Ivan Mijakovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6635490/publications.pdf Version: 2024-02-01

		47006	60623
122	7,419	47	81
papers	citations	h-index	g-index
123	123	123	8054
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants. Carbohydrate Polymers, 2022, 284, 119189.	10.2	54
2	Insights into the Mechanism for Vertical Graphene Growth by Plasma-Enhanced Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2022, 14, 7152-7160.	8.0	20
3	Enriched microbial communities for ammonium and nitrite removal from recirculating aquaculture systems. Chemosphere, 2022, 295, 133811.	8.2	6
4	Strong Antimicrobial Activity of Silver Nanoparticles Obtained by the Green Synthesis in Viridibacillus sp. Extracts. Frontiers in Microbiology, 2022, 13, 820048.	3.5	28
5	Antibacterial Effect of Silver Nanoparticles Is Stronger If the Production Host and the Targeted Pathogen Are Closely Related. Biomedicines, 2022, 10, 628.	3.2	30
6	Rowan Berries: A Potential Source for Green Synthesis of Extremely Monodisperse Gold and Silver Nanoparticles and Their Antimicrobial Property. Pharmaceutics, 2022, 14, 82.	4.5	17
7	Green synthesis and antibacterial applications of gold and silver nanoparticles from Ligustrum vulgare berries. Scientific Reports, 2022, 12, 7902.	3.3	23
8	Grapheneâ€Based Antimicrobial Biomedical Surfaces. ChemPhysChem, 2021, 22, 250-263.	2.1	46
9	Embryo-Like Features in Developing <i>Bacillus subtilis</i> Biofilms. Molecular Biology and Evolution, 2021, 38, 31-47.	8.9	25
10	Phosphoproteome Study of Escherichia coli Devoid of Ser/Thr Kinase YeaG During the Metabolic Shift From Glucose to Malate. Frontiers in Microbiology, 2021, 12, 657562.	3.5	11
11	Sustained release of usnic acid from graphene coatings ensures long term antibiofilm protection. Scientific Reports, 2021, 11, 9956.	3.3	16
12	Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability. Scientific Reports, 2021, 11, 12619.	3.3	53
13	Graphene coated magnetic nanoparticles facilitate the release of biofuels and oleochemicals from yeast cell factories. Scientific Reports, 2021, 11, 20612.	3.3	1
14	Interactions Between Grapheneâ€Based Materials and Biological Surfaces: A Review of Underlying Molecular Mechanisms. Advanced Materials Interfaces, 2021, 8, 2101132.	3.7	15
15	Graphene-Based Sensor for Detection of Bacterial Pathogens. Sensors, 2021, 21, 8085.	3.8	6
16	PATH ^{cre8} : A Tool That Facilitates the Searching for Heterologous Biosynthetic Routes. ACS Synthetic Biology, 2020, 9, 3217-3227.	3.8	7
17	The Exo-Polysaccharide Component of Extracellular Matrix is Essential for the Viscoelastic Properties of Bacillus subtilis Biofilms. International Journal of Molecular Sciences, 2020, 21, 6755.	4.1	21
18	A Systems-Based Approach for Cyanide Overproduction by Bacillus megaterium for Gold Bioleaching Enhancement. Frontiers in Bioengineering and Biotechnology, 2020, 8, 528.	4.1	19

#	Article	IF	CITATIONS
19	Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnology Advances, 2020, 43, 107570.	11.7	194
20	A Sustainable Approach for the Green Synthesis of Silver Nanoparticles from Solibacillus isronensis sp. and Their Application in Biofilm Inhibition. Molecules, 2020, 25, 2783.	3.8	32
21	Cold-Resistant Heterotrophic Ammonium and Nitrite-Removing Bacteria Improve Aquaculture Conditions of Rainbow Trout (Oncorhynchus mykiss). Microbial Ecology, 2020, 80, 266-277.	2.8	11
22	Evolutionary Analysis of the Bacillus subtilis Genome Reveals New Genes Involved in Sporulation. Molecular Biology and Evolution, 2020, 37, 1667-1678.	8.9	16
23	hipBA toxin-antitoxin systems mediate persistence in Caulobacter crescentus. Scientific Reports, 2020, 10, 2865.	3.3	28
24	Precontrolled Alignment of Graphite Nanoplatelets in Polymeric Composites Prevents Bacterial Attachment. Small, 2020, 16, e1904756.	10.0	34
