
Miguel Ängel Botella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6638576/publications.pdf Version: 2024-02-01

MICHEL ÂNCEL BOTELLA

#	Article	IF	CITATIONS
1	The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012, 485, 635-641.	27.8	2,860
2	Evidence for a Role of Salicylic Acid in the Oxidative Damage Generated by NaCl and Osmotic Stress in Arabidopsis Seedlings. Plant Physiology, 2001, 126, 1024-1030.	4.8	676
3	Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nature Biotechnology, 2003, 21, 177-181.	17.5	532
4	A Tomato Peroxidase Involved in the Synthesis of Lignin and Suberin. Plant Physiology, 2000, 122, 1119-1128.	4.8	398
5	Three Genes of the Arabidopsis RPP1 Complex Resistance Locus Recognize Distinct Peronospora parasitica Avirulence Determinants. Plant Cell, 1998, 10, 1847-1860.	6.6	351
6	Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends in Plant Science, 2004, 9, 573-577.	8.8	269
7	<i>Arabidopsis</i> Synaptotagmin 1 Is Required for the Maintenance of Plasma Membrane Integrity and Cell Viability. Plant Cell, 2009, 20, 3374-3388.	6.6	206
8	Vitamin C Content in Fruits: Biosynthesis and Regulation. Frontiers in Plant Science, 2018, 9, 2006.	3.6	183
9	Clathrin and Membrane Microdomains Cooperatively Regulate RbohD Dynamics and Activity in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 1729-1745.	6.6	182
10	Regulation of L-ascorbic acid content in strawberry fruits. Journal of Experimental Botany, 2011, 62, 4191-4201.	4.8	153
11	The Arabidopsis Synaptotagmin1 Is Enriched in Endoplasmic Reticulum-Plasma Membrane Contact Sites and Confers Cellular Resistance to Mechanical Stresses. Plant Physiology, 2015, 168, 132-143.	4.8	150
12	Differential Expression of Soybean Cysteine Proteinase Inhibitor Genes during Development and in Response to Wounding and Methyl Jasmonate. Plant Physiology, 1996, 112, 1201-1210.	4.8	145
13	Two Wound-Inducible Soybean Cysteine Proteinase Inhibitors Have Greater Insect Digestive Proteinase Inhibitory Activities than a Constitutive Homolog. Plant Physiology, 1996, 111, 1299-1306.	4.8	139
14	Dynamic analysis of <i>Arabidopsis</i> AP2 σ subunit reveals a key role in clathrin-mediated endocytosis and plant development. Development (Cambridge), 2013, 140, 3826-3837.	2.5	139
15	Partial demethylation of oligogalacturonides by pectin methyl esterase 1 is required for eliciting defence responses in wild strawberry (<i>Fragaria vesca</i>). Plant Journal, 2008, 54, 43-55.	5.7	134
16	Genetic Analysis of Strawberry Fruit Aroma and Identification of <i>O</i> - <i>Methyltransferase FaOMT</i> as the Locus Controlling Natural Variation in Mesifurane Content Â. Plant Physiology, 2012, 159, 851-870.	4.8	132
17	Pectin esterase gene family in strawberry fruit: study of FaPE1, a ripening-specific isoform. Journal of Experimental Botany, 2004, 55, 909-918.	4.8	127
18	Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell, Tissue and Organ Culture, 2003, 73, 101-115.	2.3	122

