Timothy D Scheibe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6637333/publications.pdf

Version: 2024-02-01

172457 144013 3,565 92 29 57 citations h-index g-index papers 108 108 108 3085 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Contributions of biofilm-induced flow heterogeneities to solute retention and anomalous transport features in porous media. Water Research, 2022, 209, 117896.	11.3	5
2	Modeling framework for evaluating the impacts of hydrodynamic pressure on hydrologic exchange fluxes and residence time for a large-scale river section over a long-term period. Environmental Modelling and Software, 2022, 148, 105277.	4.5	2
3	From legacy contamination to watershed systems science: a review of scientific insights and technologies developed through DOE-supported research in water and energy security. Environmental Research Letters, 2022, 17, 043004.	5.2	12
4	Modeling of streamflow in a 30 km long reach spanning 5 years using OpenFOAM 5.x. Geoscientific Model Development, 2022, 15, 2917-2947.	3.6	4
5	Integrating field observations and process-based modeling to predict watershed water quality under environmental perturbations. Journal of Hydrology, 2021, 602, 125762.	5.4	22
6	Historical Contingency in Microbial Resilience to Hydrologic Perturbations. Frontiers in Water, 2021, 3, .	2.3	2
7	Machine Learning Analysis of Hydrologic Exchange Flows and Transit Time Distributions in a Large Regulated River. Frontiers in Artificial Intelligence, 2021, 4, 648071.	3.4	10
8	Editorial: Linking Hydrological and Biogeochemical Processes in Riparian Corridors. Frontiers in Water, $2021, 3, \ldots$	2.3	3
9	Scale-dependent spatial variabilities of hydrological exchange flows and transit time in a large regulated river. Journal of Hydrology, 2021, 598, 126283.	5.4	3
10	A novel construct for scaling groundwater–river interactions based on machine-guided hydromorphic classification. Environmental Research Letters, 2021, 16, 104016.	5.2	1
11	ANALYSIS OF NESTED HYPORHEIC FLOW PATHS USING ANALYTICAL SPECTRAL SOLUTIONS. , 2021, , .		O
12	Identification of Characteristic Spatial Scales to Improve the Performance of Analytical Spectral Solutions to the Groundwater Flow Equation. Water Resources Research, 2021, 57, .	4.2	O
13	Representing Organic Matter Thermodynamics in Biogeochemical Reactions via Substrate-Explicit Modeling. Frontiers in Microbiology, 2020, 11, 531756.	3.5	27
14	High-Performance Simulation of Dynamic Hydrologic Exchange and Implications for Surrogate Flow and Reactive Transport Modeling in a Large River Corridor. Frontiers in Water, 2020, 2, .	2.3	2
15	Spatial Mapping of Riverbed Grain-Size Distribution Using Machine Learning. Frontiers in Water, 2020, 2, .	2.3	5
16	An efficient three-dimensional rhizosphere modeling capability to study the effect of root system architecture on soil water and reactive transport. Plant and Soil, 2019, 441, 33-48.	3.7	13
17	On Modeling Ensemble Transport of Metal Reducing Motile Bacteria. Scientific Reports, 2019, 9, 14638.	3.3	2
18	Identification and mapping of riverbed sediment facies in the Columbia River through integration of field observations and numerical simulations. Hydrological Processes, 2019, 33, 1245-1259.	2.6	12

#	Article	IF	Citations
19	Reactive Transport Modeling of Microbial Dynamics. Elements, 2019, 15, 111-116.	0.5	21
20	Subsurface biogeochemistry is a missing link between ecology and hydrology in dam-impacted river corridors. Science of the Total Environment, 2019, 657, 435-445.	8.0	19
21	UNDERSTANDING RIVER CORRIDOR CONNECTIVITY ACROSS THE CONTINENTAL UNITED STATES., 2019,,.		0
22	Downscalingâ€Based Segmentation for Unresolved Images of Highly Heterogeneous Granular Porous Samples. Water Resources Research, 2018, 54, 2871-2890.	4.2	5
23	Groundwater Contamination, Subsurface Processes, and Remediation Methods: Overview of the Special Issue of Water on Groundwater Contamination and Remediation. Water (Switzerland), 2018, 10, 1708.	2.7	7
24	Geochemical and Microbial Community Attributes in Relation to Hyporheic Zone Geological Facies. Scientific Reports, 2017, 7, 12006.	3.3	40
25	What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system. Rhizosphere, 2017, 3, 259-262.	3.0	12
26	Regulation-Structured Dynamic Metabolic Model Provides a Potential Mechanism for Delayed Enzyme Response in Denitrification Process. Frontiers in Microbiology, 2017, 8, 1866.	3.5	40
27	Multiscale Modelling and Simulation, 13th International Workshop. Procedia Computer Science, 2016, 80, 1242-1243.	2.0	1
28	Intercomparison of 3D pore-scale flow and solute transport simulation methods. Advances in Water Resources, 2016, 95, 176-189.	3.8	105
29	Hybrid multiscale simulation of a mixing-controlled reaction. Advances in Water Resources, 2015, 83, 228-239.	3.8	23
30	Poreâ€scale and multiscale numerical simulation of flow and transport in a laboratoryâ€scale column. Water Resources Research, 2015, 51, 1023-1035.	4.2	79
31	A Hybrid Multiscale Framework for Subsurface Flow and Transport Simulations. Procedia Computer Science, 2015, 51, 1098-1107.	2.0	8
32	An Analysis Platform for Multiscale Hydrogeologic Modeling with Emphasis on Hybrid Multiscale Methods. Ground Water, 2015, 53, 38-56.	1.3	62
33	Flow Partitioning in Fully Saturated Soil Aggregates. Transport in Porous Media, 2014, 103, 295-314.	2.6	11
34	Colloid transport in saturated porous media: Elimination of attachment efficiency in a new colloid transport model. Water Resources Research, 2013, 49, 2952-2965.	4.2	23
35	Multiphysics simulations. International Journal of High Performance Computing Applications, 2013, 27, 4-83.	3.7	244
36	Development of a coupled thermo-hydro-mechanical model in discontinuous media for carbon sequestration. International Journal of Rock Mechanics and Minings Sciences, 2013, 62, 138-147.	5.8	22

