Elucidating and Mitigating the Degradation of Cationic–Anionic Redox Processes in Li _{1.2} Mn _{0.4} Ti _{0.4} O ₂ Cation-Disordered Cathode Materials. ACS Applied Materials & Interfaces, 2019, 11, 45674-45682.	8.0	31
133	P2â€Na _{0.67} Al _{<i>x</i>} Mn _{1â^`<i>x</i>} O ₂ : Costâ€Effective, Stable and Highâ€Rate Sodium Electrodes by Suppressing Phase Transitions and Enhancing Sodium Cation Mobility. Angewandte Chemie - International Edition, 2019, 58, 18086-18095.	13.8	127
134	P2â€Na 0.67 Al x Mn 1â^' x O 2 : Costâ€Effective, Stable and Highâ€Rate Sodium Electrodes by Suppressing Phase Transitions and Enhancing Sodium Cation Mobility. Angewandte Chemie, 2019, 131, 18254-18263.	² 2.0	9
135	Superior Stability Secured by a Four-Phase Cathode Electrolyte Interface on a Ni-Rich Cathode for Lithium Ion Batteries. ACS Applied Materials & amp; Interfaces, 2019, 11, 36742-36750.	8.0	76
136	Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nature Communications, 2019, 10, 4244.	12.8	219
137	MXene/Si@SiO _{<i>x</i>} @C Layer-by-Layer Superstructure with Autoadjustable Function for Superior Stable Lithium Storage. ACS Nano, 2019, 13, 2167-2175.	14.6	154
138	Reduction of the Hysteresis Voltage in Atomicâ€Layerâ€Deposited pâ€Type SnO Thinâ€Film Transistors by Adopting an Al ₂ O ₃ Interfacial Layer. Advanced Electronic Materials, 2019, 5, 1900371.	5.1	23
139	Toward a durable solid electrolyte film on the electrodes for Li-ion batteries with high performance. Nano Energy, 2019, 63, 103815.	16.0	60
140	Novel Ordered Rocksalt-Type Lithium-Rich Li ₂ Ru _{1–<i>x</i>} Ni _{<i>x</i>} O _{3â^î^} (0.3 ≤i>x â‰ฃ.5 Cathode Material with Tunable Anionic Redox Potential. ACS Applied Energy Materials, 2019, 2, 5933-5944.	5) _{5.1}	22
141	Structure-Performance Relationship of Zn ²⁺ Substitution in P2–Na _{0.66} Ni _{0.33} Mn _{0.67} O ₂ with Different Ni/Mn Ratios for High-Energy Sodium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 4914-4924.	5.1	39
142	Poly(ethylene oxide)–Li ₁₀ SnP ₂ S ₁₂ Composite Polymer Electrolyte Enables High-Performance All-Solid-State Lithium Sulfur Battery. ACS Applied Materials & Interfaces, 2019, 11, 22745-22753.	8.0	108
143	Impact of Structural Transformation on Electrochemical Performances of Li-Rich Cathode Materials: The Case of Li ₂ RuO ₃ . Journal of Physical Chemistry C, 2019, 123, 13491-13499.	3.1	29
144	In Situ Generated Li ₂ S–C Nanocomposite for High-Capacity and Long-Life All-Solid-State Lithium Sulfur Batteries with Ultrahigh Areal Mass Loading. Nano Letters, 2019, 19, 3280-3287.	9.1	98

#	Article	IF	CITATIONS
145	Stable Cycling Lithium–Sulfur Solid Batteries with Enhanced Li/Li ₁₀ GeP ₂ S ₁₂ Solid Electrolyte Interface Stability. ACS Applied Materials & Interfaces, 2019, 11, 18436-18447.	8.0	82
146	Intrinsic Role of Cationic Substitution in Tuning Li/Ni Mixing in High-Ni Layered Oxides. Chemistry of Materials, 2019, 31, 2731-2740.	6.7	85
147	Mixed-conducting interlayer boosting the electrochemical performance of Ni-rich layered oxide cathode materials for lithium ion batteries. Journal of Power Sources, 2019, 421, 91-99.	7.8	101
148	A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity. Energy Storage Materials, 2019, 23, 514-521.	18.0	97
149	Recent Progress in All-Solid-State Lithiumâ^'Sulfur Batteries Using High Li-Ion Conductive Solid Electrolytes. Electrochemical Energy Reviews, 2019, 2, 199-230.	25.5	179
150	Comprehensive Understanding of Reduction Mechanisms of Ethylene Sulfite in EC-Based Lithium-Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 5871-5880.	3.1	14
151	Degradation mechanisms of C6/LiNi0.5Mn0.3Co0.2O2 Li-ion batteries unraveled by non-destructive and post-mortem methods. Journal of Power Sources, 2019, 416, 163-174.	7.8	40
152	Equilibrium crystal shape of GaAs and InAs considering surface vibration and new (111)B reconstruction: ab-initio thermodynamics. Scientific Reports, 2019, 9, 1127.	3.3	16
153	Identification of the Solid Electrolyte Interface on the Si/C Composite Anode with FEC as the Additive. ACS Applied Materials & Interfaces, 2019, 11, 14066-14075.	8.0	110
154	Comparative study on the electronic structures and redox reactions in LiCrX ₂ and NaCrX ₂ (X = O and S). RSC Advances, 2019, 9, 36867-36874.	3.6	2
155	Capacity fading induced by phase conversion hysteresis within alloying phosphorus anode. Nano Energy, 2019, 58, 560-567.	16.0	43
156	Research Progress in Multielectron Reactions in Polyanionic Materials for Sodiumâ€ion Batteries. Small Methods, 2019, 3, 1800221.	8.6	54
157	Scalable Engineering of Bulk Porous Si Anodes for High Initial Efficiency and High-Areal-Capacity Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 714-721.	8.0	30
158	Controlling the Electrical Characteristics of ZrO ₂ /Al ₂ O ₃ /ZrO ₂ Capacitors by Adopting a Ru Top Electrode Grown via Atomic Layer Deposition. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800454.	2.4	23
159	Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process. Journal of Power Sources, 2019, 412, 336-343.	7.8	109
160	Quantitative Analysis of the Incorporation Behaviors of Sr and Ti Atoms During the Atomic Layer Deposition of SrTiO ₃ Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 8836-8844.	8.0	15
161	Rational Design of MXene/1Tâ€2H MoS ₂ â€C Nanohybrids for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707578.	14.9	309
162	The application of synchrotron X-ray techniques to the study of rechargeable batteries. Journal of Energy Chemistry, 2018, 27, 1566-1583.	12.9	55

