Peter Schuck List of Publications by Year in descending order Source: https://exaly.com/author-pdf/6635030/publications.pdf Version: 2024-02-01 272 papers 20,098 citations 18887 64 h-index 131 g-index 324 all docs 324 docs citations times ranked 324 20290 citing authors | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 1 | Best Practices for Aggregate Quantitation of Antibody Therapeutics by Sedimentation Velocity Analytical Ultracentrifugation. Journal of Pharmaceutical Sciences, 2022, 111, 2121-2133. | 1.6 | 9 | | 2 | Plasticity in structure and assembly of SARS-CoV-2 nucleocapsid protein. , 2022, 1, . | | 36 | | 3 | Global multi-method analysis of interaction parameters for reversibly self-associating macromolecules at high concentrations. Scientific Reports, 2021, 11, 5741. | 1.6 | 7 | | 4 | A multi-laboratory benchmark study of isothermal titration calorimetry (ITC) using Ca2+ and Mg2+ binding to EDTA. European Biophysics Journal, 2021, 50, 429-451. | 1.2 | 12 | | 5 | Determining the Stoichiometry of a Protein–Polymer Conjugate Using Multisignal Sedimentation Velocity Analytical Ultracentrifugation. Bioconjugate Chemistry, 2021, 32, 942-949. | 1.8 | 5 | | 6 | Energetic and structural features of SARS-CoV-2 N-protein co-assemblies with nucleic acids. IScience, 2021, 24, 102523. | 1.9 | 34 | | 7 | A multi-step nucleation process determines the kinetics of prion-like domain phase separation. Nature Communications, 2021, 12, 4513. | 5.8 | 73 | | 8 | Characterization of DNA–protein complexes by nanoparticle tracking analysis and their association with systemic lupus erythematosus. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 3.3 | 7 | | 9 | Competing stress-dependent oligomerization pathways regulate self-assembly of the periplasmic protease-chaperone DegP. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , . | 3.3 | 11 | | 10 | Calibrating analytical ultracentrifuges. European Biophysics Journal, 2021, 50, 353-362. | 1.2 | 4 | | 11 | Biomolecular interactions of ultrasmall metallic nanoparticles and nanoclusters. Nanoscale Advances, 2021, 3, 2995-3027. | 2.2 | 27 | | 12 | The intrinsic kinase activity of BRD4 spans its BD2-B-BID domains. Journal of Biological Chemistry, 2021, 297, 101326. | 1.6 | 10 | | 13 | An intrinsically disordered motif regulates the interaction between the p47 adaptor and the p97 AAA+ ATPase. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26226-26236. | 3.3 | 19 | | 14 | Distinct disease features in chimpanzees infected with a precore HBV mutant associated with acute liver failure in humans. PLoS Pathogens, 2020, 16, e1008793. | 2.1 | 4 | | 15 | Measuring aggregates, self-association, and weak interactions in concentrated therapeutic antibody solutions. MAbs, 2020, 12, 1810488. | 2.6 | 14 | | 16 | Quantitative Analysis of Protein Selfâ€Association by Sedimentation Velocity. Current Protocols in Protein Science, 2020, 101, e109. | 2.8 | 8 | | 17 | The biofilm adhesion protein Aap from Staphylococcus epidermidis forms zinc-dependent amyloid fibers. Journal of Biological Chemistry, 2020, 295, 4411-4427. | 1.6 | 36 | | 18 | Ultrasmall Gold Nanoparticles Coated with Zwitterionic Glutathione Monoethyl Ester: A Model Platform for the Incorporation of Functional Peptides. Journal of Physical Chemistry B, 2020, 124, 3892-3902. | 1.2 | 12 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 19 | Mechanistic Insights into Ultrasmall Gold Nanoparticleâ€"Protein Interactions through Measurement of Binding Kinetics. Journal of Physical Chemistry C, 2019, 123, 28450-28459. | 1.5 | 18 | | 20 | Nucleic acid–induced dimerization of HIV-1 Gag protein. Journal of Biological Chemistry, 2019, 294, 16480-16493. | 1.6 | 15 | | 21 | Efficient data acquisition with three-channel centerpieces in sedimentation velocity. Analytical Biochemistry, 2019, 586, 113414. | 1.1 | 5 | | 22 | Measuring Ultra-Weak Protein Self-Association by Non-ideal Sedimentation Velocity. Journal of the American Chemical Society, 2019, 141, 2990-2996. | 6.6 | 22 | | 23 | All tubulins are not alike: Heterodimer dissociation differs among different biological sources. Journal of Biological Chemistry, 2019, 294, 10315-10324. | 1.6 | 13 | | 24 | A Reappraisal of Sedimentation Nonideality Coefficients for the Analysis of Weak Interactions of Therapeutic Proteins. AAPS Journal, 2019, 21, 35. | 2.2 | 11 | | 25 | Enhanced Sample Handling for Analytical Ultracentrifugation with 3D-Printed Centerpieces.