25	Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Letters, 2020, 594, 2339-2369.	2.8	25
26	Protein post-translational modifications in bacteria. Nature Reviews Microbiology, 2019, 17, 651-664.	28.6	223
27	Mining biosynthetic gene clusters in Virgibacillus genomes. BMC Genomics, 2019, 20, 696.	2.8	7
28	Graphene-based biosensors for the detection of prostate cancer protein biomarkers: a review. BMC Chemistry, 2019, 13, 112.	3.8	40
29	Production of 3-Hydroxypropanoic Acid From Glycerol by Metabolically Engineered Bacteria. Frontiers in Bioengineering and Biotechnology, 2019, 7, 124.	4.1	31
30	Triterpenoid-biosynthetic UDP-glycosyltransferases from plants. Biotechnology Advances, 2019, 37, 107394.	11.7	114
31	Highly structured graphene polyethylene nanocomposites. AIP Conference Proceedings, 2019, , .	0.4	9
32	Manually curated genome-scale reconstruction of the metabolic network of Bacillus megaterium DSM319. Scientific Reports, 2019, 9, 18762.	3.3	21
33	Antibacterial effect of boron nitride flakes with controlled orientation in polymer composites. RSC Advances, 2019, 9, 33454-33459.	3.6	49
34	Vertically Aligned Graphene Coating is Bactericidal and Prevents the Formation of Bacterial Biofilms. Advanced Materials Interfaces, 2018, 5, 1701331.	3.7	72
35	Serine/Threonine Protein Kinases from Bacteria, Archaea and Eukarya Share a Common Evolutionary Origin Deeply Rooted in the Tree of Life. Journal of Molecular Biology, 2018, 430, 27-32.	4.2	78
36	In-depth analysis of Bacillus subtilis proteome identifies new ORFs and traces the evolutionary history of modified proteins. Scientific Reports, 2018, 8, 17246.	3.3	22

#	Article	IF	CITATIONS
37	Anti-biofilm effects of gold and silver nanoparticles synthesized by the <i>Rhodiola rosea</i> rhizome extracts. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 886-899.	2.8	98
38	Bacterial response to graphene oxide and reduced graphene oxide integrated in agar plates. Royal Society Open Science, 2018, 5, 181083.	2.4	19
39	Antimicrobial Effects of Biogenic Nanoparticles. Nanomaterials, 2018, 8, 1009.	4.1	138
40	Design strategy of a graphene based bio-sensor for glucose. Carbon, 2018, 137, 343-348.	10.3	14
41	Boron nitride nanomaterials: biocompatibility and bio-applications. Biomaterials Science, 2018, 6, 2298-2311.	5.4	170
42	Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial) Tj ETQq0 13, 3571-3591.	0 0 rgBT 6.7	Overlock 10 165
43	Phosphorylation of the Bacillus subtilis Replication Controller YabA Plays a Role in Regulation of Sporulation and Biofilm Formation. Frontiers in Microbiology, 2018, 9, 486.	3.5	10
44	Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer. International Journal of Molecular Sciences, 2018, 19, 1979.	4.1	709
45	BioPS: System for screening and assessment of biofuel-production potential of cyanobacteria. PLoS ONE, 2018, 13, e0202002.	2.5	4
46	In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters. BMC Genomics, 2018, 19, 382.	2.8	17
47	Structural Analysis of the Hanks-Type Protein Kinase YabT From Bacillus subtilis Provides New Insights in its DNA-Dependent Activation. Frontiers in Microbiology, 2018, 9, 3014.	3.5	3
48	Membrane properties and anti-bacterial/anti-biofouling activity of polysulfone–graphene oxide composite membranes phase inversed in graphene oxide non-solvent. RSC Advances, 2017, 7, 4378-4386.	3.6	31
49	Graphene based nanosensor for aqueous phase detection of nitroaromatics. RSC Advances, 2017, 7, 25519-25527.	3.6	13
50	In silico screening for candidate chassis strains of free fatty acid-producing cyanobacteria. BMC Genomics, 2017, 18, 33.	2.8	11
51	Building a bio-based industry in the Middle East through harnessing the potential of the Red Sea biodiversity. Applied Microbiology and Biotechnology, 2017, 101, 4837-4851.	3.6	10