#	Article	IF	CITATIONS
163	Advanced Characterization Techniques for Sodiumâ€ion Battery Studies. Advanced Energy Materials, 2018, 8, 1702588.	19.5	122
164	Toward a stable solid-electrolyte-interfaces on nickel-rich cathodes: LiPO 2 F 2 salt-type additive and its working mechanism for LiNi 0.5 Mn 0.25 Co 0.25 O 2 cathodes. Journal of Power Sources, 2018, 380, 149-157.	7.8	116
165	Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy and Environmental Science, 2018, 11, 669-681.	30.8	329
166	Insights into the Electrochemical Reaction Mechanism of a Novel Cathode Material CuNi ₂ (PO ₄) ₂ /C for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 3522-3529.	8.0	7
167	Simultaneous Stabilization of LiNi _{0.76} Mn _{0.14} Co _{0.10} O ₂ Cathode and Lithium Metal Anode by Lithium Bis(oxalato)borate as Additive. ChemSusChem, 2018, 11, 2211-2220.	6.8	89
168	Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li Batteries. ACS Energy Letters, 2018, 3, 1212-1218.	17.4	321
169	High Voltage Operation of Niâ€Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases. Advanced Energy Materials, 2018, 8, 1800297.	19.5	298
170	Capitalization of interfacial AlON interactions to achieve stable binder-free porous silicon/carbon anodes. Journal of Materials Chemistry A, 2018, 6, 7449-7456.	10.3	15
171	A high-performance ternary Si composite anode material with crystal graphite core and amorphous carbon shell. Journal of Power Sources, 2018, 384, 328-333.	7.8	51
172	Exploring the design of eutectic or near-eutectic multicomponent alloys: From binary to high entropy alloys. Science China Technological Sciences, 2018, 61, 159-167.	4.0	39
173	Modeling the degradation mechanisms of C6/LiFePO4 batteries. Journal of Power Sources, 2018, 375, 106-117.	7.8	30
174	Toward understanding of ion dynamics in highly conductive lithium ion conductors: Some perspectives by solid state NMR techniques. Solid State Ionics, 2018, 318, 19-26.	2.7	40
175	Solid–Liquid Interfacial Reaction Trigged Propagation of Phase Transition from Surface into Bulk Lattice of Ni-Rich Layered Cathode. Chemistry of Materials, 2018, 30, 7016-7026.	6.7	80
176	Revealing Cycling Rate-Dependent Structure Evolution in Ni-Rich Layered Cathode Materials. ACS Energy Letters, 2018, 3, 2433-2440.	17.4	92
177	The Roles of Sulfur-Containing Additives and Their Working Mechanism on the Temperature-Dependent Performances of Li-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A2792-A2800.	2.9	31
178	Structural elucidation of supported Rh complexes derived from RhCl(PPh3)3 immobilized on surface-functionalized SBA-15 and their catalytic performance for C-heteroatom (S, O) bond formation. Journal of Catalysis, 2018, 365, 43-54.	6.2	20
179	Enhanced Electrochemical Performance of High-Energy Lithium-Sulfur Batteries Using an Electrolyte with 1,1,2,2-Tetrafluoro-3-(1,1,2,2-tetrafluoroethoxy)propane. Journal of the Electrochemical Society, 2018, 165, A1915-A1919.	2.9	12
180	Novel 3.9 V Layered Na ₃ V ₃ (PO ₄) ₄ Cathode Material for Sodium Ion Batteries. ACS Applied Energy Materials, 2018, 1, 3603-3606.	5.1	23

#	Article	IF	CITATIONS
181	Identifying the Structural Evolution of the Sodium Ion Battery Na ₂ FePO ₄ F Cathode. Angewandte Chemie - International Edition, 2018, 57, 11918-11923.	13.8	79
182	Identifying the Structural Evolution of the Sodium Ion Battery Na ₂ FePO ₄ F Cathode. Angewandte Chemie, 2018, 130, 12094-12099.	2.0	22
183	Stabilizing Li ₁₀ SnP ₂ S ₁₂ /Li Interface via an in Situ Formed Solid Electrolyte Interphase Layer. ACS Applied Materials & Interfaces, 2018, 10, 25473-25482.	8.0	103
184	Observation of Solid-Liquid Interfacial Reactions Controlled Bulk Phase Transition of Ni-rich Layered Cathode. Microscopy and Microanalysis, 2018, 24, 1522-1523.	0.4	1
185	Controlling Surface Oxides in Si/C Nanocomposite Anodes for Highâ€Performance Liâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1801718.	19.5	190
186	Electrical Properties of ZrO ₂ /Al ₂ O ₃ /ZrO ₂ â€Based Capacitors with TiN, Ru, and TiN/Ru Top Electrode Materials. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800356.	2.4	16
187	Sodium storage behavior of Na0.66Ni0.33Ë—xZnxMn0.67O2 (x = 0, 0.07 and 0.14) positive materials in diglyme-based electrolytes. Journal of Power Sources, 2018, 400, 317-324.	7.8	21
188	Configuration correlation governs slow dynamics of supercooled metallic liquids. Proceedings of the United States of America, 2018, 115, 6375-6380.	7.1	43
189	Temperature-dependent cycling performance and ageing mechanisms of C6/LiNi1/3Mn1/3Co1/3O2 batteries. Journal of Power Sources, 2018, 396, 444-452.	7.8	55
190	Pressure effects on structure and dynamics of metallic glass-forming liquid. Journal of Chemical Physics, 2017, 146, 024507.	3.0	49
191	Reversible multi-electron redox chemistry ofÂï€-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nature Energy, 2017, 2, .	39.5	486
192	Toward a stable electrochemical interphase with enhanced safety on high-voltage LiCoO 2 cathode: A case of phosphazene additives. Journal of Power Sources, 2017, 359, 391-399.	7.8	62
193	Novel insights into higher capacity from the Li-ion battery cathode material Li 2 FeSiO 4. Electrochimica Acta, 2017, 223, 109-114.	5.2	16
194	Recent advances in the research of functional electrolyte additives for lithium-ion batteries. Current Opinion in Electrochemistry, 2017, 6, 84-91.	4.8	63
195	Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in Highâ€Ni Layered Oxide Cathodes. Advanced Materials, 2017, 29, 1606715.	21.0	127
196	Surface reconstruction of InAs (001) depending on the pressure and temperature examined by density functional thermodynamics. Scientific Reports, 2017, 7, 10691.	3.3	14
197	Exploring Highly Reversible 1.5-Electron Reactions (V ³⁺ /V ⁴⁺ /V ⁵⁺) in Na ₃ VCr(PO ₄) ₃ Cathode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 43632-43639.	8.0	134
198	In Situ Monitoring of Structural and Valence Evolution during Electrochemical Desodiation/Sodiation Process of Na ₂ Fe _{0.5} Mn _{0.5} PO ₄ F. Journal of the Electrochemical Society, 2017, 164, A3487-A3492.	2.9	17