Analytical Chemistry, 2019, 91, 5866-5873. | 3.2 | 16 | | 26 | Studying Multi-Protein Interactions by Fluorescence Detected Sedimentation Velocity Combining Hydrodynamic Separation of Complexes with Fluorescence Quenching Analysis. Biophysical Journal, 2019, 116, 194a. | 0.2 | 1 | | 27 | Measuring Macromolecular Size-Distributions and Interactions at High Concentrations by Sedimentation Velocity. Biophysical Journal, 2019, 116, 158a. | 0.2 | 0 | | 28 | Allosteric inhibition of \hat{l} ±-thrombin enzymatic activity with ultrasmall gold nanoparticles. Nanoscale Advances, 2019, 1, 378-388. | 2.2 | 27 | | 29 | Identification of nanomaterials: A validation report of two laboratories using analytical ultracentrifugation with fixed and ramped speed options. NanoImpact, 2018, 10, 87-96. | 2.4 | 23 | | 30 | Binding kinetics of ultrasmall gold nanoparticles with proteins. Nanoscale, 2018, 10, 3235-3244. | 2.8 | 39 | | 31 | Congratulations to Dr. Fumio Arisaka on his 70th birthday. Biophysical Reviews, 2018, 10, 137-137. | 1.5 | 1 | | 32 | Assembly of Kainate and AMPA Receptors. Biophysical Journal, 2018, 114, 126a. | 0.2 | 0 | | 33 | Sedimentation Boundary Structure of Multi-Component Solutions with Rapidly Reversible Interactions. Biophysical Journal, 2018, 114, 172a-173a. | 0.2 | O | | 34 | Role of humoral immunity against hepatitis B virus core antigen in the pathogenesis of acute liver failure. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11369-E11378. | 3.3 | 59 | | 35 | Cooperative assembly of a four-molecule signaling complex formed upon T cell antigen receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11914-E11923. | 3.3 | 24 | | 36 | Measuring macromolecular size distributions and interactions at high concentrations by sedimentation velocity. Nature Communications, 2018, 9, 4415. | 5.8 | 48 | | # | Article | IF | Citations | |----|---|-----|-----------| | 37 | All Tubulins are Not Alike: Dimer Dissociation and Monomer Exchange Differ Depending on the Biological Source of Tubulin. Biophysical Journal, 2018, 114, 504a. | 0.2 | 2 | | 38 | A radial calibration window for analytical ultracentrifugation. PLoS ONE, 2018, 13, e0201529. | 1.1 | 8 | | 39 | Structure of mouse protocadherin 15 of the stereocilia tip link in complex with LHFPL5. ELife, 2018, 7, . | 2.8 | 73 | | 40 | Sedimentation Velocity Analytical Ultracentrifugation. , 2018, , 1-14. | | 0 | | 41 | Sedimentation of Reversibly Interacting Macromolecules with Changes in Fluorescence Quantum Yield. Biophysical Journal, 2017, 112, 1374-1382. | 0.2 | 8 | | 42 | An allosteric site in the T-cell receptor \hat{Cl}^2 domain plays a critical signalling role. Nature Communications, 2017, 8, 15260. | 5.8 | 64 | | 43 | Measuring Protein Interactions by Optical Biosensors. Current Protocols in Protein Science, 2017, 88, 20.2.1-20.2.25. | 2.8 | 13 | | 44 | A New Temporal Dimension for Multisignal Sedimentation Velocity as a Tool to Analyze Multicomponent Interactions. Biophysical Journal, 2017, 112, 192a. | 0.2 | 0 | | 45 | A General Framework for the Boundary Structure in Multi-Component Sedimentation Velocity with Reversible Interactions. Biophysical Journal, 2017, 112, 199a. | 0.2 | 0 | | 46 | Fluorescence Detected Sedimentation Velocity Analytical Ultracentrifugation for Investigating Affinity and Stoichiometry of Protein Interactions. Biophysical Journal, 2017, 112, 199a. | 0.2 | 0 | | 47 | All Tubulins are Not the Same: Reversible Dissociation of AB-Tubulin Dimers Differ Depending on the Source of Tubulin. Biophysical Journal, 2017, 112, 360a. | 0.2 | 0 | | 48 | Use of fluorescence-detected sedimentation velocity to study high-affinity protein interactions. Nature Protocols, 2017, 12, 1777-1791. | 5.5 | 37 | | 49 | Crystal Structure of Chicken \hat{I} 3S-Crystallin Reveals Lattice Contacts with Implications for Function in the Lens and the Evolution of the $\hat{I}^2\hat{I}^3$ -Crystallins. Structure, 2017, 25, 1068-1078.e2. | 1.6 | 15 | | 50 | Preferential assembly of heteromeric kainate and AMPA receptor amino terminal domains. ELife, 2017, 6, | 2.8 | 25 | | 51 | Higherâ€order oligomerization promotes localization of <scp>SPOP</scp> to liquid nuclear speckles. EMBO Journal, 2016, 35, 1254-1275. | 3.5 | 172 | | 52 | Sedimentation coefficient distributions of large particles. Analyst, The, 2016, 141, 4400-4409. | 1.7 | 17 | | 53 | Biointeractions of Ultrasmall Gold Nanoparticles: Influence of Nanoparticle Size and Surface Chemistry. Biophysical Journal, 2016, 110, 530a. | 0.2 | 0 | | 54 | Study Molecular Interactions in whole Cell Extracts by Fluorescence-Detected Analytical
Ultracentrifugation. Biophysical Journal, 2016, 110, 384a. | 0.2 | 0 | | # | Article | IF | Citations | |----|--|--------------|-----------| | 55 | Zwitterionic glutathione monoethyl ester as a new capping ligand for ultrasmall gold nanoparticles. RSC Advances, 2016, 6, 46350-46355. | 1.7 | 20 | | 56 | Gravitational Sweep Sedimentation Velocity. Biophysical Journal, 2016, 110, 384a. | 0.2 | 0 | | 57 | Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions. Nature Protocols, 2016, 11, 882-894. | 5 . 5 | 225 | | 58 | Tubulin Dimer Reversible Dissociation. Journal of Biological Chemistry, 2016, 291, 9281-9294. | 1.6 | 13 | | 59 | A New Dimension of Detection in Analytical Ultracentrifugation with Fluorescence Detection using Photoswitchable FPs as Time Domain Probes. Biophysical Journal, 2016, 110, 347a. | 0.2 | O | | 60 | Tubulin Monomer-Monomer Association is Less Influenced by the Solvent than Dimer-Dimer Association: Structure and Function of Tubulin Interaction Interfaces. Biophysical Journal, 2016, 110, 26a-27a. | 0.2 | 1 | | 61 | Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1006-15. | 3 . 3 | 73 | | 62 | Biointeractions of ultrasmall glutathione-coated gold nanoparticles: effect of small size variations. Nanoscale, 2016, 8, 6577-6588. | 2.8 | 69 | | 63 | Variable Field Analytical Ultracentrifugation: II. Gravitational Sweep Sedimentation Velocity.
