
## Kjetill Sigurd Jakobsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6635895/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | An accurate assignment test for extremely lowâ€coverage wholeâ€genome sequence data. Molecular<br>Ecology Resources, 2022, 22, 1330-1344.                                                                                      | 4.8  | 7         |
| 2  | The Earth BioGenome Project 2020: Starting the clock. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .                                                                            | 7.1  | 124       |
| 3  | Supergene origin and maintenance in Atlantic cod. Nature Ecology and Evolution, 2022, 6, 469-481.                                                                                                                              | 7.8  | 46        |
| 4  | The Animal Origin of Major Human Infectious Diseases: What Can Past Epidemics Teach Us About<br>Preventing the Next Pandemic?. Zoonoses, 2022, 2, .                                                                            | 1.1  | 14        |
| 5  | Ancient DNA reveals a southern presence of the Northeast Arctic cod during the Holocene. Biology<br>Letters, 2022, 18, 20220021.                                                                                               | 2.3  | 9         |
| 6  | Lymphocyte subsets in Atlantic cod (Gadus morhua) interrogated by single-cell sequencing.<br>Communications Biology, 2022, 5, .                                                                                                | 4.4  | 4         |
| 7  | Length variation in short tandem repeats affects gene expression in natural populations of<br><i>Arabidopsis thaliana</i> . Plant Cell, 2021, 33, 2221-2234.                                                                   | 6.6  | 24        |
| 8  | Genomic stability through time despite decades of exploitation in cod on both sides of the Atlantic.<br>Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                          | 7.1  | 61        |
| 9  | Historical Demographic Processes Dominate Genetic Variation in Ancient Atlantic Cod Mitogenomes.<br>Frontiers in Ecology and Evolution, 2021, 9, .                                                                             | 2.2  | 9         |
| 10 | Complex population structure of the Atlantic puffin revealed by whole genome analyses.<br>Communications Biology, 2021, 4, 922.                                                                                                | 4.4  | 14        |
| 11 | Single-Cell Transcriptome Profiling of Immune Cell Repertoire of the Atlantic Cod Which Naturally<br>Lacks the Major Histocompatibility Class II System. Frontiers in Immunology, 2020, 11, 559555.                            | 4.8  | 24        |
| 12 | Innovation in Nucleotide-Binding Oligomerization-Like Receptor and Toll-Like Receptor Sensing Drives<br>the Major Histocompatibility Complex-II Free Atlantic Cod Immune System. Frontiers in Immunology,<br>2020, 11, 609456. | 4.8  | 5         |
| 13 | Metagenomic Shotgun Analyses Reveal Complex Patterns of Intra- and Interspecific Variation in the<br>Intestinal Microbiomes of Codfishes. Applied and Environmental Microbiology, 2020, 86, .                                  | 3.1  | 23        |
| 14 | The Genome of the Great Gerbil Reveals Species-Specific Duplication of an MHCII Gene. Genome Biology and Evolution, 2020, 12, 3832-3849.                                                                                       | 2.5  | 5         |
| 15 | Evolutionary selection of biofilm-mediated extended phenotypes in Yersinia pestis in response to a fluctuating environment. Nature Communications, 2020, 11, 281.                                                              | 12.8 | 30        |
| 16 | A high-quality assembly of the nine-spined stickleback (Pungitius pungitius) genome. Genome Biology<br>and Evolution, 2019, 11, 3291-3308.                                                                                     | 2.5  | 54        |
| 17 | Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Research, 2019, 47, 10994-11006.                                                             | 14.5 | 236       |
| 18 | Whole transcriptome analysis of the Atlantic cod vaccine response reveals subtle changes in adaptive immunity. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2019, 31, 100597.                      | 1.0  | 30        |

KJETILL SIGURD JAKOBSEN