#	Article	IF	CITATIONS
199	Nanoscale chemical imaging of the additive effects on the interfaces of high-voltage LiCoO ₂ composite electrodes. Chemical Communications, 2017, 53, 8581-8584.	4.1	24
200	Synthesis and Electrochemical Performance of Lithium Rich Cathode Materials xLi3NbO4·(1-x)LiMO2 (M=Mn, Co; 0 x 1) for Li-ion Batteries. Acta Chimica Sinica, 2017, 75, 212.	1.4	1
201	Preparation of LiCoMnO ₄ Assisted by Hydrothermal Approach and its Electrochemical Performance. American Journal of Engineering and Applied Sciences, 2016, 9, 396-405.	0.6	3
202	High Sensitivity, Wearable, Piezoresistive Pressure Sensors Based on Irregular Microhump Structures and Its Applications in Body Motion Sensing. Small, 2016, 12, 3827-3836.	10.0	177
203	Grapheneâ€Encapsulated Nanosheetâ€Assembled Zinc–Nickel–Cobalt Oxide Microspheres for Enhanced Lithium Storage. ChemSusChem, 2016, 9, 186-196.	6.8	35
204	Thermodynamic scaling of glassy dynamics and dynamic heterogeneities in metallic glass-forming liquid. Journal of Chemical Physics, 2016, 145, 104503.	3.0	18
205	Mechanistic Insights and Implications of Dearomative Rearrangement in Copper-Free Sonogashira Cross-Coupling Catalyzed by Pd-Cy*Phine. Organometallics, 2016, 35, 1036-1045.	2.3	19
206	Exploring the working mechanism of Li ⁺ in O3-type NaLi _{0.1} Ni _{0.35} Mn _{0.55} O ₂ cathode materials for rechargeable Na-ion batteries. Journal of Materials Chemistry A, 2016, 4, 9054-9062.	10.3	92
207	Nanostructured Black Phosphorus/Ketjenblack–Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries. Nano Letters, 2016, 16, 3955-3965.	9.1	246
208	Graphene-Encapsulated Nanosheet-Assembled Zinc-Nickel-Cobalt Oxide Microspheres for Enhanced Lithium Storage. ChemSusChem, 2016, 9, 128-128.	6.8	0
209	Robust diamond-like Fe-Si network in the zero-strain Na FeSiO4 cathode. Electrochimica Acta, 2016, 212, 934-940.	5.2	30
210	A Highly Efficient and Selfâ€Stabilizing Metallicâ€Class Catalyst for Electrochemical Hydrogen Generation. Advanced Materials, 2016, 28, 10293-10297.	21.0	195
211	Sol-gel synthesis of Na4Fe3(PO4)2(P2O7)/C nanocomposite for sodium ion batteries and new insights into microstructural evolution during sodium extraction. Journal of Power Sources, 2016, 327, 666-674.	7.8	99
212	Decarboxylative/Sonogashira-type cross-coupling using PdCl ₂ (Cy*Phine) ₂ . RSC Advances, 2016, 6, 72810-72814.	3.6	16
213	Amorphous Li ₂ O ₂ : Chemical Synthesis and Electrochemical Properties. Angewandte Chemie - International Edition, 2016, 55, 10717-10721.	13.8	135
214	N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray-dried Si/graphite composite anode material for lithium ion batteries. Journal of Alloys and Compounds, 2016, 689, 130-137.	5.5	71
215	Degradation Mechanisms of C6/LiFePO4 Batteries: Experimental Analyses of Cycling-induced Aging. Electrochimica Acta, 2016, 210, 445-455.	5.2	53
216	Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 22227-22237.	8.0	177

#	Article	IF	CITATIONS
217	Cu3(PO4)2/C composite as a high-capacity cathode material for rechargeable Na-ion batteries. Nano Energy, 2016, 27, 420-429.	16.0	30
218	Amorphous Li ₂ O ₂ : Chemical Synthesis and Electrochemical Properties. Angewandte Chemie, 2016, 128, 10875-10879.	2.0	37
219	Approaching the ideal elastic strain limit in silicon nanowires. Science Advances, 2016, 2, e1501382.	10.3	169
220	Degradation Mechanisms of the Graphite Electrode in C ₆ /LiFePO ₄ Batteries Unraveled by a Non-Destructive Approach. Journal of the Electrochemical Society, 2016, 163, A3016-A3021.	2.9	35
221	Enhancing the energy density of safer Li-ion batteries by combining high-voltage lithium cobalt fluorophosphate cathodes and nanostructured titania anodes. Scientific Reports, 2016, 6, 20656.	3.3	22
222	Carbon-coated Si micrometer particles binding to reduced graphene oxide for a stable high-capacity lithium-ion battery anode. Journal of Materials Chemistry A, 2016, 4, 17757-17763.	10.3	25
223	Zero-Strain Na ₂ FeSiO ₄ as Novel Cathode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 17233-17238.	8.0	101
224	Synthesis and Reaction Mechanism of Novel Fluorinated Carbon Fiber as a High-Voltage Cathode Material for Rechargeable Na Batteries. Chemistry of Materials, 2016, 28, 1026-1033.	6.7	53
225	Degradation Mechanisms of C6/LiFePO4 Batteries: Experimental Analyses of Calendar Aging. Electrochimica Acta, 2016, 190, 1124-1133.	5.2	65
226	Rate Dependence of Serrated Flow and Its Effect on Shear Stability of Bulk Metallic Glasses. Journal of Iron and Steel Research International, 2016, 23, 24-30.	2.8	11
227	Critical Shear Offset of Fracture in a Zr-based Metallic Glass. Journal of Iron and Steel Research International, 2016, 23, 53-56.	2.8	6
228	NiSi _{<i>x</i>} /a-Si Nanowires with Interfacial a-Ge as Anodes for High-Rate Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 673-679.	8.0	11
229	Exploring a Li-ion battery using surface modified titania nanotubes versus high voltage cathode nanowires. Journal of Power Sources, 2016, 303, 194-202.	7.8	16
230	Interfacial nitrogen stabilizes carbon-coated mesoporous silicon particle anodes. Journal of Materials Chemistry A, 2016, 4, 434-442.	10.3	37
231	Enhanced ionic conductivity of Li3.5Si0.5P0.5O4 with addition of lithium borate. Solid State Ionics, 2015, 283, 109-114.	2.7	14
232	P2-type Na 0.66 Ni 0.33–x Zn x Mn 0.67 O 2 as new high-voltage cathode materials for sodium-ion batteries. Journal of Power Sources, 2015, 281, 18-26.	7.8	279
233	Synthesis and characterization of urchin-like Mn 0.33 Co 0.67 C 2 O 4 for Li-ion batteries: Role of SEI layers for enhanced electrochemical properties. Electrochimica Acta, 2015, 163, 93-101.	5.2	58
234	A Peanut Shell Inspired Scalable Synthesis of Three-Dimensional Carbon Coated Porous Silicon Particles as an Anode for Lithium-Ion Batteries. Electrochimica Acta, 2015, 156, 11-19.	5.2	54