52	Efficient surface modification of carbon nanotubes for fabricating high performance CNT based hybrid nanostructures. Carbon, 2017, 111, 402-410.	10.3	50
53	Vitamin C Pretreatment Enhances the Antibacterial Effect of Cold Atmospheric Plasma. Frontiers in Cellular and Infection Microbiology, 2017, 7, 43.	3.9	47
54	Conversion of Glycerol to 3-Hydroxypropanoic Acid by Genetically Engineered Bacillus subtilis. Frontiers in Microbiology, 2017, 8, 638.	3.5	22

#	Article	IF	CITATIONS
55	Low Concentrations of Vitamin C Reduce the Synthesis of Extracellular Polymers and Destabilize Bacterial Biofilms. Frontiers in Microbiology, 2017, 8, 2599.	3.5	66
56	The Global Acetylome of the Human Pathogen Vibrio cholerae V52 Reveals Lysine Acetylation of Major Transcriptional Regulators. Frontiers in Cellular and Infection Microbiology, 2017, 7, 537.	3.9	20
57	Bacillus subtilis single-stranded DNA-binding protein SsbA is phosphorylated at threonine 38 by the serine/threonine kinase YabT. Periodicum Biologorum, 2017, 118, .	0.1	2
58	Role of Protein Phosphorylation in the Regulation of Cell Cycle and DNA-Related Processes in Bacteria. Frontiers in Microbiology, 2016, 7, 184.	3.5	54
59	Tyrosine 601 of Bacillus subtilis DnaK Undergoes Phosphorylation and Is Crucial for Chaperone Activity and Heat Shock Survivalâ€j. Frontiers in Microbiology, 2016, 7, 533.	3.5	13
60	Substrate Specificity of the Bacillus subtilis BY-Kinase PtkA Is Controlled by Alternative Activators: TkmA and SalA. Frontiers in Microbiology, 2016, 7, 1525.	3.5	3
61	Graphene oxide based coatings on nitinol for biomedical implant applications: effectively promote mammalian cell growth but kill bacteria. RSC Advances, 2016, 6, 38124-38134.	3.6	44
62	Exploring the diversity of protein modifications: special bacterial phosphorylation systems. FEMS Microbiology Reviews, 2016, 40, 398-417.	8.6	100
63	Evolution and tinkering: what do a protein kinase, a transcriptional regulator and chromosome segregation/cell division proteins have in common?. Current Genetics, 2016, 62, 67-70.	1.7	11
64	Resources for Assignment of Phosphorylation Sites on Peptides and Proteins. Methods in Molecular Biology, 2016, 1355, 293-306.	0.9	4
65	<scp><i>B</i></scp> <i>acillus subtilis</i> â€ <scp>SalA</scp> is a phosphorylationâ€dependent transcription regulator that represses <scp><i>scoC</i></scp> and activates the production of the exoprotease <scp>AprE</scp> . Molecular Microbiology, 2015, 97, 1195-1208.	2.5	21
66	Regulatory potential of post-translational modifications in bacteria. Frontiers in Microbiology, 2015, 6, 500.	3.5	44
67	Elucidating Host–Pathogen Interactions Based on Post-Translational Modifications Using Proteomics Approaches. Frontiers in Microbiology, 2015, 6, 1313.	3.5	42
68	Protein-tyrosine phosphorylation in Bacillus subtilis: a 10-year retrospective. Frontiers in Microbiology, 2015, 6, 18.	3.5	28
69	Serine/threonine/tyrosine phosphorylation regulates DNA binding of bacterial transcriptional regulators. Microbiology (United Kingdom), 2015, 161, 1720-1729.	1.8	37
70	Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues. Frontiers in Microbiology, 2014, 5, 495.	3.5	69
71	Protein-tyrosine phosphorylation interaction network in Bacillus subtilis reveals new substrates, kinase activators and kinase cross-talk. Frontiers in Microbiology, 2014, 5, 538.	3.5	28
72	Evolution of Bacterial Protein-Tyrosine Kinases and Their Relaxed Specificity Toward Substrates. Genome Biology and Evolution, 2014, 6, 800-817.	2.5	35

#	Article	IF	CITATIONS
73	Phosphorylation of <scp><i>B</i></scp> <i>acillus subtilis</i> gene regulator <scp>AbrB</scp> modulates its <scp>DNA</scp> â€binding properties. Molecular Microbiology, 2014, 92, 1129-1141.	2.5	34
74	Quantitative Phosphoproteome Analysis of Bacillus subtilis Reveals Novel Substrates of the Kinase PrkC and Phosphatase PrpC. Molecular and Cellular Proteomics, 2014, 13, 1965-1978.	3.8	81