MIGUEL ÂNGEL BOTELLA

#	Article	IF	CITATIONS
19	The Tomato Sequencing Project, the First Cornerstone of the International Solanaceae Project (SOL). Comparative and Functional Genomics, 2005, 6, 153-158.	2.0	122
20	Stitching Organelles: Organization and Function of Specialized Membrane Contact Sites in Plants. Trends in Cell Biology, 2016, 26, 705-717.	7.9	122
21	Identification of the Arabidopsis <i>dry2/sqe1â€5</i> mutant reveals a central role for sterols in drought tolerance and regulation of reactive oxygen species. Plant Journal, 2009, 59, 63-76.	5.7	114
22	Ethylene is involved in strawberry fruit ripening in an organ-specific manner. Journal of Experimental Botany, 2013, 64, 4421-4439.	4.8	111
23	Gibberellin biosynthesis and signalling during development of the strawberry receptacle. New Phytologist, 2011, 191, 376-390.	7.3	110
24	Map positions of 47 Arabidopsis sequences with sequence similarity to disease resistance genes. Plant Journal, 1997, 12, 1197-1211.	5.7	102
25	The Arabidopsis Tetratricopeptide Repeat-Containing Protein TTL1 Is Required for Osmotic Stress Responses and Abscisic Acid Sensitivity. Plant Physiology, 2006, 142, 1113-1126.	4.8	97
26	Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase. FEBS Letters, 1999, 457, 80-84.	2.8	95
27	Gene expression atlas of fruit ripening and transcriptome assembly from RNA-seq data in octoploid strawberry (Fragaria × ananassa). Scientific Reports, 2017, 7, 13737.	3.3	95
28	lonic stress enhances ER–PM connectivity via phosphoinositide-associated SYT1 contact site expansion in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1420-1429.	7.1	95
29	The NAC transcription factor FaRIF controls fruit ripening in strawberry. Plant Cell, 2021, 33, 1574-1593.	6.6	95
30	The Strawberry Fruit Fra a Allergen Functions in Flavonoid Biosynthesis. Molecular Plant, 2010, 3, 113-124.	8.3	94
31	Diversity Arrays Technology (DArT) Marker Platforms for Diversity Analysis and Linkage Mapping in a Complex Crop, the Octoploid Cultivated Strawberry (Fragaria × ananassa). PLoS ONE, 2015, 10, e0144960.	2.5	88
32	Induction of a Putative Ca2+-ATPase mRNA in NaCl-Adapted Cells. Plant Physiology, 1992, 100, 1471-1478.	4.8	87
33	Analysis of genes involved in l-ascorbic acid biosynthesis during growth and ripening of grape berries. Journal of Plant Physiology, 2010, 167, 739-748.	3.5	84
34	The strawberry gene FaGAST affects plant growth through inhibition of cell elongation. Journal of Experimental Botany, 2006, 57, 2401-2411.	4.8	83
35	The <i>SUD1</i> Gene Encodes a Putative E3 Ubiquitin Ligase and Is a Positive Regulator of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Activity in <i>Arabidopsis</i> Å Â. Plant Cell, 2013, 25, 728-743.	6.6	78
36	The Strawberry Pathogenesis-related 10 (PR-10) Fra a Proteins Control Flavonoid Biosynthesis by Binding to Metabolic Intermediates. Journal of Biological Chemistry, 2013, 288, 35322-35332.	3.4	77

MIGUEL ÂNGEL BOTELLA

#	Article	IF	CITATIONS
37	Generation and analysis of ESTs from strawberry (Fragaria xananassa) fruits and evaluation of their utility in genetic and molecular studies. BMC Genomics, 2010, 11, 503.	2.8	75
38	Deciphering gamma-decalactone biosynthesis in strawberry fruit using a combination of genetic mapping, RNA-Seq and eQTL analyses. BMC Genomics, 2014, 15, 218.	2.8	74
39	A Snapshot of the Emerging Tomato Genome Sequence. Plant Genome, 2009, 2, .	2.8	73
40	Identification of Two Loci in Tomato Reveals Distinct Mechanisms for Salt Tolerance. Plant Cell, 2001, 13, 873-887.	6.6	67
41	Functional analysis of homologous and heterologous promoters in strawberry fruits using transient expression. Journal of Experimental Botany, 2004, 56, 37-46.	4.8	65
42	Plasma membrane repair in plants. Trends in Plant Science, 2009, 14, 645-652.	8.8	65
43	Characterization and in situ localization of a salt-induced tomato peroxidase mRNA. Plant Molecular Biology, 1994, 25, 105-114.	3.9	64
44	TPR Proteins in Plant Hormone Signaling. Plant Signaling and Behavior, 2006, 1, 229-230.	2.4	64
45	Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L Theoretical and Applied Genetics, 2015, 128, 2019-2035.	3.6	63
46	Central role of <i>Fa<scp>GAMYB</scp></i> in the transition of the strawberry receptacle from development to ripening. New Phytologist, 2015, 208, 482-496.	7.3	62
47	Arabidopsis Squalene Epoxidase 3 (SQE3) Complements SQE1 and Is Important for Embryo Development and Bulk Squalene Epoxidase Activity. Molecular Plant, 2015, 8, 1090-1102.	8.3	59
48	Demethylation of oligogalacturonides by FaPE1 in the fruits of the wild strawberry Fragaria vesca triggers metabolic and transcriptional changes associated with defence and development of the fruit. Journal of Experimental Botany, 2011, 62, 2855-2873.	4.8	55
49	Two strawberry miR159 family members display developmentalâ€specific expression patterns in the fruit receptacle and cooperatively regulate <i>Faâ€GAMYB</i> . New Phytologist, 2012, 195, 47-57.	7.3	55
50	Transcriptomic Analysis in Strawberry Fruits Reveals Active Auxin Biosynthesis and Signaling in the Ripe Receptacle. Frontiers in Plant Science, 2017, 8, 889.	3.6	55
51	Golgi Apparatus-Localized Synaptotagmin 2 Is Required for Unconventional Secretion in Arabidopsis. PLoS ONE, 2011, 6, e26477.	2.5	51
52	The Arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE Gene Family Is Required for Osmotic Stress Tolerance and Male Sporogenesis Â. Plant Physiology, 2012, 158, 1252-1266.	4.8	49
53	TTL Proteins Scaffold Brassinosteroid Signaling Components at the Plasma Membrane to Optimize Signal Transduction in Arabidopsis. Plant Cell, 2019, 31, 1807-1828.	6.6	47
54	Impact of Plant Breeding on the Genetic Diversity of Cultivated Strawberry as Revealed by Expressed Sequence Tag-derived Simple Sequence Repeat Markers. Journal of the American Society for Horticultural Science, 2009, 134, 337-347.	1.0	47