#	Article	IF	CITATIONS
235	Modeling the SEI-Formation on Graphite Electrodes in LiFePO ₄ Batteries. Journal of the Electrochemical Society, 2015, 162, A858-A869.	2.9	92
236	Structural heterogeneity and deformation rheology in metallic glasses. Science China Technological Sciences, 2015, 58, 47-55.	4.0	13
237	Palladium precatalysts containing meta-terarylphosphine ligands for expedient copper-free Sonogashira cross-coupling reactions. Catalysis Science and Technology, 2015, 5, 3501-3506.	4.1	20
238	Copper Phosphate as a Cathode Material for Rechargeable Li Batteries and Its Electrochemical Reaction Mechanism. Chemistry of Materials, 2015, 27, 5736-5744.	6.7	32
239	Mechanical Switching of Nanoscale Multiferroic Phase Boundaries. Advanced Functional Materials, 2015, 25, 3405-3413.	14.9	38
240	Toward a stabilized lattice framework and surface structure of layered lithium-rich cathode materials with Ti modification. Physical Chemistry Chemical Physics, 2015, 17, 10151-10159.	2.8	31
241	Electrochemical Behavior of Suberonitrile as a High-Potential Electrolyte Additive and Co-Solvent for Li[Li _{0.2} Mn _{0.56} Ni _{0.16} Co _{0.08}]O ₂ Cathode Material, Journal of the Electrochemical Society, 2015, 162, A774-A780,	2.9	34
242	lon diffusion mechanism in Pn Na _x Li _{2â^'x} MnSiO ₄ . CrystEngComm, 2015, 17, 2123-2128.	2.6	21
243	Spray-Drying Synthesis of Pure Na2CoPO4F as Cathode Material for Sodium Ion Batteries. ECS Electrochemistry Letters, 2015, 4, A53-A55.	1.9	54
244	3D hierarchically porous zinc–nickel–cobalt oxide nanosheets grown on Ni foam as binder-free electrodes for electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 24022-24032.	10.3	67
245	Synergistic Effects of Suberonitrile-LiBOB Binary Additives on the Electrochemical Performance of High-Voltage LiCoO ₂ Electrodes. Journal of the Electrochemical Society, 2015, 162, A7015-A7023.	2.9	40
246	Toward Understanding the Lithium Transport Mechanism in Garnet-type Solid Electrolytes: Li ⁺ lon Exchanges and Their Mobility at Octahedral/Tetrahedral Sites. Chemistry of Materials, 2015, 27, 6650-6659.	6.7	107
247	The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. Applied Physics Letters, 2014, 104, .	3.3	268
248	Increased Capacity of LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ –Li[Li _{1/3} Mn _{2/3 Cathodes by MnO_{<i>x</i>}â€surface Modification for Lithiumâ€lon Batteries. Energy Technology, 2014, 2, 188-193.}]0	sup>2
249	(Invited) Electron Tunneling Based SEI Formation Model. ECS Transactions, 2014, 62, 1-8.	0.5	6
250	The synergistic effects of Al and Te on the structure and Li ⁺ -mobility of garnet-type solid electrolytes. Journal of Materials Chemistry A, 2014, 2, 20271-20279.	10.3	83
251	Hydrothermal synthesis, self-assembly and electrochemical performance of α-Fe2O3 microspheres for lithium ion batteries. Ceramics International, 2014, 40, 10283-10290.	4.8	46
252	Comparative investigation on the properties of carbon-supported cobalt-polypyrrole pyrolyzed at various conditions as electrocatalyst towards oxygen reduction reaction. International Journal of Hydrogen Energy, 2014, 39, 15937-15947.	7.1	9

#	Article	IF	CITATIONS
253	Toward high capacity and stable manganese-spinel electrode materials: A case study of Ti-substituted system. Journal of Power Sources, 2014, 245, 570-578.	7.8	59
254	Improved lithium ion battery performance by mesoporous Co3O4 nanosheets grown on self-standing NiSix nanowires on nickel foam. Journal of Materials Chemistry A, 2014, 2, 8483.	10.3	48
255	Facilitated Li ⁺ ion transfer across the water/1,2-dichloroethane interface by the solvation effect. Chemical Communications, 2014, 50, 1015-1017.	4.1	21
256	Promoting long-term cycling performance of high-voltage Li ₂ CoPO ₄ F by the stabilization of electrode/electrolyte interface. Journal of Materials Chemistry A, 2014, 2, 1006-1013.	10.3	38
257	A Versatile and Efficient Palladium– <i>meta</i> â€Terarylphosphine Catalyst for the Copperâ€Free Sonogashira Coupling of (Heteroâ€)Aryl Chlorides and Alkynes. European Journal of Organic Chemistry, 2014, 2014, 7184-7192.	2.4	20
258	Synergistically reinforced lithium storage performance of in situ chemically grown silicon@silicon oxide core–shell nanowires on three-dimensional conductive graphitic scaffolds. Journal of Materials Chemistry A, 2014, 2, 13859.	10.3	18
259	Recent Progress in Research on Highâ€Voltage Electrolytes for Lithiumâ€ion Batteries. ChemPhysChem, 2014, 15, 1956-1969.	2.1	219
260	Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na ₃ V ₂ (PO ₄) ₂ F ₃ . Chemistry of Materials, 2014, 26, 2513-2521.	6.7	156
261	Mesoporous ZnCo 2 O 4 microspheres composed of ultrathin nanosheets cross-linked with metallic NiSi x nanowires on Ni foam as anodes for lithium ion batteries. Nano Energy, 2014, 10, 245-258.	16.0	76
262	Exploiting Na ₂ MnPO ₄ F as a high-capacity and well-reversible cathode material for Na-ion batteries. RSC Advances, 2014, 4, 40985-40993.	3.6	57
263	Understanding the structural and electronic properties of the cathode material NaFeF3 in a Na-ion battery. Journal of Solid State Electrochemistry, 2014, 18, 2071-2075.	2.5	14
264	Highly stereoselective anti-Markovnikov hydrothiolation of alkynes and electron-deficient alkenes by a supported Cu-NHC complex. Green Chemistry, 2014, 16, 3916-3925.	9.0	68
265	Yolk-shell ZnO-C microspheres with enhanced electrochemical performance as anode material for lithium ion batteries. Electrochimica Acta, 2014, 125, 659-665.	5.2	137
266	Effects of composition on electrochemical properties of a non-precious metal catalyst towards oxygen reduction reaction. International Journal of Hydrogen Energy, 2014, 39, 16006-16014.	7.1	7
267	Li[Li0.2Mn0.54Ni0.13Co0.13]O2–LiMn1.5Ti0.5O4 composite cathodes with improved electrochemical performance for lithium ion batteries. Electrochimica Acta, 2014, 133, 100-106.	5.2	22
268	Growth of Hierarchical 3D Mesoporous NiSi _{<i>x</i>} /NiCo ₂ O ₄ Core/Shell Heterostructures on Nickel Foam for Lithiumâ€ion Batteries. ChemSusChem, 2014, 7, 2325-2334.	6.8	58
269	Composite Materials: Threeâ€Dimensional Compressible and Stretchable Conductive Composites (Adv.) Tj ETQq	1 1 0.784 21.0	314 rgBT /O
270	Enhanced high temperature cycling performance of LiMn2O4/graphite cells with methylene methanedisulfonate (MMDS) as electrolyte additive and its acting mechanism. Journal of Energy Chemistry, 2014, 23, 383-390.	12.9	14

