
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6638911/publications.pdf Version: 2024-02-01

Νανισιτά Β Βάςιι

#	Article	IF	CITATIONS
1	Vulnerable Waters are Essential to Watershed Resilience. Ecosystems, 2023, 26, 1-28.	3.4	21
2	Nitrogen legacies in anthropogenic landscapes: a case study in the Mondego Basin in Portugal. Environmental Science and Pollution Research, 2022, 29, 23919-23935.	5.3	3
3	Agricultural phosphorus surplus trajectories for Ontario, Canada (1961–2016), and erosional export risk. Science of the Total Environment, 2022, 818, 151717.	8.0	16
4	Windows into the past: lake sediment phosphorus trajectories act as integrated archives of watershed disturbance legacies over centennial scales. Environmental Research Letters, 2022, 17, 034005.	5.2	5
5	Managing nitrogen legacies to accelerate water quality improvement. Nature Geoscience, 2022, 15, 97-105.	12.9	112
6	The human factor in seasonal streamflows across natural and managed watersheds of North America. Nature Sustainability, 2022, 5, 397-405.	23.7	21
7	Intensive agriculture, nitrogen legacies, and water quality: intersections and implications. Environmental Research Letters, 2022, 17, 035006.	5.2	13
8	Seasonality of inundation in geographically isolated wetlands across the United States. Environmental Research Letters, 2022, 17, 054005.	5.2	5
9	Characterizing Catchmentâ€Scale Nitrogen Legacies and Constraining Their Uncertainties. Water Resources Research, 2022, 58, .	4.2	8
10	A novel Budyko-based approach to quantify post-forest-fire streamflow response and recovery timescales. Journal of Hydrology, 2022, 608, 127685.	5.4	10
11	Crops as sensors: Using crop yield data to increase the robustness of hydrologic and biogeochemical models. Journal of Hydrology, 2021, 592, 125599.	5.4	9
12	Chesapeake legacies: the importance of legacy nitrogen to improving Chesapeake Bay water quality. Environmental Research Letters, 2021, 16, 085002.	5.2	38
13	Nevertheless, They Persisted: Can Hyporheic Zones Increase the Persistence of Estrogens in Streams?. Water Resources Research, 2021, 57, e2020WR028518.	4.2	1
14	The need to integrate legacy nitrogen storage dynamics and time lags into policy and practice. Science of the Total Environment, 2021, 781, 146698.	8.0	31
15	Beyond the Mass Balance: Watershed Phosphorus Legacies and the Evolution of the Current Water Quality Policy Challenge. Water Resources Research, 2021, 57, e2020WR029316.	4.2	29
16	Checkered landscapes: hydrologic and biogeochemical nitrogen legacies along the river continuum. Environmental Research Letters, 2021, 16, 115006.	5.2	13
17	Synthesis of science: findings on Canadian Prairie wetland drainage. Canadian Water Resources Journal, 2021, 46, 229-241.	1.2	15
18	Biogeochemical asynchrony: Ecosystem drivers of seasonal concentration regimes across the Great Lakes Basin. Limnology and Oceanography, 2020, 65, 848-862.	3.1	28

#	Article	IF	CITATIONS
19	Longâ€Term Shifts in U.S. Nitrogen Sources and Sinks Revealed by the New TRENDâ€Nitrogen Data Set (1930–2017). Global Biogeochemical Cycles, 2020, 34, e2020GB006626.	4.9	38
20	Maximizing US nitrate removal through wetland protection and restoration. Nature, 2020, 588, 625-630.	27.8	113
21	Curbing the Summer Surge: Permanent Outdoor Water Use Restrictions in Humid and Semiarid Cities. Water Resources Research, 2020, 56, e2019WR026466.	4.2	6
22	Modeling the Fate of Pharmaceuticals in a Fourthâ€Order River Under Competing Assumptions of Transient Storage. Water Resources Research, 2020, 56, e2019WR026100.	4.2	10
23	Is the River a Chemostat?: Scale Versus Land Use Controls on Nitrate Concentrationâ€Discharge Dynamics in the Upper Mississippi River Basin. Geophysical Research Letters, 2020, 47, e2020GL087051.	4.0	28
24	The Groundwater Recovery Paradox in South India. Geophysical Research Letters, 2019, 46, 9602-9611.	4.0	34
25	Response to Comment on "Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico― Science, 2019, 365, .	12.6	5
26	A Race Against Time: Modeling Time Lags in Watershed Response. Water Resources Research, 2019, 55, 3941-3959.	4.2	43
27	Turnover and legacy of sediment-associated PAH in a baseflow-dominated river. Science of the Total Environment, 2019, 671, 754-764.	8.0	19
28	Can Improved Flow Partitioning in Hydrologic Models Increase Biogeochemical Predictability?. Water Resources Research, 2019, 55, 2939-2960.	4.2	12
29	Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico. Science, 2018, 360, 427-430.	12.6	262
30	Review: the environmental status and implications of the nitrate time lag in Europe and North America. Hydrogeology Journal, 2018, 26, 7-22.	2.1	53
31	Contributions of catchment and in-stream processes to suspended sediment transport in a dominantly groundwater-fed catchment. Hydrology and Earth System Sciences, 2018, 22, 3903-3921.	4.9	14
32	Two centuries of nitrogen dynamics: Legacy sources and sinks in the Mississippi and Susquehanna River Basins. Global Biogeochemical Cycles, 2017, 31, 2-23.	4.9	199
33	Hydrologic impacts of subsurface drainage from the field to watershed scale. Hydrological Processes, 2017, 31, 3017-3028.	2.6	20
34	Biogeochemical hotspots: Role of small water bodies in landscape nutrient processing. Water Resources Research, 2017, 53, 5038-5056.	4.2	154
35	A diagnostic approach to constraining flow partitioning in hydrologic models using a multiobjective optimization framework. Water Resources Research, 2017, 53, 3279-3301.	4.2	22
36	Enhancing protection for vulnerable waters. Nature Geoscience, 2017, 10, 809-815.	12.9	141

