
Hongtao Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6635649/publications.pdf Version: 2024-02-01

Ηονιστλο Υμ

#	Article	IF	CITATIONS
1	TP53 promotes lineage commitment of human embryonic stem cells through ciliogenesis and sonic hedgehog signaling. Cell Reports, 2022, 38, 110395.	6.4	17
2	Cryo-EM structures of human p97 double hexamer capture potentiated ATPase-competent state. Cell Discovery, 2022, 8, 19.	6.7	10
3	Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nature Biomedical Engineering, 2021, 5, 455-466.	22.5	157
4	Shaping of the 3D genome by the ATPase machine cohesin. Experimental and Molecular Medicine, 2020, 52, 1891-1897.	7.7	19
5	Cryo-EM structure of the human cohesin-NIPBL-DNA complex. Science, 2020, 368, 1454-1459.	12.6	171
6	Insulin receptor endocytosis in the pathophysiology of insulin resistance. Experimental and Molecular Medicine, 2020, 52, 911-920.	7.7	71
7	Structure of human GABAB receptor in an inactive state. Nature, 2020, 584, 304-309.	27.8	59
8	Cryo-EM structure of VASH1-SVBP bound to microtubules. ELife, 2020, 9, .	6.0	23
9	Structural basis of the activation of type 1 insulin-like growth factor receptor. Nature Communications, 2019, 10, 4567.	12.8	117
10	Structural basis of tubulin detyrosination by vasohibins. Nature Structural and Molecular Biology, 2019, 26, 583-591.	8.2	50
11	Structural Insight into DNA-Dependent Activation of Human Metalloprotease Spartan. Cell Reports, 2019, 26, 3336-3346.e4.	6.4	42
12	Mitotic regulators and the SHP2-MAPK pathway promote IR endocytosis and feedback regulation of insulin signaling. Nature Communications, 2019, 10, 1473.	12.8	71
13	Mps1 regulates spindle morphology through MCRS1 to promote chromosome alignment. Molecular Biology of the Cell, 2019, 30, 1060-1068.	2.1	11
14	Human cohesin compacts DNA by loop extrusion. Science, 2019, 366, 1345-1349.	12.6	513
15	PUMILIO hyperactivity drives premature aging of Norad-deficient mice. ELife, 2019, 8, .	6.0	65
16	Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor–ligand complex. ELife, 2019, 8, .	6.0	123
17	Partner switching for Ran during the mitosis dance. Journal of Molecular Cell Biology, 2018, 10, 89-90.	3.3	6
18	The BUB3-BUB1 Complex Promotes Telomere DNA Replication. Molecular Cell, 2018, 70, 395-407.e4.	9.7	54

#	Article	IF	CITATIONS
19	CENP-T bears the load in mitosis. Nature Cell Biology, 2018, 20, 1335-1337.	10.3	1
20	Spindle Checkpoint Regulators in Insulin Signaling. Frontiers in Cell and Developmental Biology, 2018, 6, 161.	3.7	10
21	The chromatin remodeler RSF1 controls centromeric histone modifications to coordinate chromosome segregation. Nature Communications, 2018, 9, 3848.	12.8	20
22	Interaction of the Warsaw breakage syndrome DNA helicase DDX11 with the replication fork-protection factor Timeless promotes sister chromatid cohesion. PLoS Genetics, 2018, 14, e1007622.	3.5	40
23	Scc2 Is a Potent Activator of Cohesin's ATPase that Promotes Loading by Binding Scc1 without Pds5. Molecular Cell, 2018, 70, 1134-1148.e7.	9.7	141
24	MCM2–7-dependent cohesin loading during S phase promotes sister-chromatid cohesion. ELife, 2018, 7,	6.0	57
25	Cyclin A Turns on Bora to Light the Path to Mitosis. Developmental Cell, 2018, 45, 542-543.	7.0	4
26	A Method for SUMO Modification of Proteins in vitro. Bio-protocol, 2018, 8, .	0.4	4
27	Sumoylation promotes optimal APC/C activation and timely anaphase. ELife, 2018, 7, .	6.0	26
28	Releasing the cohesin ring: A rigid scaffold model for opening the DNA exit gate by Pds5 and Wapl. BioEssays, 2017, 39, 1600207.	2.5	28
29	Ska3 Phosphorylated by Cdk1 Binds Ndc80 and Recruits Ska to Kinetochores to Promote Mitotic Progression. Current Biology, 2017, 27, 1477-1484.e4.	3.9	78
30	Familial STAG2 germline mutation defines a new human cohesinopathy. Npj Genomic Medicine, 2017, 2, 7.	3.8	56
31	Mitotic transcription and waves of gene reactivation during mitotic exit. Science, 2017, 358, 119-122.	12.6	201
32	Mechanistic insight into TRIP13-catalyzed Mad2 structural transition and spindle checkpoint silencing. Nature Communications, 2017, 8, 1956.	12.8	38
33	Biochemical and Functional Assays of Human Cohesin-Releasing Factor Wapl. Methods in Molecular Biology, 2017, 1515, 37-53.	0.9	2
34	A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling. ELife, 2017, 6, .	6.0	134
35	Mitotic Checkpoint Regulators Control Insulin Signaling and Metabolic Homeostasis. Cell, 2016, 166, 567-581.	28.9	89
36	The Bub1–Plk1 kinase complex promotes spindle checkpoint signalling through Cdc20 phosphorylation. Nature Communications, 2016, 7, 10818.	12.8	100