#	Article	IF	CITATIONS
271	Economical Synthesis and Promotion of the Electrochemical Performance of Silicon Nanowires as Anode Material in Li-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 1681-1687.	8.0	51
272	Addition of Sulfonic Acids to Terminal Alkynes Catalyzed by a Rhodium Complex: Ligand Concentrationâ€Controlled Reaction Selectivity. ChemCatChem, 2013, 5, 3005-3013.	3.7	22
273	Cu(i)-catalyzed aerobic cross-dehydrogenative coupling of terminal alkynes with thiols for the construction of alkynyl sulfides. Green Chemistry, 2013, 15, 3170.	9.0	68
274	Enhanced electrochemical performance of fluorinated carbon nanotube as cathode for Li–O2 primary batteries. Electrochimica Acta, 2013, 90, 186-193.	5.2	25
275	Effects of cobalt precursor on pyrolyzed carbon-supported cobalt-polypyrrole as electrocatalyst toward oxygen reduction reaction. Nanoscale Research Letters, 2013, 8, 478.	5.7	48
276	A Strategy to Improve Cyclic Performance of LiNi _{0.5} Mn _{1.5} O ₄ in a Wide Voltage Region by Ti-Doping. Journal of the Electrochemical Society, 2013, 160, A3036-A3040.	2.9	48
277	The states of methanol within Nafion and sulfonated poly(phenylene ether ether sulfone) membranes. Journal of Membrane Science, 2013, 428, 212-217.	8.2	13
278	Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation. Electrochimica Acta, 2013, 105, 200-208.	5.2	137
279	An Approach to Probe Solid Electrolyte Interface on Si Anode by 31P MAS NMR. ECS Electrochemistry Letters, 2013, 2, A115-A117.	1.9	6
280	Structural Stability and Electronic and Magnetic Properties of Fluorinated Bilayer Graphene. Journal of Physical Chemistry C, 2013, 117, 3572-3579.	3.1	38
281	In Situ Electrochemical XAFS Studies on an Iron Fluoride High-Capacity Cathode Material for Rechargeable Lithium Batteries. Journal of Physical Chemistry C, 2013, 117, 11498-11505.	3.1	51
282	Understanding the High Capacity of Li ₂ FeSiO ₄ : In Situ XRD/XANES Study Combined with First-Principles Calculations. Chemistry of Materials, 2013, 25, 2014-2020.	6.7	82
283	Atomic Layer Deposition of SrTiO ₃ Films with Cyclopentadienyl-Based Precursors for Metal–Insulator–Metal Capacitors. Chemistry of Materials, 2013, 25, 953-961.	6.7	69
284	Novel Phosphamide Additive to Improve Thermal Stability of Solid Electrolyte Interphase on Graphite Anode in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 11494-11497.	8.0	42
285	First-Principles Investigations on the Na ₂ MnPO ₄ F as a Cathode Material for Na-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A927-A932.	2.9	34
286	Synthesis and characterization of fluorinated carbon nanotubes for lithium primary batteries with high power density. Nanotechnology, 2013, 24, 424003.	2.6	37
287	Tris(hexafluoro-iso-propyl)phosphate as an SEI-Forming Additive on Improving the Electrochemical Performance of the Li[Li _{0.2} Mn _{0.56} Ni _{0.16} Co _{0.08}]O ₂ Cathode Material, Journal of the Electrochemical Society, 2013, 160, A285-A292.	2.9	112
288	Non-Destructive Monitoring of Charge-Discharge Cycles on Lithium Ion Batteries using 7Li Stray-Field Imaging. Scientific Reports, 2013, 3, 2596.	3.3	20