Biophysical Journal, 2016, 110, 103-112. | 0.2 | 25 | | 64 | 3D-Printing for Analytical Ultracentrifugation. PLoS ONE, 2016, 11, e0155201. | 1.1 | 27 | | 65 | Monochromatic multicomponent fluorescence sedimentation velocity for the study of high-affinity protein interactions. ELife, $2016, 5, \ldots$ | 2.8 | 11 | | 66 | Sedimentation in a Time-Varying Centrifugal Field for Rapid Attainment of Sedimentation Equilibrium. Biophysical Journal, 2015, 108, 222a. | 0.2 | 0 | | 67 | Sedimentation Velocity Analysis of the EGFPs in E. coli Whole Cell Extracts using Fluorescence Detection System. Biophysical Journal, 2015, 108, 624a. | 0.2 | 0 | | 68 | The Role of Higher-Order SPOP Oligomers for Localization to Cellular "Bodies―and Ubiquitination Activity. Biophysical Journal, 2015, 108, 390a. | 0.2 | 0 | | 60 | | | | | 69 | Accounting for Photophysical Processes and Specific Signal Intensity Change in Fluorescence-Detected Sedimentation Velocity Analytical Ultracentrifugation. Biophysical Journal, 2015, 108, 624a. | 0.2 | 0 | | 70 | Fluorescence-Detected Sedimentation Velocity Analytical Ultracentrifugation. Biophysical Journal, | 0.2 | 34 | | | Fluorescence-Detected Sedimentation Velocity Analytical Ultracentrifugation. Biophysical Journal, 2015, 108, 624a. | | | | # | Article | IF | Citations | |----|--|-----|-----------| | 73 | Biocalorimetry. Methods, 2015, 76, 1-2. | 1.9 | 9 | | 74 | SEDPHAT – A platform for global ITC analysis and global multi-method analysis of molecular interactions. Methods, 2015, 76, 137-148. | 1.9 | 264 | | 75 | Variable-Field Analytical Ultracentrifugation: I. Time-Optimized Sedimentation Equilibrium. Biophysical Journal, 2015, 109, 827-837. | 0.2 | 12 | | 76 | A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation. PLoS ONE, 2015, 10, e0126420. | 1.1 | 71 | | 77 | A Structural Framework for a Near-Minimal Form of Life: Mass and Compositional Analysis of the Helical Mollicute Spiroplasma melliferum BC3. PLoS ONE, 2014, 9, e87921. | 1.1 | 13 | | 78 | Solution properties of γâ€crystallins: Hydration of fish and mammal γâ€crystallins. Protein Science, 2014, 23, 88-99. | 3.1 | 30 | | 79 | Human Herpesvirus 7 U21 Tetramerizes To Associate with Class I Major Histocompatibility Complex Molecules. Journal of Virology, 2014, 88, 3298-3308. | 1.5 | 17 | | 80 | Analysis of High-Affinity Protein Interactions by Fluorescence Optical Analytical Ultracentrifugation. Biophysical Journal, 2014, 106, 236a. | 0.2 | 0 | | 81 | Tubulin Heterodimers Reversibly Dissociate with Moderate Kinetics as Demonstrated using Sedimentation Velocity Analytical Ultracentrifugation. Biophysical Journal, 2014, 106, 351a. | 0.2 | 0 | | 82 | SEDFIT–MSTAR: molecular weight and molecular weight distribution analysis of polymers by sedimentation equilibrium in the ultracentrifuge. Analyst, The, 2014, 139, 79-92. | 1.7 | 83 | | 83 | Solution properties of γâ€crystallins: Compact structure and low frictional ratio are conserved properties of diverse γâ€crystallins. Protein Science, 2014, 23, 76-87. | 3.1 | 23 | | 84 | Accounting for Photophysical Processes and Specific Signal Intensity Changes in Fluorescence-Detected Sedimentation Velocity. Analytical Chemistry, 2014, 86, 9286-9292. | 3.2 | 11 | | 85 | Analysis of Protein Interactions with Picomolar Binding Affinity by Fluorescence-Detected Sedimentation Velocity. Analytical Chemistry, 2014, 86, 3181-3187. | 3.2 | 41 | | 86 | Role of Amino-Terminal Domain in the Assembly Mechanism of Kainate-Subtype Glutamate Receptor Ion Channels. Biophysical Journal, 2014, 106, 151a. | 0.2 | 0 | | 87 | Improved measurement of the rotor temperature in analytical ultracentrifugation. Analytical Biochemistry, 2014, 451, 69-75. | 1.1 | 20 | | 88 | Measurement of the temperature of the resting rotor in analytical ultracentrifugation. Analytical Biochemistry, 2014, 458, 37-39. | 1.1 | 14 | | 89 | Investigating High Affinity Protein Self-Association by Fluorescence Optical Sedimentation Velocity
Analytical Ultracentrifugation. Biophysical Journal, 2014, 106, 151a. | 0.2 | O | | 90 | Analytical ultracentrifugation as a tool for studying protein interactions. Biophysical Reviews, 2013, 5, 159-171. | 1.5 | 73 | | # | Article | IF | Citations | |-----|---|------|-----------| | 91 | Biophysical methods for the study of protein interactions. Methods, 2013, 59, 259-260. | 1.9 | 2 | | 92 | A comparison of binding surfaces for SPR biosensing using an antibody–antigen system and affinity distribution analysis. Methods, 2013, 59, 328-335. | 1.9 | 52 | | 93 | Improving the thermal, radial, and temporal accuracy of the analytical ultracentrifuge through external references. Analytical Biochemistry, 2013, 440, 81-95. | 1.1 | 60 | | 94 | A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly. Nature, 2013, 496, 377-381. | 13.7 | 141 | | 95 | Recorded scan times can limit the accuracy of sedimentation coefficients in analytical ultracentrifugation. Analytical Biochemistry, 2013, 437, 104-108. | 1.1 | 102 | | 96 | Overview of Current Methods in Sedimentation Velocity and Sedimentation Equilibrium Analytical Ultracentrifugation. Current Protocols in Protein Science, 2013, 71, Unit20.12. | 2.8 | 154 | | 97 | Multi-Signal Sedimentation Velocity Analysis with Mass Conservation for Determining the Stoichiometry of Protein Complexes. PLoS ONE, 2013, 8, e62694. | 1.1 | 18 | | 98 | Multipoint Binding of the SLP-76 SH2 Domain to ADAP Is Critical for Oligomerization of SLP-76 Signaling Complexes in Stimulated T Cells. Molecular and Cellular Biology, 2013, 33, 4140-4151. | 1.1 | 43 | | 99 | Complexes of Neutralizing and Non-Neutralizing Affinity Matured Fabs with a Mimetic of the Internal Trimeric Coiled-Coil of HIV-1 gp41. PLoS ONE, 2013, 8, e78187. | 