#	Article	IF	CITATIONS
55	Polyphenol Composition in the Ripe Fruits of Fragaria Species and Transcriptional Analyses of Key Genes in the Pathway. Journal of Agricultural and Food Chemistry, 2011, 59, 12598-12604.	5.2	46
56	Eugenol Production in Achenes and Receptacles of Strawberry Fruits Is Catalyzed by Synthases Exhibiting Distinct Kinetics. Plant Physiology, 2013, 163, 946-958.	4.8	46
57	EST-derived polymorphic microsatellites from cultivated strawberry (Fragaria×ananassa) are useful for diversity studies and varietal identification among Fragaria species. Molecular Ecology Notes, 2006, 6, 1195-1197.	1.7	45
58	Development and bin mapping of strawberry genic-SSRs in diploid Fragaria and their transferability across the Rosoideae subfamily. Molecular Breeding, 2011, 27, 137-156.	2.1	42
59	Synaptotagmins at the endoplasmic reticulum–plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress. Plant Cell, 2021, 33, 2431-2453.	6.6	41
60	Synaptotagmin 1 Negatively Controls the Two Distinct Immune Secretory Pathways to Powdery Mildew Fungi in Arabidopsis. Plant and Cell Physiology, 2016, 57, 1133-1141.	3.1	39
61	SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana. Plant Molecular Biology, 2016, 92, 143-159.	3.9	39
62	Expression of tomato prosystemin gene in <i>Arabidopsis</i> reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance. New Phytologist, 2018, 217, 799-812.	7.3	39
63	The role of GDP- <scp> </scp> -galactose phosphorylase in the control of ascorbate biosynthesis. Plant Physiology, 2021, 185, 1574-1594.	4.8	39
64	UnravellingRgene-mediated disease resistance pathways inArabidopsis. Molecular Plant Pathology, 2000, 1, 17-24.	4.2	35
65	Growth cycle stage-dependent NaCl induction of plasma membrane H+-ATPase mRNA accumulation in de-adapted tobacco cells. Plant, Cell and Environment, 1994, 17, 327-333.	5.7	34
66	Molecular analysis of the interaction between Olea europaea and the biotrophic fungus Spilocaea oleagina. Molecular Plant Pathology, 2005, 6, 425-438.	4.2	34
67	Rare earth elements induce cytoskeleton-dependent and PI4P-associated rearrangement of SYT1/SYT5 endoplasmic reticulum–plasma membrane contact site complexes in Arabidopsis. Journal of Experimental Botany, 2020, 71, 3986-3998.	4.8	34
68	Tomato tos1 mutation identifies a gene essential for osmotic tolerance and abscisic acid sensitivity. Plant Journal, 2002, 32, 905-914.	5.7	33
69	Genetic and genome-wide transcriptomic analyses identify co-regulation of oxidative response and hormone transcript abundance with vitamin C content in tomato fruit. BMC Genomics, 2012, 13, 187.	2.8	33
70	A glossary of plant cell structures: Current insights and future questions. Plant Cell, 2022, 34, 10-52.	6.6	27
71	Increased antioxidant capacity in tomato by ectopic expression of the strawberry <scp>D</scp> â€ <i>galacturonate reductase</i> gene. Biotechnology Journal, 2015, 10, 490-500.	3.5	26
72	Arabidopsis NahG Plants as a Suitable and Efficient System for Transient Expression using Agrobacterium tumefaciens. Molecular Plant, 2017, 10, 353-356.	8.3	26