Ηονστάο Υυ

#	Article	IF	CITATIONS
37	Structural basis of cohesin cleavage by separase. Nature, 2016, 532, 131-134.	27.8	67
38	Opposing Functions of the N-terminal Acetyltransferases Naa50 and NatA in Sister-chromatid Cohesion. Journal of Biological Chemistry, 2016, 291, 19079-19091.	3.4	12
39	Crystal structure of the cohesin loader Scc2 and insight into cohesinopathy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12444-12449.	7.1	104
40	Control of APC/C-dependent ubiquitin chain elongation by reversible phosphorylation. Proceedings of the United States of America, 2016, 113, 1540-1545.	7.1	36
41	Magic Acts with the Cohesin Ring. Molecular Cell, 2016, 61, 489-491.	9.7	9
42	Structural Basis and IP6 Requirement for Pds5-Dependent Cohesin Dynamics. Molecular Cell, 2016, 62, 248-259.	9.7	106
43	Noncoding RNA NORAD Regulates Genomic Stability by Sequestering PUMILIO Proteins. Cell, 2016, 164, 69-80.	28.9	723
44	The human SKA complex drives the metaphase-anaphase cell cycle transition by recruiting protein phosphatase 1 to kinetochores. ELife, 2016, 5, .	6.0	64
45	The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-β signaling. Science Signaling, 2015, 8, ra1.	3.6	72
46	Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C. Science, 2015, 348, 1260-1264.	12.6	175
47	The complexity of life and death decisions in mitosis. Molecular and Cellular Oncology, 2015, 2, e969658.	0.7	1
48	Regulation of sister chromatid cohesion during the mitotic cell cycle. Science China Life Sciences, 2015, 58, 1089-1098.	4.9	24
49	Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores. Journal of Cell Biology, 2015, 208, 181-196.	5.2	116
50	The Cdc20-binding Phe Box of the Spindle Checkpoint Protein BubR1 Maintains the Mitotic Checkpoint Complex During Mitosis. Journal of Biological Chemistry, 2015, 290, 2431-2443.	3.4	56
51	Mitotic Transcription Installs Sgo1 at Centromeres to Coordinate Chromosome Segregation. Molecular Cell, 2015, 59, 426-436.	9.7	139
52	Structure of an intermediate conformer of the spindle checkpoint protein Mad2. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11252-11257.	7.1	31
53	Structural insights into the TRIM family of ubiquitin E3 ligases. Cell Research, 2014, 24, 762-765.	12.0	118
54	The Transcription Factor TFII-I Promotes DNA Translesion Synthesis and Genomic Stability. PLoS Genetics, 2014, 10, e1004419.	3.5	37

4

#	Article	IF	CITATIONS
55	Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion. Nature Structural and Molecular Biology, 2014, 21, 864-870.	8.2	131
56	Substrate-Specific Activation of the Mitotic Kinase Bub1 through Intramolecular Autophosphorylation and Kinetochore Targeting. Structure, 2014, 22, 1616-1627.	3.3	29
57	Genomeâ€wide si RNA screen reveals coupling between mitotic apoptosis and adaptation. EMBO Journal, 2014, 33, 1960-1976.	7.8	39
58	Synergistic blockade of mitotic exit by two chemical inhibitors of the APC/C. Nature, 2014, 514, 646-649.	27.8	212
59	A Protective Chaperone for the Kinetochore Adaptor Bub3. Developmental Cell, 2014, 28, 223-224.	7.0	6
60	Phospho-H2A and Cohesin Specify Distinct Tension-Regulated Sgo1 Pools at Kinetochores and Inner Centromeres. Current Biology, 2013, 23, 1927-1933.	3.9	120
61	Chromosome Biology: Wapl Spreads Its Wings. Current Biology, 2013, 23, R923-R925.	3.9	2
62	Phosphorylation-enabled binding of SGO1–PP2A to cohesin protects sororin and centromeric cohesion during mitosis. Nature Cell Biology, 2013, 15, 40-49.	10.3	167
63	Tracking spindle checkpoint signals from kinetochores to APC/C. Trends in Biochemical Sciences, 2013, 38, 302-311.	7.5	124
64	Structure of the human cohesin inhibitor Wapl. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11355-11360.	7.1	62
65	Scc1 sumoylation by Mms21 promotes sister chromatid recombination through counteracting Wapl. Genes and Development, 2012, 26, 1473-1485.	5.9	72
66	Structure of human Mad1 C-terminal domain reveals its involvement in kinetochore targeting. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6549-6554.	7.1	91
67	The Smc complexes in DNA damage response. Cell and Bioscience, 2012, 2, 5.	4.8	102
68	Scc1 sumoylation by Mms21 promotes sister chromatid recombination through counteracting Wapl. FASEB Journal, 2012, 26, 539.5.	0.5	0
69	Structure of Human Mad1 Câ€ŧerminal Domain Reveals Its Kinetochoreâ€Targeting Function. FASEB Journal, 2012, 26, 934.3.	0.5	0
70	NIP45 Promotes Telomere Targeting to PML Bodies in ALT Cells. FASEB Journal, 2012, 26, 933.6.	0.5	0
71	Functional redundancy between Cdc20 ubiquitination and p31 comet. FASEB Journal, 2012, 26, .	0.5	0
72	Tango between Ubiquitin Ligase and Deubiquitinase Keeps Cyclin A Tag Free. Molecular Cell, 2011, 42, 409-410.	9.7	3