1.1 | 17 | | 100 | Analysis of High Affinity Self-Association by Fluorescence Optical Sedimentation Velocity Analytical Ultracentrifugation of Labeled Proteins: Opportunities and Limitations. PLoS ONE, 2013, 8, e83439. | 1.1 | 31 | | 101 | Tools for the Quantitative Analysis of Sedimentation Boundaries Detected by Fluorescence Optical Analytical Ultracentrifugation. PLoS ONE, 2013, 8, e77245. | 1.1 | 27 | | 102 | Abstract IA23: Functional and structural studies of HP1 heterochromatin., 2013,,. | | 0 | | 103 | Analysis of high-affinity assembly for AMPA receptor amino-terminal domains. Journal of General Physiology, 2012, 139, 371-388. | 0.9 | 45 | | 104 | Global Multi-Method Analysis of Affinities and Cooperativity in Complex Systems of Macromolecular Interactions. Analytical Chemistry, 2012, 84, 9513-9519. | 3.2 | 48 | | 105 | Structural, Bioinformatic, and In Vivo Analyses of Two Treponema pallidum Lipoproteins Reveal a Unique TRAP Transporter. Journal of Molecular Biology, 2012, 416, 678-696. | 2.0 | 30 | | 106 | An Equilibrium Model for Linear and Closed-Loop Amyloid Fibril Formation. Journal of Molecular Biology, 2012, 421, 364-377. | 2.0 | 19 | | 107 | Structural and Thermodynamic Characterization of the Interaction between Two Periplasmic Treponema pallidum Lipoproteins that are Components of a TPR-Protein-Associated TRAP Transporter (TPAT). Journal of Molecular Biology, 2012, 420, 70-86. | 2.0 | 27 | | 108 | The Molecular Refractive Function of Lens Gamma Crystallins. Biophysical Journal, 2012, 102, 185a. | 0.2 | 0 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 109 | Analysis of Oligomer Assembly for the GluA2 Amino Terminal Domain. Biophysical Journal, 2012, 102, 335a-336a. | 0.2 | 0 | | 110 |
High-Precision Isothermal Titration Calorimetry with Automated Peak-Shape Analysis. Analytical Chemistry, 2012, 84, 5066-5073. | 3.2 | 440 | | 111 | Strategies for assessing proton linkage to bimolecular interactions by global analysis of isothermal titration calorimetry data. Journal of Chemical Thermodynamics, 2012, 52, 95-107. | 1.0 | 14 | | 112 | Dimeric States of Neural- and Epithelial-Cadherins are Distinguished by the Rate of Disassembly. Biochemistry, 2011, 50, 2951-2961. | 1.2 | 13 | | 113 | The role of macromolecular crowding in the evolution of lens crystallins with high molecular refractive index. Physical Biology, 2011, 8, 046004. | 0.8 | 31 | | 114 | NBD-Labeled Phospholipid Accelerates Apolipoprotein C-II Amyloid Fibril Formation but Is Not Incorporated into Mature Fibrils. Biochemistry, 2011, 50, 9579-9586. | 1.2 | 13 | | 115 | Studying Rapidly Reversible Protein-Protein Interactions by Sedimentation Velocity Analytical Ultracentrifugation. Biophysical Journal, 2011, 100, 387a. | 0.2 | 0 | | 116 | Biophysical characterization of DNA and RNA aptamer interactions with hen egg lysozyme. International Journal of Biological Macromolecules, 2011, 48, 392-397. | 3.6 | 45 | | 117 | The Molecular Refractive Function of Lens γ-Crystallins. Journal of Molecular Biology, 2011, 411, 680-699. | 2.0 | 68 | | 118 | Malaria vaccine candidate: Design of a multivalent subunit \hat{l}_{\pm} -helical coiled coil poly-epitope. Vaccine, 2011, 29, 7090-7099. | 1.7 | 26 | | 119 | Extended Fujita approach to the molecular weight distribution of polysaccharides and other polymeric systems. Methods, 2011, 54, 136-144. | 1.9 | 45 | | 120 | The boundary structure in the analysis of reversibly interacting systems by sedimentation velocity. Methods, 2011, 54, 16-30. | 1.9 | 35 | | 121 | Editorial for the special issue of methods "Modern Analytical Ultracentrifugation― Methods, 2011, 54, 1-3. | 1.9 | 14 | | 122 | Structure and Assembly Mechanism for Heteromeric Kainate Receptors. Neuron, 2011, 71, 319-331. | 3.8 | 102 | | 123 | On the Distribution of Protein Refractive Index Increments. Biophysical Journal, 2011, 100, 2309-2317. | 0.2 | 410 | | 124 | Density Contrast Sedimentation Velocity for the Determination of Protein Partial-Specific Volumes. PLoS ONE, 2011, 6, e26221. | 1.1 | 49 | | 125 | On computational approaches for size-and-shape distributions from sedimentation velocity analytical ultracentrifugation. European Biophysics Journal, 2010, 39, 1261-1275. | 1.2 | 29 | | 126 | Accounting for Solvent Signal Offsets in the Analysis of Interferometric Sedimentation Velocity Data. Macromolecular Bioscience, 2010, 10, 736-745. | 2.1 | 26 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 127 | Macromol. Biosci. 7/2010. Macromolecular Bioscience, 2010, 10, . | 2.1 | 0 | | 128 | Some statistical properties of differencing schemes for baseline correction of sedimentation velocity data. Analytical Biochemistry, 2010, 401, 280-287. | 1.1 | 19 | | 129 | Cooperative interactions at the SLP-76 complex are critical for actin polymerization. EMBO Journal, 2010, 29, 2315-2328. | 3.5 | 98 | | 130 | Energetics of Allosteric ion Binding to a Ligand-Gated ion Channel. Biophysical Journal, 2010, 98, 610a. | 0.2 | 0 | | 131 | Fredholm Integral Equations in Biophysical Data Analysis. IFMBE Proceedings, 2010, , 340-343. | 0.2 | 1 | | 132 | The Role of Mass Transport Limitation and Surface Heterogeneity in the Biophysical Characterization of Macromolecular Binding Processes by SPR Biosensing. Methods in Molecular Biology, 2010, 627, 15-54. | 0.4 | 160 | | 133 | Determining Thermodynamic Parameters of Protein Interactions By Global Analysis of Data From Multiple Techniques. Biophysical Journal, 2010, 98, 61a. | 0.2 | 0 | | 134 | Sedimentation Patterns of Rapidly Reversible Protein Interactions. Biophysical Journal, 2010, 98, 2005-2013. | 0.2 | 65 | | 135 | Diffusion of the Reaction Boundary of Rapidly Interacting Macromolecules in Sedimentation Velocity.
