Kjetill Sigurd Jakobsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6635895/publications.pdf

Version: 2024-02-01

76 papers

6,780 citations

39 h-index 69250 77 g-index

94 all docs 94 docs citations 94 times ranked 8625 citing authors

#	Article	IF	CITATIONS
1	The Atlantic salmon genome provides insights into rediploidization. Nature, 2016, 533, 200-205.	27.8	1,021
2	The genome sequence of Atlantic cod reveals a unique immune system. Nature, 2011, 477, 207-210.	27.8	730
3	Ancient hybridizations among the ancestral genomes of bread wheat. Science, 2014, 345, 1250092.	12.6	629
4	Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Research, 2019, 47, 10994-11006.	14.5	236
5	Evolution of the immune system influences speciation rates in teleost fishes. Nature Genetics, 2016, 48, 1204-1210.	21.4	226
6	Discovery of Nuclear-Encoded Genes for the Neurotoxin Saxitoxin in Dinoflagellates. PLoS ONE, 2011, 6, e20096.	2.5	172
7	Adaptation to Low Salinity Promotes Genomic Divergence in Atlantic Cod (Gadus morhua L.). Genome Biology and Evolution, 2015, 7, 1644-1663.	2.5	167
8	Evolution of Cyanobacteria by Exchange of Genetic Material among Phyletically Related Strains. Journal of Bacteriology, 1998, 180, 3453-3461.	2.2	161
9	An improved genome assembly uncovers prolific tandem repeats in Atlantic cod. BMC Genomics, 2017, 18, 95.	2.8	153
10	Vision using multiple distinct rod opsins in deep-sea fishes. Science, 2019, 364, 588-592.	12.6	151
11	Genome architecture enables local adaptation of Atlantic cod despite high connectivity. Molecular Ecology, 2017, 26, 4452-4466.	3.9	130
12	Three chromosomal rearrangements promote genomic divergence between migratory and stationary ecotypes of Atlantic cod. Scientific Reports, 2016, 6, 23246.	3.3	128
13	The Earth BioGenome Project 2020: Starting the clock. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	124
14	Environmental change and rates of evolution: the phylogeographic pattern within the hartebeest complex as related to climatic variation. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 667-677.	2.6	118
15	Hybridization capture of microsatellites directly from genomic DNA. Electrophoresis, 1997, 18, 1519-1523.	2.4	116
16	From Gene Trees to a Dated Allopolyploid Network: Insights from the Angiosperm Genus Viola (Violaceae). Systematic Biology, 2015, 64, 84-101.	5.6	106
17	Application of Sequence-Specific Labeled 16S rRNA Gene Oligonucleotide Probes for Genetic Profiling of Cyanobacterial Abundance and Diversity by Array Hybridization. Applied and Environmental Microbiology, 2000, 66, 4004-4011.	3.1	100
18	Inferring Species Networks from Gene Trees in High-Polyploid North American and Hawaiian Violets (Viola, Violaceae). Systematic Biology, 2012, 61, 107-126.	5.6	100