#	Article	IF	CITATIONS
289	Room Temperature Ionic Liquid as Electrolyte for Lithium-Ion Battery. ECS Transactions, 2013, 50, 57-68.	0.5	3
290	First-Principles Investigation on the Lithium Ion Insertion/Extraction in Trirutile LixFeF3. Electrochemistry, 2013, 81, 12-15.	1.4	8
291	Fluoroethylene Carbonate as an Electrolyte Additive for Improving the Performance of Mesocarbon Microbead Electrode. ECS Transactions, 2012, 41, 29-40.	0.5	32
292	Structural properties and energetics of Li2FeSiO4 polymorphs and their delithiated products from first-principles. Physical Chemistry Chemical Physics, 2012, 14, 7346.	2.8	47
293	Sulfoxidation on a SiO2-supported Ru complex using O2/aldehyde system. Dalton Transactions, 2012, 41, 4558.	3.3	8
294	Sol–gel synthesis of Li2CoPO4F/C nanocomposite as a high power cathode material for lithium ion batteries. Journal of Power Sources, 2012, 220, 122-129.	7.8	39
295	Solid-state STRAFI NMR probe for material imaging of quadrupolar nuclei. Journal of Magnetic Resonance, 2012, 225, 93-101.	2.1	14
296	Nanostructured 0.8Li2FeSiO4/0.4Li2SiO3/C composite cathode material with enhanced electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 12128.	6.7	64
297	Synthesis and characterization of in situ Fe2O3-coated FeF3 cathode materials for rechargeable lithium batteries. Journal of Materials Chemistry, 2012, 22, 24769.	6.7	40
298	Titanium phosphates as positive electrode in lithium-ion batteries: composition, phase purity and electrochemical performance. Journal of Solid State Electrochemistry, 2012, 16, 1461-1471.	2.5	11
299	The effects of N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide–based electrolyte on the electrochemical performance of high capacity cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2. Electrochimica Acta, 2012, 59, 14-22.	5.2	52
300	Synthesis of LiCoMnO4 via a sol–gel method and its application in high power LiCoMnO4/Li4Ti5O12 lithium-ion batteries. Journal of Power Sources, 2012, 202, 352-356.	7.8	35
301	Preparation and Catalytic Performances of a Molecularly Imprinted Ru omplex Catalyst with an NH ₂ Binding Site on a SiO ₂ Surface. Chemistry - A European Journal, 2012, 18, 1142-1153.	3.3	30
302	<italic>ln situ</italic> XRD and solid state NMR characterization of Na ₃ V ₂ (PO <sub as cathode material for lithium-ion batteries. Scientia Sinica Chimica, 2012, 42, 38-46.</sub 	&am ø;g t;48	amp;lt;/sub&a
303	Recent progress in several cathode materials for Li-ion batteries. Chinese Science Bulletin, 2012, 57, 2570-2586.	0.7	3
304	Synthesis of micro-nano hierarchical structured LiFePO4/C composite with both superior high-rate performance and high tap density. Nanoscale, 2011, 3, 4434.	5.6	58
305	Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) (PDBS) as a cathode material for lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 4125.	6.7	136
306	Highly regio- and stereoselective hydrothiolation of acetylenes with thiols catalyzed by a well-defined supported Rh complex. Chemical Communications, 2011, 47, 6557.	4.1	106

#	Article	IF	CITATIONS
307	Hydrothermal Synthesis of a Nanosized LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Cathode Material for High Power Lithium-Ion Batteries. Journal of the Electrochemical Society, 2011, 158, A139.	2.9	36
308	A novel Li2FeSiO4/C composite: Synthesis, characterization and high storage capacity. Journal of Materials Chemistry, 2011, 21, 9506.	6.7	150
309	Sol–gel synthesis and electrochemical properties of fluorophosphates Na2Fe1â^'xMnxPO4F/C (x = 0, 0.1,) Tj E 21, 18630.	TQq1 1 0. 6.7	784314 rgBT 88
310	Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy and Environmental Science, 2011, 4, 3223.	30.8	463
311	Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries. Journal of Power Sources, 2011, 196, 6657-6662.	7.8	186
312	Highly Efficient Activation of Molecular Oxygen with Nanoporous Metalloporphyrin Frameworks in Heterogeneous Systems. Advanced Materials, 2011, 23, 3149-3154.	21.0	151
313	A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery. Electrochimica Acta, 2011, 56, 3071-3078.	5.2	289
314	CMPs as Scaffolds for Constructing Porous Catalytic Frameworks: A Built-in Heterogeneous Catalyst with High Activity and Selectivity Based on Nanoporous Metalloporphyrin Polymers. Journal of the American Chemical Society, 2010, 132, 9138-9143.	13.7	506
315	Synthesis and characterization of Nafion/cross-linked PVP semi-interpenetrating polymer network membrane for direct methanol fuel cell. Journal of Membrane Science, 2010, 354, 189-197.	8.2	58
316	Silicon nanowires with and without carbon coating as anode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 1829-1834.	2.5	48
317	Electrochemical behavior of copper current collector in imidazolium-based ionic liquid electrolytes. Journal of Applied Electrochemistry, 2010, 40, 653-662.	2.9	19
318	The effects of quenching treatment and AlF3 coating on LiNi0.5Mn0.5O2 cathode materials for lithium-ion battery. Materials Chemistry and Physics, 2010, 119, 519-523.	4.0	43
319	Highly crystalline macroporous \hat{l}^2 -MnO2: Hydrothermal synthesis and application in lithium battery. Electrochimica Acta, 2010, 55, 4915-4920.	5.2	54
320	In-situ dilatometric study of Metal/Si multilayer film electrodes. Thin Solid Films, 2010, 519, 778-783.	1.8	23
321	Structural stability and electronic properties of LiNiN. Solid State Communications, 2010, 150, 669-674.	1.9	8
322	Spinel LiMn[sub 2â^'x]Ti[sub x]O[sub 4] (x=0.5,â€,0.8) with High Capacity and Enhanced Cycling Stability Synthesized by a Modified Sol-Gel Method. Electrochemical and Solid-State Letters, 2010, 13, A19.	2.2	17
323	Structural and Electronic Properties of Li-Ion Battery Cathode Material FeF ₃ . Journal of Physical Chemistry C, 2010, 114, 16813-16817.	3.1	59
324	Sodium-Ion-Assisted Hydrothermal Synthesis of γ-MnO[sub 2] and Its Electrochemical Performance. Journal of the Electrochemical Society, 2009, 156, A911.	2.9	14