Biophysical Journal, 2010, 98, 2741-2751. | 0.2 | 34 | | 136 | Direct Interaction of the Mouse Cytomegalovirus m152/gp40 Immunoevasin with RAE-1 Isoforms. Biochemistry, 2010, 49, 2443-2453. | 1.2 | 31 | | 137 | Phospholipids Enhance Nucleation but Not Elongation of Apolipoprotein C-II Amyloid Fibrils. Journal of Molecular Biology, 2010, 399, 731-740. | 2.0 | 15 | | 138 | Autoinhibition of Arf GTPase-activating Protein Activity by the BAR Domain in ASAP1. Journal of Biological Chemistry, 2009, 284, 1652-1663. | 1.6 | 63 | | 139 | Novel Chimpanzee/Human Monoclonal Antibodies That Neutralize Anthrax Lethal Factor, and Evidence for Possible Synergy with Anti-Protective Antigen Antibody. Infection and Immunity, 2009, 77, 3902-3908. | 1.0 | 51 | | 140 | Energetics of glutamate receptor ligand binding domain dimer assembly are modulated by allosteric ions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12329-12334. | 3.3 | 46 | | 141 | The C-terminal domain of Plasmodium falciparum merozoite surface protein 3 self-assembles into α-helical coiled coil tetramer. Molecular and Biochemical Parasitology, 2009, 165, 153-161. | 0.5 | 20 | | 142 | On the analysis of sedimentation velocity in the study of protein complexes. European Biophysics Journal, 2009, 38, 1079-1099. | 1.2 | 51 | | 143 | Stability of ligand-binding domain dimer assembly controls kainate receptor desensitization. EMBO Journal, 2009, 28, 1518-1530. | 3.5 | 54 | | 144 | The N-terminal domain of GluR6-subtype glutamate receptor ion channels. Nature Structural and Molecular Biology, 2009, 16, 631-638. | 3.6 | 97 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 145 | Probing the Heterogeneity in the Distribution of Binding Properties of Immobilized Surface Sites through Bayesian Analysis. Biophysical Journal, 2009, 96, 74a-75a. | 0.2 | 0 | | 146 | Modern analytical ultracentrifugation in protein science: A tutorial review. Protein Science, 2009, 11, 2067-2079. | 3.1 | 642 | | 147 | Structure And Stability Of Ligand Binding Core Dimer Assembly Controls Desensitization In A Kainate Receptor. Biophysical Journal, 2009, 96, 491a. | 0.2 | 0 | | 148 | Assembly, Loading, and Alignment of an Analytical Ultracentrifuge Sample Cell. Journal of Visualized Experiments, 2009, , . | 0.2 | 16 | | 149 | A new adaptive grid-size algorithm for the simulation of sedimentation velocity profiles in analytical ultracentrifugation. Computer Physics Communications, 2008, 178, 105-120. | 3.0 | 84 | | 150 | A Bayesian Approach for Quantifying Trace Amounts of Antibody Aggregates by Sedimentation Velocity Analytical Ultracentrifugation. AAPS Journal, 2008, 10, 481-93. | 2.2 | 36 | | 151 | Extended Polypeptide Linkers Establish the Spatial Architecture of a Pyruvate Dehydrogenase
Multienzyme Complex. Structure, 2008, 16, 93-103. | 1.6 | 22 | | 152 | Bacteriorhodopsin/Amphipol Complexes: Structural and Functional Properties. Biophysical Journal, 2008, 94, 3523-3537. | 0.2 | 97 | | 153 | Apolipoprotein C-II Amyloid Fibrils Assemble via a Reversible Pathway that Includes Fibril Breaking and Rejoining. Journal of Molecular Biology, 2008, 376, 1116-1129. | 2.0 | 66 | | 154 | Bayesian Analysis of Heterogeneity in the Distribution of Binding Properties of Immobilized Surface Sites. Langmuir, 2008, 24, 11577-11586. | 1.6 | 41 | | 155 | Characterizing Proteinâ€Protein Interactions by Sedimentation Velocity Analytical Ultracentrifugation. Current Protocols in Immunology, 2008, 81, Unit 18.15. | 3.6 | 84 | | 156 | Humanized Monoclonal Antibodies Derived from Chimpanzee Fabs Protect against Japanese Encephalitis Virus In Vitro and In Vivo. Journal of Virology, 2008, 82, 7009-7021. | 1.5 | 71 | | 157 | Characterization of Chimpanzee/Human Monoclonal Antibodies to Vaccinia Virus A33 Glycoprotein and Its Variola Virus Homolog In Vitro and in a Vaccinia Virus Mouse Protection Model. Journal of Virology, 2007, 81, 8989-8995. | 1.5 | 61 | | 158 | Cellular Expression and Crystal Structure of the Murine Cytomegalovirus Major Histocompatibility Complex Class I-like Glycoprotein, m153. Journal of Biological Chemistry, 2007, 282, 35247-35258. | 1.6 | 22 | | 159 | Measuring Proteinâ€Protein Interactions by Equilibrium Sedimentation. Current Protocols in Immunology, 2007, 79, Unit 18.8. | 3.6 | 31 | | 160 | Using Prior Knowledge in the Determination of Macromolecular Size-Distributions by Analytical Ultracentrifugation. Biomacromolecules, 2007, 8, 2011-2024. | 2.6 | 65 | | 161 | Two Interferons Alpha Influence Each Other during Their Interaction with the Extracellular Domain of Human Type Interferon Receptor Subunit 2. Biochemistry, 2007, 46, 14638-14649. | 1.2 | 9 | | 162 | Probing the Functional Heterogeneity of Surface Binding Sites by Analysis of Experimental Binding Traces and the Effect of Mass Transport Limitation. Biophysical Journal, 2007, 92, 1742-1758. | 0.2 | 83 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 163 | Sedimentation Equilibrium Analytical Ultracentrifugation for Multicomponent Protein Interactions. , 2007, , 289-316. | | 8 | | 164 | Single-walled tubulin ring polymers. Biopolymers, 2007, 86, 424-436. | 1.2 | 11 | | 165 | Superantigen natural affinity maturation revealed by the crystal structure of staphylococcal