#	Article	IF	CITATIONS
73	Mutual regulation between the spindle checkpoint and APC/C. Seminars in Cell and Developmental Biology, 2011, 22, 551-558.	5.0	79
74	Defining pathways of spindle checkpoint silencing: functional redundancy between Cdc20 ubiquitination and p31 ^{comet} . Molecular Biology of the Cell, 2011, 22, 4227-4235.	2.1	47
75	A mad partner for Shugoshin in meiosis. EMBO Journal, 2011, 30, 2759-2761.	7.8	0
76	Protein Metamorphosis: The Two-State Behavior of Mad2. Structure, 2008, 16, 1616-1625.	3.3	133
77	Structure and Substrate Recruitment of the Human Spindle Checkpoint Kinase Bub1. Molecular Cell, 2008, 32, 394-405.	9.7	91
78	Insights into Mad2 Regulation in the Spindle Checkpoint Revealed by the Crystal Structure of the Symmetric Mad2 Dimer. PLoS Biology, 2008, 6, e50.	5.6	86
79	PP2A as a mercenary for warring kinases in the egg. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17245-17246.	7.1	2
80	p31comet Blocks Mad2 Activation through Structural Mimicry. Cell, 2007, 131, 744-755.	28.9	172
81	Chk1: A Double Agent in Cell Cycle Checkpoints. Developmental Cell, 2007, 12, 167-168.	7.0	13
82	Cdc20: A WD40 Activator for a Cell Cycle Degradation Machine. Molecular Cell, 2007, 27, 3-16.	9.7	313
83	Molecular Mechanism of the Spindle Checkpoint. FASEB Journal, 2007, 21, A209.	0.5	1
84	The SMC5/6 Complex Maintains Telomere Length in ALT Cancer Cells through Sumoylation of Telomereâ€Binding Proteins. FASEB Journal, 2007, 21, A655.	0.5	0
85	PP2A Is Required for Centromeric Localization of Sgo1 and Proper Chromosome Segregation. Developmental Cell, 2006, 10, 575-585.	7.0	320
86	Structural activation of Mad2 in the mitotic spindle checkpoint: the two-state Mad2 model versus the Mad2 template model. Journal of Cell Biology, 2006, 173, 153-157.	5.2	97
87	Functional Analysis of the Spindle-Checkpoint Proteins Using an In Vitro Ubiquitination Assay. , 2004, 281, 227-242.		27
88	Conformation-specific binding of p31comet antagonizes the function of Mad2 in the spindle checkpoint. EMBO Journal, 2004, 23, 3133-3143.	7.8	177
89	The Mad2 spindle checkpoint protein has two distinct natively folded states. Nature Structural and Molecular Biology, 2004, 11, 338-345.	8.2	263
90	Phosphorylation of Cdc20 by Bub1 Provides a Catalytic Mechanism for APC/C Inhibition by the Spindle Checkpoint. Molecular Cell, 2004, 16, 387-397.	9.7	257

#	Article	IF	CITATIONS
91	The Mad2 Spindle Checkpoint Protein Undergoes Similar Major Conformational Changes Upon Binding to Either Mad1 or Cdc20. Molecular Cell, 2002, 9, 59-71.	9.7	290
92	Regulation of APC–Cdc20 by the spindle checkpoint. Current Opinion in Cell Biology, 2002, 14, 706-714.	5.4	320
93	Mad2-Independent Inhibition of APCCdc20 by the Mitotic Checkpoint Protein BubR1. Developmental Cell, 2001, 1, 227-237.	7.0	383
94	Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nature Structural Biology, 2000, 7, 224-229.	9.7	181
95	Direct Binding of CDC20 Protein Family Members Activates the Anaphase-Promoting Complex in Mitosis and G1. Molecular Cell, 1998, 2, 163-171.	9.7	466
96	Structure of guanine-nucleotide-exchange factor human Mss4 and identification of its Rab-interacting surface. Nature, 1995, 376, 788-791.	27.8	60