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Vision using multiple distinct rod opsins in deep-sea fishes. Science, 2019, 364, 588-592.                                                                                                                           | 12.6 | 151       |
| 20 | Switching on the light: using metagenomic shotgun sequencing to characterize the intestinal microbiome of Atlantic cod. Environmental Microbiology, 2019, 21, 2576-2594.                                             | 3.8  | 27        |
| 21 | Disentangling the immune response and host-pathogen interactions in Francisella noatunensis<br>infected Atlantic cod. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics,<br>2019, 30, 333-346. | 1.0  | 31        |
| 22 | Disentangling structural genomic and behavioural barriers in a sea of connectivity. Molecular<br>Ecology, 2019, 28, 1394-1411.                                                                                       | 3.9  | 68        |
| 23 | Longâ€read sequence capture of the haemoglobin gene clusters across codfish species. Molecular<br>Ecology Resources, 2019, 19, 245-259.                                                                              | 4.8  | 9         |
| 24 | De Novo Gene Evolution of Antifreeze Glycoproteins in Codfishes Revealed by Whole Genome<br>Sequence Data. Molecular Biology and Evolution, 2018, 35, 593-606.                                                       | 8.9  | 67        |
| 25 | Genomic architecture of haddock (Melanogrammus aeglefinus) shows expansions of innate immune<br>genes and short tandem repeats. BMC Genomics, 2018, 19, 240.                                                         | 2.8  | 58        |
| 26 | The Most Developmentally Truncated Fishes Show Extensive Hox Gene Loss and Miniaturized Genomes.<br>Genome Biology and Evolution, 2018, 10, 1088-1103.                                                               | 2.5  | 28        |
| 27 | The Grayling Genome Reveals Selection on Gene Expression Regulation after Whole-Genome<br>Duplication. Genome Biology and Evolution, 2018, 10, 2785-2800.                                                            | 2.5  | 42        |
| 28 | A Single Vibrionales 16S rRNA Oligotype Dominates the Intestinal Microbiome in Two Geographically<br>Separated Atlantic cod Populations. Frontiers in Microbiology, 2018, 9, 1561.                                   | 3.5  | 18        |
| 29 | Independent losses of a xenobiotic receptor across teleost evolution. Scientific Reports, 2018, 8, 10404.                                                                                                            | 3.3  | 26        |
| 30 | Whole genome sequencing data and de novo draft assemblies for 66 teleost species. Scientific Data, 2017, 4, 160132.                                                                                                  | 5.3  | 67        |
| 31 | An improved genome assembly uncovers prolific tandem repeats in Atlantic cod. BMC Genomics, 2017, 18, 95.                                                                                                            | 2.8  | 153       |
| 32 | Linking species habitat and past palaeoclimatic events to evolution of the teleost innate immune system. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162810.                               | 2.6  | 60        |
| 33 | Genome architecture enables local adaptation of Atlantic cod despite high connectivity. Molecular<br>Ecology, 2017, 26, 4452-4466.                                                                                   | 3.9  | 130       |
| 34 | Evolution of Hemoglobin Genes in Codfishes Influenced by Ocean Depth. Scientific Reports, 2017, 7, 7956.                                                                                                             | 3.3  | 22        |
| 35 | Ancient DNA reveals the Arctic origin of Viking Age cod from Haithabu, Germany. Proceedings of the<br>National Academy of Sciences of the United States of America, 2017, 114, 9152-9157.                            | 7.1  | 66        |
| 36 | Using Prokaryotes for Carbon Capture Storage. Trends in Biotechnology, 2017, 35, 22-32.                                                                                                                              | 9.3  | 44        |

KJETILL SIGURD JAKOBSEN

| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Successive Losses of Central Immune Genes Characterize the Gadiformes' Alternate Immunity. Genome<br>Biology and Evolution, 2016, 8, 3508-3515.                               | 2.5  | 30        |