enterotoxin G and its binding to T-cell receptor $\hat{Vl^2}8.2$. Proteins: Structure, Function and Bioinformatics, 2007, 68, 389-402. | 1.5 | 22 | | 166 | Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: Application to adaptor protein complexes in cell signaling. Protein Science, 2007, 16, 30-42. | 3.1 | 295 | | 167 | Sedimentation Velocity in the Study of Reversible Multiprotein Complexes., 2007,, 469-518. | | 6 | | 168 | Surface Plasmon Resonance Biosensing in the Study of Ternary Systems of Interacting Proteins. , 2007, , 97-141. | | 6 | | 169 | Macromolecular Size-and-Shape Distributions by Sedimentation Velocity Analytical Ultracentrifugation. Biophysical Journal, 2006, 90, 4651-4661. | 0.2 | 494 | | 170 | Variable Dimerization of the Ly49A Natural Killer Cell Receptor Results in Differential Engagement of its MHC Class I Ligand. Journal of Molecular Biology, 2006, 362, 102-113. | 2.0 | 27 | | 171 | Protein S multimers and monomers each have direct anticoagulant activity. Journal of Thrombosis and Haemostasis, 2006, 4, 385-391. | 1.9 | 16 | | 172 | Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nature Structural and Molecular Biology, 2006, 13, 798-805. | 3.6 | 195 | | 173 | Conformational restriction blocks glutamate receptor desensitization. Nature Structural and Molecular Biology, 2006, 13, 1120-1127. | 3.6 | 106 | | 174 | Crystal Structure of Group A Streptococcus Mac-1: Insight into Dimer-Mediated Specificity for Recognition of Human IgG. Structure, 2006, 14, 225-235. | 1.6 | 27 | | 175 | Efficient Neutralization of Anthrax Toxin by Chimpanzee Monoclonal Antibodies against Protective Antigen. Journal of Infectious Diseases, 2006, 193, 625-633. | 1.9 | 73 | | 176 | Quaternary Structure and Cleavage Specificity of a Poxvirus Holliday Junction Resolvase. Journal of Biological Chemistry, 2006, 281, 11618-11626. | 1.6 | 16 | | 177 | Chimpanzee/human mAbs to vaccinia virus B5 protein neutralize vaccinia and smallpox viruses and protect mice against vaccinia virus. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1882-1887. | 3.3 | 94 | | 178 | Regulation of ASAP1 by phospholipids is dependent on the interface between the PH and Arf GAP domains. Cellular Signalling, 2005, 17, 1276-1288. | 1.7 | 37 | | 179 | Targeted lysis of HIV-infected cells by natural killer cells armed and triggered by a recombinant immunoglobulin fusion protein: implications for immunotherapy. Virology, 2005, 332, 491-497. | 1.1 | 33 | | 180 | Studying multiprotein complexes by multisignal sedimentation velocity analytical ultracentrifugation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 81-86. | 3.3 | 132 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 181 | Exposure of acidic residues as a danger signal for recognition of fibrinogen and other macromolecules by integrin ÂXÂ2. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1614-1619. | 3.3 | 91 | | 182 | Characterization of DC-SIGN/R Interaction with Human Immunodeficiency Virus Type 1 gp120 and ICAM Molecules Favors the Receptor's Role as an Antigen-Capturing Rather than an Adhesion Receptor. Journal of Virology, 2005, 79, 4589-4598. | 1.5 | 83 | | 183 | Dissection of Merozoite Surface Protein 3, a Representative of a Family of Plasmodium falciparum Surface Proteins, Reveals an Oligomeric and Highly Elongated Molecule. Journal of Biological Chemistry, 2005, 280, 37236-37245. | 1.6 | 40 | | 184 | A Mechanism for Assembly of Complexes of Vitronectin and Plasminogen Activator Inhibitor-1 from Sedimentation Velocity Analysis. Journal of Biological Chemistry, 2005, 280, 28711-28720. | 1.6 | 21 | | 185 | Cooperative behavior of Escherichia coli cell-division protein FtsZ assembly involves the preferential cyclization of long single-stranded fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1895-1900. | 3.3 | 90 | | 186 | Eukaryotic RNases H1 act processively by interactions through the duplex RNA-binding domain. Nucleic Acids Research, 2005, 33, 2166-2175. | 6.5 | 46 | | 187 | Self-Association and Ligand-Induced Conformational Changes of Iron Regulatory Proteins 1 and 2. Biochemistry, 2005, 44, 8470-8478. | 1.2 | 24 | | 188 | Influence of Temperature on the Conformation of Canine Plasminogen: An Analytical Ultracentrifugation and Dynamic Light Scattering Study. Biochemistry, 2005, 44, 13122-13131. | 1.2 | 19 | | 189 | Sedimentation Velocity Analysis of Heterogeneous Protein-Protein Interactions: Lamm Equation Modeling and Sedimentation Coefficient Distributions c(s). Biophysical Journal, 2005, 89, 619-634. | 0.2 | 168 | | 190 | Sedimentation Velocity Analysis of Heterogeneous Protein-Protein Interactions: Sedimentation Coefficient Distributions c(s) and Asymptotic Boundary Profiles from Gilbert-Jenkins Theory. Biophysical Journal, 2005, 89, 651-666. | 0.2 | 109 | | 191 | Hydrodynamics of Nanoscopic Tubulin Rings in Dilute Solutions. Physical Review Letters, 2004, 93, 098106. | 2.9 | 19 | | 192 | Sedimentation equilibrium analysis of protein interactions with global implicit mass conservation constraints and systematic noise decomposition. Analytical Biochemistry, 2004, 326, 234-256. | 1.1 | 333 | | 193 | A model for sedimentation in inhomogeneous media. I. Dynamic density gradients from sedimenting co-solutes. Biophysical Chemistry, 2004, 108, 187-200. | 1.5 | 77 | | 194 | A model for sedimentation in inhomogeneous media. II. Compressibility of aqueous and organic solvents. Biophysical Chemistry, 2004, 108, 201-214. | 1.5 | 35 | | 195 | Binding Specificity of Multiprotein Signaling Complexes Is Determined by Both Cooperative Interactions and Affinity Preferences. Biochemistry, 2004, 43, 4170-4178. | 1.2 | 105 | | 196 | Measuring Protein Interactions by Optical Biosensors. Current Protocols in Cell Biology, 2004, 22, Unit 17.6. | 2.3 | 5 | | 197 | Calculating Sedimentation Coefficient Distributions by Direct Modeling of Sedimentation Velocity Concentration Profiles. Methods in Enzymology, 2004, 384, 185-212. | 0.4 | 264 | | 198 | SDR grafting of a murine antibody using multiple human germline templates to minimize its immunogenicity. Molecular Immunology, 2004, 41, 863-872. | 1.0 | 64 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 199 | Crystal Structure of the C-terminal Peptidoglycan-binding Domain of Human Peptidoglycan Recognition Protein Iα. Journal of Biological Chemistry, 2004, 279, 31873-31882. | 1.6 | 51 | | 200 | On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Analytical Biochemistry, 2003, 320, 104-124. | 1.1 | 578 | | 201 | Variable MHC class I engagement by Ly49 natural killer cell receptors demonstrated by the crystal structure of Ly49C bound to H-2Kb. Nature Immunology, 2003, 4, 1213-1222. | 7.0 | 127 | | 202 | Multipoint measurements of field-aligned current density in the auroral zone. Journal of Geophysical Research, 2003, 108, . | 3.3 | 12 | | 203 | Reversible and Fast Association Equilibria of a Molecular Chaperone, gp57A, of Bacteriophage T4.