#	Article	IF	CITATIONS
325	Preparation and electrochemical properties of Co3O4-coated layered manganese oxide by a novel coating method. Journal of Solid State Electrochemistry, 2009, 13, 697-703.	2.5	10
326	A novel inorganic/organic composite membrane tailored by various organic silane coupling agents for use in direct methanol fuel cells. Journal of Power Sources, 2009, 187, 332-340.	7.8	30
327	Hydrothermal synthesis of LiMn2O4/C composite as a cathode for rechargeable lithium-ion battery with excellent rate capability. Electrochimica Acta, 2009, 54, 5363-5367.	5.2	80
328	A comparison of electrochemical performance of natural graphite sulfurized by ball-milling and heat-treating as an anode for lithium ion batteries. Electrochimica Acta, 2009, 54, 6792-6796.	5.2	14
329	Effects of radio-frequency sputtering powers on the microstructures and electrochemical properties of LiCoO2 thin film electrodes. Journal of Power Sources, 2009, 189, 633-637.	7.8	33
330	Structural stabilities, electronic structures and lithium deintercalation in LixMSiO4 (M=Mn, Fe, Co,) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
331	Vinyl ethylene sulfite as a new additive in propylene carbonate-based electrolyte for lithium ion batteries. Energy and Environmental Science, 2009, 2, 1102.	30.8	109
332	Hydrothermal Synthesis of Nanosized LiMnO[sub 2]–Li[sub 2]MnO[sub 3] Compounds and Their Electrochemical Performances. Journal of the Electrochemical Society, 2009, 156, A162.	2.9	36
333	Effects of Na-substitution on structural and electronic properties of Li2CoSiO4 cathode material. Transactions of Nonferrous Metals Society of China, 2009, 19, 182-186.	4.2	24
334	The study of Mg2Si/carbon composites as anode materials for lithium ion batteries. Journal of Power Sources, 2008, 175, 547-552.	7.8	36
335	A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells. Electrochimica Acta, 2008, 53, 3539-3546.	5.2	206
336	Ab initio study on the Li deintercalation in ternary lithium nitridocuprate Li2.5Cu0.5N. Electrochimica Acta, 2008, 53, 7915-7920.	5.2	4
337	Photoinduced Reversible Structural Transformation and Selective Oxidation Catalysis of Unsaturated Ruthenium Complexes Supported on SiO ₂ . Angewandte Chemie - International Edition, 2008, 47, 9252-9255.	13.8	24
338	Structural and electrochemical characterization of xLi[Li1/3Mn2/3]O2·(1â^'x)Li[Ni1/3Mn1/3Co1/3]O2 (0≤≩.9) as cathode materials for lithium ion batteries. Journal of Power Sources, 2008, 184, 414-419.	7.8	121
339	Synthesis, characterization and electrochemical performance of mesoporous FePO4 as cathode material for rechargeable lithium batteries. Electrochimica Acta, 2008, 53, 2665-2673.	5.2	81
340	Investigation of the anodic behavior of Al current collector in room temperature ionic liquid electrolytes. Electrochimica Acta, 2008, 53, 4764-4772.	5.2	76
341	The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics, 2008, 179, 1794-1799.	2.7	231
342	Preparation and electrochemical performance of manganese oxide/carbon nanotubes composite as a cathode for rechargeable lithium battery with high power density. Materials Letters, 2008, 62, 3388-3390.	2.6	24

#	Article	IF	CITATIONS
343	Carbonate anions controlled morphological evolution of LiMnPO4 crystals. Chemical Communications, 2008, , 1118.	4.1	45
344	Electrochemical Characterization of Two Types of PEO-Based Polymer Electrolytes with Room-Temperature Ionic Liquids. Journal of the Electrochemical Society, 2008, 155, A569.	2.9	77
345	Hydrothermal Synthesis and Electrochemical Performance of Li[sub 1.59]H[sub 0.41]MnO[sub 3] as a Cathode Material for Lithium-Ion Battery. Electrochemical and Solid-State Letters, 2008, 11, A163.	2.2	11
346	Controllable synthesis of α- and β <i>-</i> MnO ₂ : cationic effect on hydrothermal crystallization. Nanotechnology, 2008, 19, 225606.	2.6	99
347	Effects of Vinyl Ethylene Carbonate Additive on Elevated-Temperature Performance of Cathode Material in Lithium Ion Batteries. Journal of Physical Chemistry C, 2008, 112, 12550-12556.	3.1	56
348	Nanostructured Li[sub 2]FeSiO[sub 4] Electrode Material Synthesized through Hydrothermal-Assisted Sol-Gel Process. Electrochemical and Solid-State Letters, 2008, 11, A60.	2.2	164
349	The Effects of AlF[sub 3] Coating on the Performance of Li[Li[sub 0.2]Mn[sub 0.54]Ni[sub 0.13]Co[sub 0.13]]O[sub 2] Positive Electrode Material for Lithium-Ion Battery. Journal of the Electrochemical Society, 2008, 155, A775.	2.9	284
350	Atomic Layer Deposition of ZrO2 Thin Films with High Dielectric Constant on TiN Substrates. Electrochemical and Solid-State Letters, 2008, 11, G9.	2.2	65
351	The Catalyst-Assisted Synthesis of High Quality CdS Single-Crystal Nanowires Through an Epitaxy Mechanism. Journal of Nanoscience and Nanotechnology, 2007, 7, 3152-3156.	0.9	2
352	Synthesis and Storage Performance of the Doped LiMn[sub 2]O[sub 4] Spinel. Journal of the Electrochemical Society, 2007, 154, A656.	2.9	32
353	Studies on Storage Characteristics of LiNi[sub 0.4]Co[sub 0.2]Mn[sub 0.4]O[sub 2] as Cathode Materials in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2007, 154, A427.	2.9	62
354	Preparation and Properties of Manganese Oxide/Carbon Composites by Reduction of Potassium Permanganate with Acetylene Black. Journal of the Electrochemical Society, 2007, 154, A26.	2.9	65
355	Structural and electronic properties of the Li-ion battery cathode material LixCoSiO4. Current Applied Physics, 2007, 7, 611-616.	2.4	37
356	Spectroscopic and electrochemical characterization of the passive layer formed on lithium in gel polymer electrolytes containing propylene carbonate. Journal of Power Sources, 2007, 173, 531-537.	7.8	27
357	Anodic behavior of Al current collector in 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] amide ionic liquid electrolytes. Journal of Power Sources, 2007, 173, 510-517.	7.8	80
358	Recycle and recovery of rhodium complexes with water-soluble and amphiphilic phosphines in ionic liquids for hydroformylation of 1-hexene. Reaction Kinetics and Catalysis Letters, 2007, 90, 53-60.	0.6	8
359	Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids. Electrochimica Acta, 2007, 52, 5789-5794.	5.2	170
360	Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2. Journal of Power Sources, 2007, 173, 556-561.	7.8	106