| 38 | Evolutionary redesign of the Atlantic cod (Gadus morhua L.) Toll-like receptor repertoire by gene losses and expansions. Scientific Reports, 2016, 6, 25211.                  | 3.3  | 89        |
| 39 | The Atlantic salmon genome provides insights into rediploidization. Nature, 2016, 533, 200-205.                                                                               | 27.8 | 1,021     |
| 40 | Evolution of the immune system influences speciation rates in teleost fishes. Nature Genetics, 2016, 48, 1204-1210.                                                           | 21.4 | 226       |
| 41 | Genomics of speciation and introgression in Princess cichlid fishes from Lake Tanganyika. Molecular<br>Ecology, 2016, 25, 6143-6161.                                          | 3.9  | 68        |
| 42 | Genomic characterization of the Atlantic cod sex-locus. Scientific Reports, 2016, 6, 31235.                                                                                   | 3.3  | 34        |
| 43 | Three chromosomal rearrangements promote genomic divergence between migratory and stationary ecotypes of Atlantic cod. Scientific Reports, 2016, 6, 23246.                    | 3.3  | 128       |
| 44 | Adaptation to Low Salinity Promotes Genomic Divergence in Atlantic Cod ( Gadus morhua L.). Genome<br>Biology and Evolution, 2015, 7, 1644-1663.                               | 2.5  | 167       |
| 45 | From Gene Trees to a Dated Allopolyploid Network: Insights from the Angiosperm Genus Viola<br>(Violaceae). Systematic Biology, 2015, 64, 84-101.                              | 5.6  | 106       |
| 46 | The chloroplast genome of the diatom Seminavis robusta: New features introduced through multiple mechanisms of horizontal gene transfer. Marine Genomics, 2014, 16, 17-27.    | 1.1  | 43        |
| 47 | Ancient hybridizations among the ancestral genomes of bread wheat. Science, 2014, 345, 1250092.                                                                               | 12.6 | 629       |
| 48 | Palindromic Sequence Artifacts Generated during Next Generation Sequencing Library Preparation from Historic and Ancient DNA. PLoS ONE, 2014, 9, e89676.                      | 2.5  | 27        |
| 49 | Next generation sequencing shows high variation of the intestinal microbial species composition in Atlantic cod caught at a single location. BMC Microbiology, 2013, 13, 248. | 3.3  | 98        |
| 50 | Metagenomics in CO2 Monitoring. Energy Procedia, 2013, 37, 4215-4233.                                                                                                         | 1.8  | 8         |
| 51 | Unraveling the Evolution of the Atlantic Cod's (Gadus morhua L.) Alternative Immune Strategy. PLoS<br>ONE, 2013, 8, e74004.                                                   | 2.5  | 64        |
| 52 | Inferring Species Networks from Gene Trees in High-Polyploid North American and Hawaiian Violets<br>(Viola, Violaceae). Systematic Biology, 2012, 61, 107-126.                | 5.6  | 100       |
| 53 | Metagenomic and geochemical characterization of pockmarked sediments overlaying the Troll petroleum reservoir in the North Sea. BMC Microbiology, 2012, 12, 203.              | 3.3  | 25        |
| 54 | Discovery of Nuclear-Encoded Genes for the Neurotoxin Saxitoxin in Dinoflagellates. PLoS ONE, 2011,<br>6, e20096.                                                             | 2.5  | 172       |

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The 18S and 28S rDNA identity and phylogeny of the common lotic chrysophyteHydrurus foetidus.<br>European Journal of Phycology, 2011, 46, 282-291.                                                                                       | 2.0  | 39        |
| 56 | The genome sequence of Atlantic cod reveals a unique immune system. Nature, 2011, 477, 207-210.                                                                                                                                          | 27.8 | 730       |
| 57 | Genomic organization and gene expression of the multiple globins in Atlantic cod: conservation of globin-flanking genes in chordates infers the origin of the vertebrate globin clusters. BMC Evolutionary Biology, 2010, 10, 315.       | 3.2  | 22        |
| 58 | Evolution of plant RNA polymerase IV/V genes: evidence of subneofunctionalization of duplicated NRPD2/NRPE2-like paralogs in Viola (Violaceae). BMC Evolutionary Biology, 2010, 10, 45.                                                  | 3.2  | 27        |