#	Article	IF	Citations
19	Next generation sequencing shows high variation of the intestinal microbial species composition in Atlantic cod caught at a single location. BMC Microbiology, 2013, 13, 248.	3.3	98
20	Evolutionary redesign of the Atlantic cod (Gadus morhua L.) Toll-like receptor repertoire by gene losses and expansions. Scientific Reports, 2016, 6, 25211.	3.3	89
21	Molecular Phylogeny and Evolution of Monilinia (Sclerotiniaceae) based on coding and Noncoding rDNA Sequences. American Journal of Botany, 1997, 84, 686-701.	1.7	78
22	The cylindrospermopsin gene cluster of Aphanizomenon sp. strain 10E6: organization and recombination. Microbiology (United Kingdom), 2010, 156, 2438-2451.	1.8	70
23	Heteroplasmy, Length and Sequence Variation in the mtDNA Control Regions of Three Percid Fish Species (Perca fluviatilis, Acerina cernua, Stizostedion lucioperca). Genetics, 1998, 148, 1907-1919.	2.9	70
24	Genomics of speciation and introgression in Princess cichlid fishes from Lake Tanganyika. Molecular Ecology, 2016, 25, 6143-6161.	3.9	68
25	Disentangling structural genomic and behavioural barriers in a sea of connectivity. Molecular Ecology, 2019, 28, 1394-1411.	3.9	68
26	Whole genome sequencing data and de novo draft assemblies for 66 teleost species. Scientific Data, 2017, 4, 160132.	5.3	67
27	De Novo Gene Evolution of Antifreeze Glycoproteins in Codfishes Revealed by Whole Genome Sequence Data. Molecular Biology and Evolution, 2018, 35, 593-606.	8.9	67
28	Title is missing!. Conservation Genetics, 2002, 3, 97-111.	1.5	66
29	Ancient DNA reveals the Arctic origin of Viking Age cod from Haithabu, Germany. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9152-9157.	7.1	66
30	Unraveling the Evolution of the Atlantic Cod's (Gadus morhua L.) Alternative Immune Strategy. PLoS ONE, 2013, 8, e74004.	2.5	64
31	Genomic stability through time despite decades of exploitation in cod on both sides of the Atlantic. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	61
32	Linking species habitat and past palaeoclimatic events to evolution of the teleost innate immune system. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162810.	2.6	60
33	Telonema antarcticum sp. nov., a common marine phagotrophic flagellate. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 2595-2604.	1.7	59
34	Genomic architecture of haddock (Melanogrammus aeglefinus) shows expansions of innate immune genes and short tandem repeats. BMC Genomics, 2018, 19, 240.	2.8	58
35	A high-quality assembly of the nine-spined stickleback (Pungitius pungitius) genome. Genome Biology and Evolution, 2019, 11, 3291-3308.	2.5	54
36	The mosaic structure of the mcyABC operon in Microcystis. Microbiology (United Kingdom), 2008, 154, 1886-1899.	1.8	52

#	Article	IF	Citations
37	Structural analysis of a non-ribosomal halogenated cyclic peptide and its putative operon from Microcystis: implications for evolution of cyanopeptolins. Microbiology (United Kingdom), 2007, 153, 1382-1393.	1.8	49
38	The frequency of silencing in Arabidopsis thaliana varies highly between progeny of siblings and can be influenced by environmental factors. Transgenic Research, 2001, 10, 53-67.	2.4	48
39	Supergene origin and maintenance in Atlantic cod. Nature Ecology and Evolution, 2022, 6, 469-481.	7.8	46
40	Using Prokaryotes for Carbon Capture Storage. Trends in Biotechnology, 2017, 35, 22-32.	9.3	44
41	The chloroplast genome of the diatom Seminavis robusta: New features introduced through multiple mechanisms of horizontal gene transfer. Marine Genomics, 2014, 16, 17-27.	1.1	43
42	The Grayling Genome Reveals Selection on Gene Expression Regulation after Whole-Genome Duplication. Genome Biology and Evolution, 2018, 10, 2785-2800.	2.5	42
43	The 18S and 28S rDNA identity and phylogeny of the common lotic chrysophyteHydrurus foetidus. European Journal of Phycology, 2011, 46, 282-291.	2.0	39
44	Natural occurrence of microcystin synthetase deletion mutants capable of producing microcystins in strains of the genus Anabaena (Cyanobacteria). Microbiology (United Kingdom), 2008, 154, 1007-1014.	1.8	36
45	Genomic characterization of the Atlantic cod sex-locus. Scientific Reports, 2016, 6, 31235.	3.3	34
46	Discovery of the toxic dinoflagellate Pfiesteria in northern European waters. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 211-214.	2.6	31
47	Disentangling the immune response and host-pathogen interactions in Francisella noatunensis infected Atlantic cod. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2019, 30, 333-346.	1.0	31
48	Successive Losses of Central Immune Genes Characterize the Gadiformes' Alternate Immunity. Genome Biology and Evolution, 2016, 8, 3508-3515.	2.5	30
49	Whole transcriptome analysis of the Atlantic cod vaccine response reveals subtle changes in adaptive immunity. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2019, 31, 100597.	1.0	30
50	Evolutionary selection of biofilm-mediated extended phenotypes in Yersinia pestis in response to a fluctuating environment. Nature Communications, 2020, 11 , 281 .	12.8	30
51	The Most Developmentally Truncated Fishes Show Extensive Hox Gene Loss and Miniaturized Genomes. Genome Biology and Evolution, 2018, 10, 1088-1103.	2.5	28
52	Evolution of plant RNA polymerase IV/V genes: evidence of subneofunctionalization of duplicated NRPD2/NRPE2-like paralogs in Viola (Violaceae). BMC Evolutionary Biology, 2010, 10, 45.	3.2	27
53	Palindromic Sequence Artifacts Generated during Next Generation Sequencing Library Preparation from Historic and Ancient DNA. PLoS ONE, 2014, 9, e89676.	2.5	27
54	Switching on the light: using metagenomic shotgun sequencing to characterize the intestinal microbiome of Atlantic cod. Environmental Microbiology, 2019, 21, 2576-2594.	3.8	27