Biophysical Journal, 2003, 85, 2606-2618. | 0.2 | 32 | | 204 | Combined Affinity and Rate Constant Distributions of Ligand Populations from Experimental Surface Binding Kinetics and Equilibria. Biophysical Journal, 2003, 84, 4062-4077. | 0.2 | 118 | | 205 | Minimizing immunogenicity of the SDR-grafted humanized antibody CC49 by genetic manipulation of the framework residues. Molecular Immunology, 2003, 40, 337-349. | 1.0 | 28 | | 206 | Alanine-scanning Mutations in Domain 4 of Anthrax Toxin Protective Antigen Reveal Residues Important for Binding to the Cellular Receptor and to a Neutralizing Monoclonal Antibody. Journal of Biological Chemistry, 2003, 278, 30936-30944. | 1.6 | 130 | | 207 | Inhibition of Hemostasis by a High Affinity Biogenic Amine-binding Protein from the Saliva of a
Blood-feeding Insect. Journal of Biological Chemistry, 2003, 278, 4611-4617. | 1.6 | 80 | | 208 | In vitro affinity maturation of a specificity-determining region-grafted humanized anticarcinoma antibody: isolation and characterization of minimally immunogenic high-affinity variants. Clinical Cancer Research, 2003, 9, 5521-31. | 3.2 | 20 | | 209 | Characterization of serum albumin nanoparticles by sedimentation velocity analysis and electron microscopy., 2002,, 31-36. | | 26 | | 210 | Grafting of "Abbreviated―Complementarity-Determining Regions Containing Specificity-Determining Residues Essential for Ligand Contact to Engineer a Less Immunogenic Humanized Monoclonal Antibody. Journal of Immunology, 2002, 169, 3076-3084. | 0.4 | 43 | | 211 | Biochemical and Biological Characterization of a Dodecameric CD4-lg Fusion Protein. Journal of Biological Chemistry, 2002, 277, 11456-11464. | 1.6 | 71 | | 212 | Mass Spectrometry after Capture and Small-Volume Elution of Analyte from a Surface Plasmon Resonance Biosensor. Analytical Chemistry, 2002, 74, 2041-2047. | 3.2 | 58 | | 213 | Quantifying the Energetics of Cooperativity in a Ternary Protein Complexâ€. Biochemistry, 2002, 41, 5177-5184. | 1.2 | 31 | | 214 | Elucidating Kinetic and Thermodynamic Constants for Interaction of G Protein Subunits and Receptors by Surface Plasmon Resonance Spectroscopy. Methods in
Enzymology, 2002, 344, 15-42. | 0.4 | 12 | | 215 | Ultracentrifugation Studies on the Solution Properties of Supramolecular Building Blocks for Polymers: Potential, Problems, and Solutions. ACS Symposium Series, 2002, , 185-200. | 0.5 | 5 | | 216 | Size-Distribution Analysis of Proteins by Analytical Ultracentrifugation: Strategies and Application to Model Systems. Biophysical Journal, 2002, 82, 1096-1111. | 0.2 | 639 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 217 | Analysis of a Temperature-Sensitive Mutant Rotavirus Indicates that NSP2 Octamers Are the Functional Form of the Protein. Journal of Virology, 2002, 76, 7082-7093. | 1.5 | 40 | | 218 | Surface plasmon resonance-based competition assay to assess the sera reactivity of variants of humanized antibodies. Journal of Immunological Methods, 2002, 268, 197-210. | 0.6 | 48 | | 219 | Differences in the binding capacity of human apolipoprotein E3 and E4 to size-fractionated lipid emulsions. FEBS Journal, 2002, 269, 5939-5949. | 0.2 | 33 | | 220 | Studies on the partial specific volume of a poly(ethylene glycol) derivative in different solvent systems. , 2002, , 24-30. | | 14 | | 221 | Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Science, 2002, 11, 2067-79. | 3.1 | 286 | | 222 | Adaptation of a Surface Plasmon Resonance Biosensor with Microfluidics for Use with Small Sample Volumes and Long Contact Times. Analytical Chemistry, 2001, 73, 2828-2835. | 3.2 | 60 | | 223 | Non-Ideality by Sedimentation Velocity of Halophilic Malate Dehydrogenase in Complex Solvents.
Biophysical Journal, 2001, 81, 1868-1880. | 0.2 | 90 | | 224 | Crystal Structure of a Superantigen Bound to the High-Affinity, Zinc-Dependent Site on MHC Class II. Immunity, 2001, 14, 93-104. | 6.6 | 134 | | 225 | Oligomeric structure of virion-associated and soluble forms of the simian immunodeficiency virus envelope protein in the prefusion activated conformation. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14877-14882. | 3.3 | 52 | | 226 | Rotavirus Nonstructural Protein NSP2 Self-assembles into Octamers That Undergo Ligand-induced Conformational Changes. Journal of Biological Chemistry, 2001, 276, 9679-9687. | 1.6 | 88 | | 227 | Determination of the sedimentation coefficient distribution by least-squares boundary modeling. Biopolymers, 2000, 54, 328-341. | 1.2 | 306 | | 228 | Analysis of Transport Experiments Using Pseudo-Absorbance Data. Analytical Biochemistry, 2000, 285, 135-142. | 1.1 | 45 | | 229 | Crystal structure of an NK cell immunoglobulin-like receptor in complex with its class I MHC ligand. Nature, 2000, 405, 537-543. | 13.7 | 386 | | 230 | The Human Immunodeficiency Virus Type 1 gp120 V2 Domain Mediates gp41-Independent Intersubunit Contacts. Journal of Virology, 2000, 74, 4448-4455. | 1.5 | 60 | | 231 | Self-association of Human Apolipoprotein E3 and E4 in the Presence and Absence of Phospholipid. Journal of Biological Chemistry, 2000, 275, 36758-36765. | 1.6 | 108 | | 232 | Size-Distribution Analysis of Macromolecules by Sedimentation Velocity Ultracentrifugation and Lamm Equation Modeling. Biophysical Journal, 2000, 78, 1606-1619. | 0.2 | 3,484 | | 233 | Measuring Proteinâ€Protein Interactions by Equilibrium Sedimentation. Current Protocols in Immunology, 2000, 40, 18.8.1. | 3.6 | 1 | | 234 | Calcium-Sensitive Interaction between Calmodulin and Modified Forms of Rat Brain Neurogranin/RC3. Biochemistry, 2000, 39, 7291-7299. | 1.2 | 43 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 235 | Determination of the sedimentation coefficient distribution by least-squares boundary modeling., 2000, 54, 328. | | 1 | | 236 | The Human Immunodeficiency Virus Type 1 gp120 V2 Domain Mediates gp41-Independent Intersubunit Contacts. Journal of Virology, 2000, 74, 4448-4455. | 1.5 | 7 | | 237 | Salt Links Dominate Affinity of Antibody HyHEL-5 for Lysozyme through Enthalpic Contributions.
Journal of Biological Chemistry, 1999, 274, 26838-26842. | 1.6 | 17 | | 238 | Sedimentation Equilibrium Analysis of Interference Optical Data by Systematic Noise Decomposition. Analytical Biochemistry, 1999, 272, 199-208. | 1.1 | 23 | | 239 | Characterizing the Solution Properties of Supramolecular Systems by Analytical Ultracentrifugation.