| 59 | SUBPOPULATION DIFFERENTIATION ASSOCIATED WITH NONRIBOSOMAL PEPTIDE SYNTHETASE GENE<br>CLUSTER DYNAMICS IN THE CYANOBACTERIUM PLANKTOTHRIX SPP.1. Journal of Phycology, 2010, 46,<br>645-652.                                             | 2.3  | 13        |
| 60 | The cylindrospermopsin gene cluster of Aphanizomenon sp. strain 10E6: organization and recombination. Microbiology (United Kingdom), 2010, 156, 2438-2451.                                                                               | 1.8  | 70        |
| 61 | Automatic lane detection and separation in one dimensional gel images using continuous wavelet<br>transform. Analytical Methods, 2010, 2, 1360.                                                                                          | 2.7  | 14        |
| 62 | Natural occurrence of microcystin synthetase deletion mutants capable of producing microcystins in strains of the genus Anabaena (Cyanobacteria). Microbiology (United Kingdom), 2008, 154, 1007-1014.                                   | 1.8  | 36        |
| 63 | The mosaic structure of the mcyABC operon in Microcystis. Microbiology (United Kingdom), 2008, 154, 1886-1899.                                                                                                                           | 1.8  | 52        |
| 64 | Structural analysis of a non-ribosomal halogenated cyclic peptide and its putative operon from<br>Microcystis: implications for evolution of cyanopeptolins. Microbiology (United Kingdom), 2007, 153,<br>1382-1393.                     | 1.8  | 49        |
| 65 | Telonema antarcticum sp. nov., a common marine phagotrophic flagellate. International Journal of<br>Systematic and Evolutionary Microbiology, 2005, 55, 2595-2604.                                                                       | 1.7  | 59        |
| 66 | The Melanocyte-Stimulating Hormone Receptor (Mci-R) Gene as a Tool in Evolutionary Studies of Artiodactyles. Hereditas, 2004, 131, 39-46.                                                                                                | 1.4  | 13        |
| 67 | Discovery of the toxic dinoflagellate Pfiesteria in northern European waters. Proceedings of the<br>Royal Society B: Biological Sciences, 2002, 269, 211-214.                                                                            | 2.6  | 31        |
| 68 | Title is missing!. Conservation Genetics, 2002, 3, 97-111.                                                                                                                                                                               | 1.5  | 66        |
| 69 | Environmental change and rates of evolution: the phylogeographic pattern within the hartebeest<br>complex as related to climatic variation. Proceedings of the Royal Society B: Biological Sciences, 2001,<br>268, 667-677.              | 2.6  | 118       |
| 70 | The frequency of silencing in Arabidopsis thaliana varies highly between progeny of siblings and can be influenced by environmental factors. Transgenic Research, 2001, 10, 53-67.                                                       | 2.4  | 48        |
| 71 | Genetic Variability in Swayne's Hartebeest, an Endangered Antelope of Ethiopia. Conservation Biology,<br>2000, 14, 254-264.                                                                                                              | 4.7  | 20        |
| 72 | Application of Sequence-Specific Labeled 16S rRNA Gene Oligonucleotide Probes for Genetic Profiling<br>of Cyanobacterial Abundance and Diversity by Array Hybridization. Applied and Environmental<br>Microbiology, 2000, 66, 4004-4011. | 3.1  | 100       |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Heteroplasmy, Length and Sequence Variation in the mtDNA Control Regions of Three Percid Fish<br>Species (Perca fluviatilis, Acerina cernua, Stizostedion lucioperca). Genetics, 1998, 148, 1907-1919. | 2.9 | 70        |
| 74 | Evolution of Cyanobacteria by Exchange of Genetic Material among Phyletically Related Strains.<br>Journal of Bacteriology, 1998, 180, 3453-3461.                                                       | 2.2 | 161       |
| 75 | Molecular Phylogeny and Evolution of Monilinia (Sclerotiniaceae) based on coding and Noncoding rDNA Sequences. American Journal of Botany, 1997, 84, 686-701.                                          | 1.7 | 78        |
| 76 | Hybridization capture of microsatellites directly from genomic DNA. Electrophoresis, 1997, 18, 1519-1523.                                                                                              | 2.4 | 116       |