#	Article	IF	CITATIONS
361	Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries. Journal of Power Sources, 2007, 174, 528-532.	7.8	214
362	Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries. Journal of Power Sources, 2007, 174, 524-527.	7.8	101
363	Synthesis and Characterization of Li[sub 2]Mn[sub x]Fe[sub 1â^'x]SiO[sub 4] as a Cathode Material for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2006, 9, A542.	2.2	113
364	In situ photoelectrochemistry and Raman spectroscopic characterization on the surface oxide film of nickel electrode in 30wt.% KOH solution. Electrochimica Acta, 2006, 51, 4873-4879.	5.2	24
365	The effects of decomposition products of electrolytes on the thermal stability of bare and TiO2-coated delithiated Li1â~'xNi0.8Co0.2O2 cathode materials. Electrochimica Acta, 2006, 52, 1442-1450.	5.2	15
366	Synthesis and characterization of mesoporous titanium pyrophosphate as lithium intercalation electrode materials. Microporous and Mesoporous Materials, 2006, 88, 232-237.	4.4	44
367	The studies on structural and thermal properties of delithiated LixNi1/3Co1/3Mn1/3O2 (0 <xâ‰犂) 1509-1516.<="" 177,="" 2006,="" a="" as="" batteries.="" cathode="" in="" ion="" ionics,="" lithium="" material="" solid="" state="" td=""><td>2.7</td><td>66</td></xâ‰犂)>	2.7	66
368	Investigation and improvement on the storage property of LiNi0.8Co0.2O2 as a cathode material for lithium-ion batteries. Journal of Power Sources, 2006, 162, 644-650.	7.8	197
369	Controllable Synthesis and Growth Model of Amorphous Silicon Nanotubes with Periodically Dome-Shaped Interiors. Advanced Materials, 2006, 18, 228-234.	21.0	33
370	The selective synthesis of single-crystalline CdS nanobelts and nanowires by thermal evaporation at lower temperature. Nanotechnology, 2006, 17, 1851-1857.	2.6	34
371	MCM-41 Supported Water-soluble TPPTS–Rh Complex in Ionic Liquids: A New Robust Catalyst for Olefin Hydroformylation. Chemistry Letters, 2005, 34, 220-221.	1.3	36
372	A study of novel anode material CoS2 for lithium ion battery. Journal of Power Sources, 2005, 146, 264-269.	7.8	153
373	Spectroscopic characterization of Au3+ biosorption by waste biomass of Saccharomyces cerevisiae. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 761-765.	3.9	186
374	Iron-catalytic growth of prism-shaped single-crystal silicon nanowires by chemical vapor deposition of silane. Chemical Physics Letters, 2005, 411, 198-202.	2.6	13
375	Mesoporous FePO[sub 4] with Enhanced Electrochemical Performance as Cathode Materials of Rechargeable Lithium Batteries. Electrochemical and Solid-State Letters, 2005, 8, A396.	2.2	43
376	Origin of Deterioration for LiNiO[sub 2] Cathode Material during Storage in Air. Electrochemical and Solid-State Letters, 2004, 7, A190.	2.2	257
377	Comparison of Electrochemical and Surface Properties of Bare and TiO[sub 2]-Coated LiNi[sub 0.8]Co[sub 0.2]O[sub 2] Electrodes. Journal of the Electrochemical Society, 2004, 151, A599.	2.9	31
378	Electrochemical Performance and Surface Properties of Bare and TiO2-Coated Cathode Materials in Lithium-Ion Batteries. Journal of Physical Chemistry B, 2004, 108, 17546-17552.	2.6	78

#	Article	IF	CITATIONS
379	Immobilization of rhodium complexes ligated with triphenyphosphine analogs on amino-functionalized MCM-41 and MCM-48 for 1-hexene hydroformylation. Journal of Molecular Catalysis A, 2004, 219, 175-181.	4.8	50
380	Structural, electrochemical and thermal properties of LiNi0.8â^'yTiyCo0.2O2 as cathode materials for lithium ion battery. Electrochimica Acta, 2004, 49, 1151-1159.	5.2	89
381	A comparative study of LiNi0.8Co0.2O2 cathode materials modified by lattice-doping and surface-coating. Solid State Ionics, 2004, 166, 317-325.	2.7	99
382	Electrochemical performance and spectroscopic characterization of TiO2-coated LiNi0.8Co0.2O2 cathode materials. Journal of Power Sources, 2004, 129, 101-106.	7.8	63
383	Effects of preparation methods of LiNi0.8Co0.2O2 cathode materials on their morphology and electrochemical performance. Journal of Power Sources, 2004, 136, 139-144.	7.8	64
384	Title is missing!. Catalysis Letters, 2003, 88, 219-225.	2.6	42
385	The effects of sintering temperature and time on the structure and electrochemical performance of LiNi 0.8 Co 0.2 O 2 cathode materials derived from sol-gel method. Journal of Solid State Electrochemistry, 2003, 7, 456-462.	2.5	40
386	Formation energies of lithium intercalations in AlSb, GaSb and InSb. PhysChemComm, 2003, 6, 47.	0.8	1
387	Preparation of multi-walled carbon nanotube array electrodes and its electrochemical intercalation behavior of Li ions. Chemical Physics Letters, 2002, 358, 77-82.	2.6	38
388	The effects of surface treatment on metal hydride electrodes using a weak acid solution containing Ni(II). Journal of Alloys and Compounds, 2001, 316, 131-136.	5.5	13
389	Raman spectroscopic study on the surface oxide layer of AB5-type metal hydride electrodes. Electrochimica Acta, 2001, 46, 1767-1772.	5.2	15
390	Total Internal Reflection Sum-Frequency Spectroscopy:Â A Strategy for Studying Molecular Adsorption on Metal Surfaces. Langmuir, 2000, 16, 2343-2350.	3.5	51
391	Influence of surface pretreatment and charge–discharge mode on cycle performance of metal hydride electrodes. Journal of Power Sources, 1999, 79, 64-68.	7.8	12
392	Prospects for detecting metal–adsorbate vibrations by sumâ€frequency spectroscopy. Catalysis Letters, 1999, 61, 7-13.	2.6	17
393	Performance and characterization of metal hydride electrodes in nickel/metal hydride batteries. Journal of Power Sources, 1997, 65, 15-21.	7.8	9
394	Effects of surface oxide species on the electropolymerization of o-aminophenol on pretreated glassy carbon electrodes. Synthetic Metals, 1996, 78, 111-115.	3.9	20
395	Investigations of the pitting corrosion behavior of passive film on REBAR electrodes containing †̃artificial pit' in simulated cement solutions. Applied Surface Science, 1996, 103, 189-197.	6.1	8
396	In situ FTIR characterization of the electrooxidation of glassy carbon electrodes. Journal of Applied Electrochemistry, 1995, 25, 259.	2.9	50

#	Article	IF	CITATIONS
397	Scanned laser spot photocurrent response studies of surface modifications of CdSe thin film electrodes. Applied Surface Science, 1995, 90, 321-324.	6.1	0
398	In situ IR spectroscopic characterization of surface oxide species on glassy carbon electrodes. Journal of Electroanalytical Chemistry, 1994, 364, 23-30.	3.8	34
399	The photoelectrochemical behavior of polypyrrole films in non-aqueous solutions. Synthetic Metals, 1994, 64, 43-48.	3.9	18
400	Improved Capacity Retention for a Disordered Rocksalt Cathode via Solvate Ionic Liquid Electrolytes. Batteries and Supercaps, 0, , .	4.7	2