#	Article	IF	CITATIONS
37	Pore-scale simulation of microbial growth using a genome-scale metabolic model: Implications for Darcy-scale reactive transport. Advances in Water Resources, 2013, 59, 256-270.	3.8	26
38	Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows. Advances in Water Resources, 2013, 62, 215-226.	3.8	18
39	Model-based analysis of mixed uranium(VI) reduction by biotic and abiotic pathways during in situ bioremediation. Chemical Geology, 2013, 357, 215-222.	3.3	5
40	Direct numerical simulation of pore-scale flow in a bead pack: Comparison with magnetic resonance imaging observations. Advances in Water Resources, 2013, 54, 228-241.	3.8	62
41	Advanced Simulation Capability for Environmental Management: Current Status and Future Applications. , $2013, , .$		1
42	Poreâ€scale simulation of intragranular diffusion: Effects of incomplete mixing on macroscopic manifestations. Water Resources Research, 2013, 49, 4277-4294.	4.2	16
43	A fluid pressure and deformation analysis for geological sequestration of carbon dioxide. Computers and Geosciences, 2012, 46, 31-37.	4.2	19
44	Dissipative-particle-dynamics model of biofilm growth. Physical Review E, 2011, 83, 066702.	2.1	23
45	Hybrid models of reactive transport in porous and fractured media. Advances in Water Resources, 2011, 34, 1140-1150.	3.8	119
46	Dimension reduction numerical closure method for advection–diffusion-reaction systems. Advances in Water Resources, 2011, 34, 1616-1626.	3.8	9
47	Lessons Learned from Bacterial Transport Research at the South Oyster Site. Ground Water, 2011, 49, 745-763.	1.3	20
48	Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model. Journal of Contaminant Hydrology, 2011, 122, 96-103.	3.3	44
49	Modelâ€based analysis of the role of biological, hydrological and geochemical factors affecting uranium bioremediation. Biotechnology and Bioengineering, 2011, 108, 1537-1548.	3.3	19
50	Modeling and sensitivity analysis of electron capacitance for Geobacter in sedimentary environments. Journal of Contaminant Hydrology, 2010, 112, 30-44.	3.3	16
51	Simulating the heterogeneity in braided channel belt deposits: 1. A geometricâ€based methodology and code. Water Resources Research, 2010, 46, .	4.2	48
52	Simulating the heterogeneity in braided channel belt deposits: 2. Examples of results and comparison to natural deposits. Water Resources Research, 2010, 46, .	4.2	35
53	A Component-Based Framework for Smoothed Particle Hydrodynamics Simulations of Reactive Fluid Flow in Porous Media. International Journal of High Performance Computing Applications, 2010, 24, 228-239.	3.7	18
54	Coupling a genomeâ€scale metabolic model with a reactive transport model to describe <i>in situ</i> uranium bioremediation. Microbial Biotechnology, 2009, 2, 274-286.	4.2	92