Chemistry - A European Journal, 1999, 5, 1377-1383. | 1.7 | 39 | | 240 | Interaction of the NK Cell Inhibitory Receptor Ly49A with H-2Dd. Immunity, 1999, 11, 591-601. | 6.6 | 50 | | 241 | Sedimentation equilibrium analysis of recombinant mouse FcRn with murine IgG1. Molecular Immunology, 1999, 36, 1117-1125. | 1.0 | 37 | | 242 | Measuring Protein Interactions by Optical Biosensors. Current Protocols in Protein Science, 1999, 17, Unit20.2. | 2.8 | 17 | | 243 | Direct Sedimentation Analysis of Interference Optical Data in Analytical Ultracentrifugation.
Biophysical Journal, 1999, 76, 2288-2296. | 0.2 | 168 | | 244 | An antibody single-domain phage display library of a native heavy chain variable region: isolation of functional single-domain VH molecules with a unique interface 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 1999, 290, 685-698. | 2.0 | 79 | | 245 | Rapid Determination of Molar Mass in Modified Archibald Experiments Using Direct Fitting of the Lamm Equation. Analytical Biochemistry, 1998, 259, 48-53. | 1.1 | 24 | | 246 | Determination of Binding Constants by Equilibrium Titration with Circulating Sample in a Surface Plasmon Resonance Biosensor. Analytical Biochemistry, 1998, 265, 79-91. | 1.1 | 73 | | 247 | Analytical band centrifugation of proteins and protein complexes. Biochemical Society Transactions, 1998, 26, 745-749. | 1.6 | 31 | | 248 | Amino Acid Residues That Influence FcεRI-Mediated Effector Functions of Human Immunoglobulin Eâ€.
Biochemistry, 1998, 37, 16152-16164. | 1.2 | 44 | | 249 | Sedimentation Analysis of Noninteracting and Self-Associating Solutes Using Numerical Solutions to the Lamm Equation. Biophysical Journal, 1998, 75, 1503-1512. | 0.2 | 331 | | 250 | Determination of Sedimentation Coefficients for Small Peptides. Biophysical Journal, 1998, 74, 466-474. | 0.2 | 74 | | 251 | Reply to Panayotou and Waterfield. Trends in Biochemical Sciences, 1997, 22, 149. | 3.7 | 1 | | 252 | Reply to Masson. Trends in Biochemical Sciences, 1997, 22, 150. | 3.7 | 1 | | # | Article | IF | Citations | |-----|--|------|-----------| | 253 | USE OF SURFACE PLASMON RESONANCE TO PROBE THE EQUILIBRIUM AND DYNAMIC ASPECTS OF INTERACTIONS BETWEEN BIOLOGICAL MACROMOLECULES. Annual Review of Biophysics and Biomolecular Structure, 1997, 26, 541-566. | 18.3 | 589 | | 254 | Reliable determination of binding affinity and kinetics using surface plasmon resonance biosensors. Current Opinion in Biotechnology, 1997, 8, 498-502. | 3.3 | 160 | | 255 | Kinetics of ligand binding to receptor immobilized in a polymer matrix, as detected with an evanescent wave biosensor. I. A computer simulation of the influence of mass transport. Biophysical Journal, 1996, 70, 1230-1249. | 0.2 | 226 | | 256 | Kinetic analysis of biosensor data: elementary tests for self-consistency. Trends in Biochemical Sciences, 1996, 21, 458-460. | 3.7 | 131 | | 257 | Analysis of Mass Transport-Limited Binding Kinetics in Evanescent Wave Biosensors. Analytical Biochemistry, 1996, 240, 262-272. | 1.1 | 217 | | 258 | Studying heterologous associations between membrane proteins by analytical ultracentrifugation: Experience with erythrocyte band 3., 1995,, 69-73. | | 5 | | 259 | The Influence of Two Anion-transport Inhibitors, 4,4'-Diisothiocyanatodihydrostilbene-2,2'-Disulfonate and 4,4'-Dibenzoylstilbene-2,2'-Disulfonate, on the Self-association of Erythrocyte Band 3 Protein. FEBS Journal, 1995, 230, 806-812. | 0.2 | 3 | | 260 | Dissecting Titin into Its Structural Motifs: Identification of an .alphaHelix Motif near the Titin N-Terminus. Biochemistry, 1995, 34, 553-561. | 1.2 | 16 | | 261 | The Influence of Two Anion-transport Inhibitors, 4,4'-Diisothiocyanatodihydrostilbene-2,2'-Disulfonate and 4,4'-Dibenzoylstilbene-2,2'-Disulfonate, on the Self-association of Erythrocyte Band 3 Protein. FEBS Journal, 1995, 230, 806-812. | 0.2 | 26 | | 262 | The Molar Mass of an Active Photosystem I Complex from the Cyanobacterium Synechococcus PCC 7002. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1994, 49, 220-222. | 0.6 | 8 | | 263 | Determination of the molar mass of pigment-containing complexes of intrinsic membrane proteins: Problems, solutions and application to the light-harvesting complex B800/820 of Rhodospirillum molischianum., 1994,, 14-19. | | 15 | | 264 | The dimerization stability of the HLH-LZ transcription protein family is modulated by the leucine zippers: A CD and NMR study of TFEB and c-Myc. Biochemistry, 1994, 33, 11296-11306. | 1.2 | 46 | | 265 | Simultaneous radial and wavelength analysis with the Optima XL-A analytical ultracentrifuge. , 1994 , , $1-13$. | | 50 | | 266 | The relationships between the oligomeric structure and the functions of human erythrocyte band 3 protein: the functional unit for the binding of ankyrin, hemoglobin and aldolase and for anion transport. Progress in Cell Research, 1992, ,
209-217. | 0.3 | 15 | | 267 | Analytical ultracentrifugation as a tool for studying membrane proteins., 1991,, 12-22. | | 31 | | 268 | Band 3-hemoglobin associations The band 3 tetramer is the oxyhemoglobin binding site. FEBS Letters, 1991, 293, 81-84. | 1.3 | 28 | | 269 | The state of association of the Na+-translocating reduced nicotinamide adenine dinucleotide: quinone oxidoreductase in detergent solution $\hat{a}\in$ an ultracentrifugation study. , 0, , 48-53. | | 0 | | 270 | Sedimentation Velocity Analytical Ultracentrifugation. , 0, , . | | 42 | | # | Article | IF | CITATION | |-----|---|----|----------| | 271 | Basic Principles of Analytical Ultracentrifugation. , 0, , . | | 69 | | 272 | Sedimentation Velocity Analytical Ultracentrifugation. , 0, , . | | 12 |