#	Article	IF	CITATIONS
37	Development and application of a multi-scalar, participant-driven water poverty index in post-tsunami India. International Journal of Water Resources Development, 2017, 33, 955-975.	2.0	17
38	Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecological Engineering, 2017, 108, 489-497.	3.6	217
39	Time lags in watershed-scale nutrient transport: an exploration of dominant controls. Environmental Research Letters, 2017, 12, 084017.	5.2	112
40	Integrating geographically isolated wetlands into land management decisions. Frontiers in Ecology and the Environment, 2017, 15, 319-327.	4.0	92
41	The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes. Environmental Research Letters, 2016, 11, 035014.	5.2	249
42	Assessing the impacts of anthropogenic and hydro-climatic drivers on estrogen legacies and trajectories. Advances in Water Resources, 2016, 87, 19-28.	3.8	11
43	Hydrologic impacts of subsurface drainage at the field scale: Climate, landscape and anthropogenic controls. Agricultural Water Management, 2016, 165, 1-10.	5.6	44
44	Do geographically isolated wetlands influence landscape functions?. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1978-1986.	7.1	297
45	Catchment Legacies and Time Lags: A Parsimonious Watershed Model to Predict the Effects of Legacy Storage on Nitrogen Export. PLoS ONE, 2015, 10, e0125971.	2.5	104
46	Signatures of human impact: size distributions and spatial organization of wetlands in the Prairie Pothole landscape. Ecological Applications, 2015, 25, 451-465.	3.8	122
47	Geographically Isolated Wetlands are Important Biogeochemical Reactors on the Landscape. BioScience, 2015, 65, 408-418.	4.9	163
48	Mechanisms of Basin-Scale Nitrogen Load Reductions under Intensified Irrigated Agriculture. PLoS ONE, 2015, 10, e0120015.	2.5	29
49	Homogenization of spatial patterns of hydrologic response in artificially drained agricultural catchments. Hydrological Processes, 2014, 28, 5010-5020.	2.6	38
50	Disparities in publication patterns by gender, race and ethnicity based on a survey of a random sample of authors. Scientometrics, 2013, 96, 515-534.	3.0	60
51	Dominant controls on pesticide transport from tile to catchment scale: Lessons from a minimalist model. Water Resources Research, 2012, 48, .	4.2	16
52	Dissolved nutrient retention dynamics in river networks: A modeling investigation of transient flows and scale effects. Water Resources Research, 2012, 48, .	4.2	45
53	Evaluation of analytical and numerical approaches for the estimation of groundwater travel time distribution. Journal of Hydrology, 2012, 475, 65-73.	5.4	56
54	Impact of artificial subsurface drainage on groundwater travel times and baseflow discharge in an agricultural watershed, Iowa (USA). Hydrological Processes, 2012, 26, 3092-3100.	2.6	63

#	Article	IF	CITATIONS
55	Relative dominance of hydrologic versus biogeochemical factors on solute export across impact gradients. Water Resources Research, 2011, 47, .	4.2	217
56	Spatiotemporal scaling of hydrological and agrochemical export dynamics in a tileâ€drained Midwestern watershed. Water Resources Research, 2011, 47, .	4.2	79
57	Climate, soil, and vegetation controls on the temporal variability of vadose zone transport. Water Resources Research, 2011, 47, .	4.2	49
58	Spatiotemporal averaging of inâ€stream solute removal dynamics. Water Resources Research, 2011, 47, .	4.2	47
59	Hydrologic and biogeochemical functioning of intensively managed catchments: A synthesis of topâ€down analyses. Water Resources Research, 2011, 47, .	4.2	143
60	Water cycle dynamics in a changing environment: Improving predictability through synthesis. Water Resources Research, 2011, 47, .	4.2	45
61	Patterns, puzzles and people: implementing hydrologic synthesis. Hydrological Processes, 2011, 25, 3256-3266.	2.6	22
62	Parsimonious modeling of hydrologic responses in engineered watersheds: Structural heterogeneity versus functional homogeneity. Water Resources Research, 2010, 46, .	4.2	56
63	Stochastic modeling of nutrient losses in streams: Interactions of climatic, hydrologic, and biogeochemical controls. Water Resources Research, 2010, 46, .	4.2	33
64	The future of hydrology: An evolving science for a changing world. Water Resources Research, 2010, 46, .	4.2	487
65	Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity. Geophysical Research Letters, 2010, 37, .	4.0	338
66	Effective denitrification scales predictably with water residence time across diverse systems. Nature Precedings, 2009, , .	0.1	9
67	Integration of traditional and innovative characterization techniques for flux-based assessment of Dense Non-aqueous Phase Liquid (DNAPL) sites. Journal of Contaminant Hydrology, 2009, 105, 161-172.	3.3	34
68	Temporal evolution of DNAPL source and contaminant flux distribution: Impacts of source mass depletion. Journal of Contaminant Hydrology, 2008, 95, 93-109.	3.3	48