#	Article	IF	Citations
55	On breakdown of macroscopic models of mixing-controlled heterogeneous reactions in porous media. Advances in Water Resources, 2009, 32, 1664-1673.	3.8	133
56	Effects of incomplete mixing on multicomponent reactive transport. Advances in Water Resources, 2009, 32, 1674-1679.	3.8	100
57	Application of the SALSSA framework to the validation of smoothed particle hydrodynamics simulations of low Reynolds number flows. Journal of Physics: Conference Series, 2009, 180, 012065.	0.4	1
58	Pore-Scale Model for Reactive Transport and Biomass Growth. Journal of Porous Media, 2009, 12, 417-434.	1.9	38
59	Mixingâ€induced precipitation: Experimental study and multiscale numerical analysis. Water Resources Research, 2008, 44, .	4.2	167
60	Hybrid Simulations of Reaction-Diffusion Systems in Porous Media. SIAM Journal of Scientific Computing, 2008, 30, 2799-2816.	2.8	74
61	Special Issue on Discussions on Metahydrogeology: Research Stocktaking or Identity Crisis? Essays on the Once and Future Merit of Research in Hydrogeology. Journal of Hydrologic Engineering - ASCE, 2008, 13, 1-1.	1.9	0
62	Iterative Workflows for Numerical Simulations in Subsurface Sciences. , 2008, , .		3
63	Hybrid numerical methods for multiscale simulations of subsurface biogeochemical processes. Journal of Physics: Conference Series, 2008, 125, 012054.	0.4	1
64	Hybrid numerical methods for multiscale simulations of subsurface biogeochemical processes. Journal of Physics: Conference Series, 2007, 78, 012063.	0.4	13
65	Particle methods for simulation of subsurface multiphase fluid flow and biogeochemical processes. Journal of Physics: Conference Series, 2007, 78, 012047.	0.4	4
66	A novel approach to estimate iron distribution within different pore domains of structured media. Applied Geochemistry, 2007, 22, 2630-2636.	3.0	0
67	Explaining "Noise" as Environmental Variations in Population Dynamics. Computing in Science and Engineering, 2007, 9, 40-49.	1.2	2
68	A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media. Water Resources Research, 2007, 43, .	4.2	128
69	Correlation between bacterial attachment rate coefficients and hydraulic conductivity and its effect on field-scale bacterial transport. Advances in Water Resources, 2007, 30, 1571-1582.	3.8	26
70	Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. Journal of Computational Physics, 2007, 222, 654-672.	3.8	200
71	Transport and biogeochemical reaction of metals in a physically and chemically heterogeneous aquifer., 2006, 2, 220.		61
72	Change of Collision Efficiency with Distance in Bacterial Transport Experiments. Ground Water, 2006, 44, 415-429.	1.3	12

#	Article	IF	CITATIONS
73	Physical versus chemical effects on bacterial and bromide transport as determined from on site sediment column pulse experiments. Journal of Contaminant Hydrology, 2005, 76, 295-314.	3.3	21
74	Conceptual and numerical model of uranium(VI) reductive immobilization in fractured subsurface sediments. Chemosphere, 2005, 59, 617-628.	8.2	36
75	Interactive Models for Ground Water Flow and Solute Transport. Ground Water, 2004, 42, 8-11.	1.3	3
76	Apparent Decreases in Colloid Deposition Rate Coefficients with Distance of Transport under Unfavorable Deposition Conditions:Â A General Phenomenon. Environmental Science &	10.0	206
77	Processes in Microbial Transport in the Natural Subsurface. ChemInform, 2003, 34, no.	0.0	2
78	An Evaluation of Conditioning Data for Solute Transport Prediction. Ground Water, 2003, 41, 128-141.	1.3	43
79	A particle-based model of size or anion exclusion with application to microbial transport in porous media. Water Resources Research, 2003, 39, .	4.2	45
80	Relative Dominance of Physical versus Chemical Effects on the Transport of Adhesion-Deficient Bacteria in Intact Cores from South Oyster, Virginia. Environmental Science & Echnology, 2002, 36, 891-900.	10.0	68
81	Fish individual-based numerical simulator (FINS): a particle-based model of juvenile salmonid movement and dissolved gas exposure history in the Columbia River basin. Ecological Modelling, 2002, 147, 233-252.	2.5	25
82	Processes in microbial transport in the natural subsurface. Advances in Water Resources, 2002, 25, 1017-1042.	3.8	258
83	Breakthroughs in field-scale bacterial transport. Eos, 2001, 82, 417-417.	0.1	12
84	Extended tailing of bacteria following breakthrough at the Narrow Channel Focus Area, Oyster, Virginia. Water Resources Research, 2001, 37, 2687-2698.	4.2	79
85	Ferrographic Tracking of Bacterial Transport in the Field at the Narrow Channel Focus Area, Oyster, VA. Environmental Science & Echnology, 2001, 35, 182-191.	10.0	56
86	Use of Quantitative Models to Design Microbial Transport Experiments in a Sandy Aquifer. Ground Water, 2001, 39, 210-222.	1.3	29
87	Scaling of flow and transport behavior in heterogeneous groundwater systems. Advances in Water Resources, 1998, 22, 223-238.	3.8	79
88	Preliminary observations on bacterial transport in a coastal plain aquifer. FEMS Microbiology Reviews, 1997, 20, 473-487.	8.6	74
89	Preliminary observations on bacterial transport in a coastal plain aquifer. FEMS Microbiology Reviews, 1997, 20, 473-487.	8.6	2
90	Use of sedimentological information for geometric simulation of natural porous media structure. Water Resources Research, 1995, 31, 3259-3270.	4.2	74

#	Article	IF	CITATIONS
91	Non-Gaussian Particle Tracking: Application to scaling of transport processes in heterogeneous porous media. Water Resources Research, 1994, 30, 2027-2039.	4.2	27
92	Risk-Based Selection of Monitoring Wells for Assessing Agricultural Chemical Contamination of Ground Water. Ground Water Monitoring and Remediation, 1989, 9, 98-108.	0.8	1