75	Synthetic Promoter Library for Modulation of Actinorhodin Production in Streptomyces coelicolor A3(2). PLoS ONE, 2014, 9, e99701.	2.5	34
76	Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS Microbiology Letters, 2013, 346, 11-19.	1.8	79
77	Interaction of bacterial fatty-acid-displaced regulators with DNA is interrupted by tyrosine phosphorylation in the helix-turn-helix domain. Nucleic Acids Research, 2013, 41, 9371-9381.	14.5	28
78	<i><scp>B</scp>acillus subtilis</i> serine/threonine protein kinase <scp>YabT</scp> is involved in spore development via phosphorylation of a bacterial recombinase. Molecular Microbiology, 2013, 88, 921-935.	2.5	46
79	BYKdb: the Bacterial protein tYrosine Kinase database. Nucleic Acids Research, 2012, 40, D321-D324.	14.5	30
80	Bacterial tyrosine kinases: evolution, biological function and structural insights. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2640-2655.	4.0	109
81	Protein phosphorylation from the perspective of systems biology. Current Opinion in Biotechnology, 2012, 23, 585-590.	6.6	54
82	Impact of phosphoproteomics on studies of bacterial physiology. FEMS Microbiology Reviews, 2012, 36, 877-892.	8.6	86
83	Protein phosphorylation in bacterial signal transduction. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 989-994.	2.4	79
84	Bacillus subtilis Two-Component System Sensory Kinase DegS Is Regulated by Serine Phosphorylation in Its Input Domain. PLoS ONE, 2011, 6, e14653.	2.5	47
85	Siteâ€specific analysis of bacterial phosphoproteomes. Proteomics, 2011, 11, 3002-3011.	2.2	54
86	Analysis of the serine/threonine/tyrosine phosphoproteome of the pathogenic bacterium <i>Listeria monocytogenes</i> reveals phosphorylated proteins related to virulence. Proteomics, 2011, 11, 4155-4165.	2.2	74
87	Bacterial Protein-Tyrosine Kinases. Current Proteomics, 2010, 7, 188-194.	0.3	12
88	<i>Bacillus subtilis</i> BYâ€kinase PtkA controls enzyme activity and localization of its protein substrates. Molecular Microbiology, 2010, 77, 287-299.	2.5	60
89	Global Transcriptional Analysis of <i>Bacillus licheniformis</i> Reveals an Overlap between Heat Shock and Iron Limitation Stimulon. Journal of Molecular Microbiology and Biotechnology, 2010, 18, 162-173.	1.0	16
90	Phosphoglycerate Mutase Is a Highly Efficient Enzyme without Flux Control in <i>Lactococcus lactis</i> . Journal of Molecular Microbiology and Biotechnology, 2010, 18, 174-180.	1.0	19

#	Article	IF	CITATIONS
91	Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of <i>Bacillus subtilis</i> . Journal of Proteome Research, 2010, 9, 3638-3646.	3.7	108
92	Engineering of <i>Bacillus subtilis</i> 168 for Increased Nisin Resistance. Applied and Environmental Microbiology, 2009, 75, 6688-6695.	3.1	27
93	Activation of <i>Bacillus subtilis</i> Ugd by the BY-Kinase PtkA Proceeds via Phosphorylation of Its Residue Tyrosine 70. Journal of Molecular Microbiology and Biotechnology, 2009, 17, 83-89.	1.0	23
94	Tyrosine-kinases in bacteria: from a matter of controversy to the status of key regulatory enzymes. Amino Acids, 2009, 37, 499-507.	2.7	38
95	NetPhosBac – A predictor for Ser/Thr phosphorylation sites in bacterial proteins. Proteomics, 2009, 9, 116-125.	2.2	67
96	The Ser/Thr/Tyr phosphoproteome of <i>Lactococcus lactis</i> IL1403 reveals multiply phosphorylated proteins. Proteomics, 2008, 8, 3486-3493.	2.2	145
97	Insights from site-specific phosphoproteomics in bacteria. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 186-192.	2.3	30
98	Phosphoproteomics in bacteria: towards a systemic understanding of bacterial phosphorylation networks. Expert Review of Proteomics, 2008, 5, 619-627.	3.0	62
99	Phosphoproteome Analysis of E. coli Reveals Evolutionary Conservation of Bacterial Ser/Thr/Tyr Phosphorylation. Molecular and Cellular Proteomics, 2008, 7, 299-307.	3.8	385