#	Article	IF	Citations
55	Independent losses of a xenobiotic receptor across teleost evolution. Scientific Reports, 2018, 8, 10404.	3.3	26
56	Metagenomic and geochemical characterization of pockmarked sediments overlaying the Troll petroleum reservoir in the North Sea. BMC Microbiology, 2012, 12, 203.	3.3	25
57	Single-Cell Transcriptome Profiling of Immune Cell Repertoire of the Atlantic Cod Which Naturally Lacks the Major Histocompatibility Class II System. Frontiers in Immunology, 2020, 11, 559555.	4.8	24
58	Length variation in short tandem repeats affects gene expression in natural populations of <i>Arabidopsis thaliana </i> . Plant Cell, 2021, 33, 2221-2234.	6.6	24
59	Metagenomic Shotgun Analyses Reveal Complex Patterns of Intra- and Interspecific Variation in the Intestinal Microbiomes of Codfishes. Applied and Environmental Microbiology, 2020, 86, .	3.1	23
60	Genomic organization and gene expression of the multiple globins in Atlantic cod: conservation of globin-flanking genes in chordates infers the origin of the vertebrate globin clusters. BMC Evolutionary Biology, 2010, 10, 315.	3.2	22
61	Evolution of Hemoglobin Genes in Codfishes Influenced by Ocean Depth. Scientific Reports, 2017, 7, 7956.	3.3	22
62	Genetic Variability in Swayne's Hartebeest, an Endangered Antelope of Ethiopia. Conservation Biology, 2000, 14, 254-264.	4.7	20
63	A Single Vibrionales 16S rRNA Oligotype Dominates the Intestinal Microbiome in Two Geographically Separated Atlantic cod Populations. Frontiers in Microbiology, 2018, 9, 1561.	3 . 5	18
64	Automatic lane detection and separation in one dimensional gel images using continuous wavelet transform. Analytical Methods, 2010, 2, 1360.	2.7	14
65	Complex population structure of the Atlantic puffin revealed by whole genome analyses. Communications Biology, 2021, 4, 922.	4.4	14
66	The Animal Origin of Major Human Infectious Diseases: What Can Past Epidemics Teach Us About Preventing the Next Pandemic?. Zoonoses, 2022, 2, .	1.1	14
67	The Melanocyte-Stimulating Hormone Receptor (Mci-R) Gene as a Tool in Evolutionary Studies of Artiodactyles. Hereditas, 2004, 131, 39-46.	1.4	13
68	SUBPOPULATION DIFFERENTIATION ASSOCIATED WITH NONRIBOSOMAL PEPTIDE SYNTHETASE GENE CLUSTER DYNAMICS IN THE CYANOBACTERIUM PLANKTOTHRIX SPP.1. Journal of Phycology, 2010, 46, 645-652.	2.3	13
69	Longâ€read sequence capture of the haemoglobin gene clusters across codfish species. Molecular Ecology Resources, 2019, 19, 245-259.	4.8	9
70	Historical Demographic Processes Dominate Genetic Variation in Ancient Atlantic Cod Mitogenomes. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	9
71	Ancient DNA reveals a southern presence of the Northeast Arctic cod during the Holocene. Biology Letters, 2022, 18, 20220021.	2.3	9
72	Metagenomics in CO2 Monitoring. Energy Procedia, 2013, 37, 4215-4233.	1.8	8

#	Article	lF	CITATIONS
73	An accurate assignment test for extremely lowâ€coverage wholeâ€genome sequence data. Molecular Ecology Resources, 2022, 22, 1330-1344.	4.8	7
74	Innovation in Nucleotide-Binding Oligomerization-Like Receptor and Toll-Like Receptor Sensing Drives the Major Histocompatibility Complex-II Free Atlantic Cod Immune System. Frontiers in Immunology, 2020, 11, 609456.	4.8	5
75	The Genome of the Great Gerbil Reveals Species-Specific Duplication of an MHCII Gene. Genome Biology and Evolution, 2020, 12, 3832-3849.	2.5	5
76	Lymphocyte subsets in Atlantic cod (Gadus morhua) interrogated by single-cell sequencing. Communications Biology, 2022, 5, .	4.4	4