MIGUEL ÃNGEL BOTELLA

#	Article	IF	CITATIONS
73	Characterizing the involvement of <i>FaMADS9</i> in the regulation of strawberry fruit receptacle development. Plant Biotechnology Journal, 2020, 18, 929-943.	8.3	25
74	Induction of a tomato peroxidase gene in vascular tissue. FEBS Letters, 1994, 347, 195-198.	2.8	22
75	ABA- and ethylene-mediated responses in osmotically stressed tomato are regulated by the TSS2 and TOS1 loci. Journal of Experimental Botany, 2006, 57, 3327-3335.	4.8	22
76	Proteomic analysis of strawberry achenes reveals active synthesis and recycling of l-ascorbic acid. Journal of Proteomics, 2013, 83, 160-179.	2.4	22
77	Nucleotide Sequences of Two Peroxidase Genes from Tomato (Lycopersicon esculentum). Plant Physiology, 1993, 103, 665-666.	4.8	20
78	Phylogeny of the fungusSpilocaea oleagina, the causal agent of peacock leaf spot in olive. FEMS Microbiology Letters, 2002, 210, 149-155.	1.8	20
79	Endogenous jasmonates and octadecanoids in hypersensitive tomato mutants during germination and seedling development in response to abiotic stress. Seed Science Research, 2005, 15, 309-318.	1.7	18
80	Spectral phasor analysis reveals altered membrane order and function of root hair cells in Arabidopsis dry2/sqe1-5 drought hypersensitive mutant. Plant Physiology and Biochemistry, 2017, 119, 224-231.	5.8	18
81	Regulation of K+ Transport in Tomato Roots by the TSS1 Locus. Implications in Salt Tolerance. Plant Physiology, 2004, 134, 452-459.	4.8	12
82	Expression of a highly basic peroxidase gene in NaCl-adapted tomato cell suspensions. FEBS Letters, 1997, 407, 357-360.	2.8	11
83	Expression of the tomato peroxidase gene TPX1 in NaCl-adapted and unadapted suspension cells. Plant Cell Reports, 1999, 18, 680-683.	5.6	11
84	The structure and flexibility analysis of the <i>Arabidopsis</i> synaptotagmin 1 reveal the basis of its regulation at membrane contact sites. Life Science Alliance, 2021, 4, e202101152.	2.8	9
85	Autophagy Is Required for Strawberry Fruit Ripening. Frontiers in Plant Science, 2021, 12, 688481.	3.6	9
86	The Arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE 1 Gene Is Involved in Anisotropic Root Growth during Osmotic Stress Adaptation. Genes, 2021, 12, 236.	2.4	8
87	Wheat Type One Protein Phosphatase Participates in the Brassinosteroid Control of Root Growth via Activation of BES1. International Journal of Molecular Sciences, 2021, 22, 10424.	4.1	8
88	Analysis of Protein–Lipid Interactions Using Purified C2 Domains. Methods in Molecular Biology, 2016, 1363, 175-187.	0.9	7
89	A Strategy for the Identification of New Abiotic Stress Determinants inArabidopsisUsing Web-Based Data Mining and Reverse Genetics. OMICS A Journal of Integrative Biology, 2011, 15, 935-947.	2.0	6
90	Analysis of the Arabidopsis <i>dry2/sqe1-5</i> mutant suggests a role for sterols in signaling. Plant Signaling and Behavior, 2009, 4, 873-874.	2.4	5

#	Article	IF	CITATIONS
91	Molecular Characterization of ZosmaNRT2, the Putative Sodium Dependent High-Affinity Nitrate Transporter of Zostera marina L International Journal of Molecular Sciences, 2019, 20, 3650.	4.1	5
92	Phylogeny of the fungus Spilocaea oleagina, the causal agent of peacock leaf spot in olive. FEMS Microbiology Letters, 2002, 210, 149-155.	1.8	2
93	Plant Signal Transduction. Methods in Molecular Biology, 2016, 1363, vii-x.	0.9	2
94	Dynamic analysis of Arabidopsis AP2 σ subunit reveals a key role in clathrin-mediated endocytosis and plant development. Journal of Cell Science, 2013, 126, e1-e1.	2.0	0
95	348 SENESCENCE OF DAYLILY (HEMEROCALLIS) IS ASSOCIATED WITH EXPRESSION OF A MADS-BOX GENE. Hortscience: A Publication of the American Society for Hortcultural Science, 1994, 29, 480e-480.	1.0	Ο
96	TTL Proteins Scaffold Brassinosteroid Signaling Components at the Plasma Membrane to Optimize Signal Transduction in Plant Cells. SSRN Electronic Journal, 0, , .	0.4	0