100	Structural Basis for the Regulation Mechanism of the Tyrosine Kinase CapB from Staphylococcus aureus. PLoS Biology, 2008, 6, e143.	5.6	89
101	Tyrosine Phosphorylation of the UDP-Glucose Dehydrogenase of Escherichia coli Is at the Crossroads of Colanic Acid Synthesis and Polymyxin Resistance. PLoS ONE, 2008, 3, e3053.	2.5	76
102	The Serine/Threonine/Tyrosine Phosphoproteome of the Model Bacterium Bacillus subtilis. Molecular and Cellular Proteomics, 2007, 6, 697-707.	3.8	359
103	<i>Bacillus subtilis</i> strain deficient for the proteinâ€ŧyrosine kinase PtkA exhibits impaired DNA replication. Molecular Microbiology, 2007, 63, 1797-1805.	2.5	47
104	Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends in Biochemical Sciences, 2007, 32, 86-94.	7.5	176
105	Synthetic promoter libraries – tuning of gene expression. Trends in Biotechnology, 2006, 24, 53-55.	9.3	177
106	Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Research, 2006, 34, 1588-1596.	14.5	122
107	Tunable promoters in systems biology. Current Opinion in Biotechnology, 2005, 16, 329-335.	6.6	54
108	P-Ser-HPr—a link between carbon metabolism and the virulence of some pathogenic bacteria. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1754, 118-125.	2.3	63

#	Article	IF	CITATIONS
109	Protein-Tyrosine Phosphorylation in <i>Bacillus subtilis</i> . Journal of Molecular Microbiology and Biotechnology, 2005, 9, 189-197.	1.0	48
110	In Vitro Characterization of the <i>Bacillus subtilis</i> Protein Tyrosine Phosphatase YwqE. Journal of Bacteriology, 2005, 187, 3384-3390.	2.2	49
111	The <i>Lactobacillus casei ptsH</i> I47T Mutation Causes Overexpression of a LevR-Regulated but RpoN-Independent Operon Encoding a Mannose Class Phosphotransferase System. Journal of Bacteriology, 2004, 186, 4543-4555.	2.2	31
112	HPr kinase/phosphorylase, a Walker motif A-containing bifunctional sensor enzyme controlling catabolite repression in Gram-positive bacteria. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1697, 123-135.	2.3	54
113	How Tyrosine Phosphorylation Affects the UDP-Glucose Dehydrogenase Activity of <i>Bacillus subtilis </i> YwqF. Journal of Molecular Microbiology and Biotechnology, 2004, 8, 19-25.	1.0	13
114	Photometric assay for measuring the intracellular concentration of branched-chain amino acids in bacteria. Journal of Microbiological Methods, 2004, 56, 133-136.	1.6	5
115	Is 2-Phosphoglycerate-dependent Automodification of Bacterial Enolases Implicated in their Export?. Journal of Molecular Biology, 2004, 337, 485-496.	4.2	67
116	Transmembrane modulator-dependent bacterial tyrosine kinase activates UDP-glucose dehydrogenases. EMBO Journal, 2003, 22, 4709-4718.	7.8	143
117	Transcription Regulators Potentially Controlled by HPr Kinase/Phosphorylase in Gram-Negative Bacteria. Journal of Molecular Microbiology and Biotechnology, 2003, 5, 206-215.	1.0	61
118	Autophosphorylation of the Escherichia coli Protein Kinase Wzc Regulates Tyrosine Phosphorylation of Ugd, a UDP-glucose Dehydrogenase. Journal of Biological Chemistry, 2003, 278, 39323-39329.	3.4	119
119	X-ray structure of a bifunctional protein kinase in complex with its protein substrate HPr. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13437-13441.	7.1	73
120	Pyrophosphate-producing protein dephosphorylation by HPr kinase/phosphorylase: A relic of early life?. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13442-13447.	7.1	112
121	Maize Seryl-tRNA Synthetase: Specificity of Substrate Recognition by the Organellar Enzyme. Archives of Biochemistry and Biophysics, 2002, 397, 40-50.	3.0	10
122	Mutations lowering the phosphatase activity of HPr kinase/phosphatase switch off carbon metabolism. EMBO Journal, 2001, 20, 3928-3937.	7.8	88