Peihong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/663496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantifying the triboelectric series. Nature Communications, 2019, 10, 1427.	12.8	1,107
2	On the Electronâ€Transfer Mechanism in the Contactâ€Electrification Effect. Advanced Materials, 2018, 30, e1706790.	21.0	483
3	Advances in Piezoâ€Phototronic Effect Enhanced Photocatalysis and Photoelectrocatalysis. Advanced Energy Materials, 2020, 10, 2000214.	19.5	333
4	Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nature Communications, 2020, 11, 2093.	12.8	287
5	An Ultra-Low-Friction Triboelectric–Electromagnetic Hybrid Nanogenerator for Rotation Energy Harvesting and Self-Powered Wind Speed Sensor. ACS Nano, 2018, 12, 9433-9440.	14.6	286
6	Shape Memory Polymers for Body Motion Energy Harvesting and Selfâ€Powered Mechanosensing. Advanced Materials, 2018, 30, 1705195.	21.0	249
7	Versatile Core–Sheath Yarn for Sustainable Biomechanical Energy Harvesting and Realâ€Time Humanâ€Interactive Sensing. Advanced Energy Materials, 2018, 8, 1801114.	19.5	212
8	Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching Down Electron Thermionic Emission in Contactâ€Electrification. Advanced Materials, 2018, 30, e1803968.	21.0	199
9	A Soft and Robust Spring Based Triboelectric Nanogenerator for Harvesting Arbitrary Directional Vibration Energy and Selfâ€Powered Vibration Sensing. Advanced Energy Materials, 2018, 8, 1702432.	19.5	186
10	Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visible-light photoelectrochemical applications. Applied Catalysis B: Environmental, 2018, 221, 187-195.	20.2	180
11	A micro electromagnetic low level vibration energy harvester based on MEMS technology. Microsystem Technologies, 2009, 15, 941-951.	2.0	162
12	Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Research, 2018, 11, 4062-4073.	10.4	143
13	Honeycomb Structure Inspired Triboelectric Nanogenerator for Highly Effective Vibration Energy Harvesting and Selfâ€Powered Engine Condition Monitoring. Advanced Energy Materials, 2019, 9, 1902460.	19.5	133
14	Piezoelectric ZnO thin films for 2DOF MEMS vibrational energy harvesting. Surface and Coatings Technology, 2019, 359, 289-295.	4.8	110
15	Magnetic and microwave absorption properties of self-assemblies composed of core–shell cobalt–cobalt oxide nanocrystals. Physical Chemistry Chemical Physics, 2015, 17, 3796-3801.	2.8	107
16	High-performance cylindrical pendulum shaped triboelectric nanogenerators driven by water wave energy for full-automatic and self-powered wireless hydrological monitoring system. Nano Energy, 2020, 74, 104937.	16.0	89
17	Complementary Electromagneticâ€⊺riboelectric Active Sensor for Detecting Multiple Mechanical Triggering. Advanced Functional Materials, 2018, 28, 1705808.	14.9	87
18	An Easily Assembled Electromagneticâ€Triboelectric Hybrid Nanogenerator Driven by Magnetic Coupling for Fluid Energy Harvesting and Selfâ€Powered Flow Monitoring in a Smart Home/City. Advanced Materials Technologies, 2019, 4, 1900741.	5.8	87

Peihong Wang

#	Article	IF	CITATIONS
19	Functional Group Effects on the Photoelectronic Properties of MXene (Sc2CT2, T = O, F, OH) and Their Possible Photocatalytic Activities. Scientific Reports, 2017, 7, 15095.	3.3	74
20	Design, fabrication and performance of a new vibration-based electromagnetic micro power generator. Microelectronics Journal, 2007, 38, 1175-1180.	2.0	68
21	ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance. Review of Scientific Instruments, 2015, 86, 075002.	1.3	68
22	Magnetic and microwave absorption properties of Ni microcrystals with hierarchical branch-like and flowers-like shapes. Materials Chemistry and Physics, 2013, 142, 119-123.	4.0	51
23	Deposition and characterization of AZO thin films on flexible glass substrates using DC magnetron sputtering technique. Ceramics International, 2017, 43, 4536-4544.	4.8	50
24	Piezo-phototronic Effect Enhanced Responsivity of Photon Sensor Based on Composition-Tunable Ternary CdS _{<i>x</i>} Se _{1–<i>x</i>} Nanowires. ACS Photonics, 2017, 4, 2495-2503.	6.6	48
25	Modulation of optical and electrical properties of sputtering-derived amorphous InGaZnO thin films by oxygen partial pressure. Journal of Alloys and Compounds, 2014, 615, 636-642.	5.5	44
26	Temperature-dependent differences in wettability and photocatalysis of TiO 2 nanotube arrays thin films. Applied Surface Science, 2015, 356, 546-552.	6.1	44
27	Self-powered droplet manipulation system for microfluidics based on triboelectric nanogenerator harvesting rotary energy. Lab on A Chip, 2021, 21, 284-295.	6.0	39
28	A whirligig-inspired intermittent-contact triboelectric nanogenerator for efficient low-frequency vibration energy harvesting. Nano Energy, 2021, 90, 106576.	16.0	39
29	Microwave anneal effect on magnetic properties of Ni0.6Zn0.4Fe2O4 nano-particles prepared by conventional hydrothermal method. Journal of Magnetism and Magnetic Materials, 2011, 323, 3121-3125.	2.3	37
30	Super-Durable and Highly Efficient Electrostatic Induced Nanogenerator Circulation Network Initially Charged by a Triboelectric Nanogenerator for Harvesting Environmental Energy. ACS Nano, 2021, 15, 6949-6960.	14.6	37
31	Enhanced charge collection and photocatalysis performance of CdS and PbS nanoclusters co-sensitized TiO2 porous film. Journal of Alloys and Compounds, 2015, 649, 190-195.	5.5	34
32	A pendulum-plucked rotor for efficient exploitation of ultralow-frequency mechanical energy. Renewable Energy, 2021, 179, 339-350.	8.9	29
33	Deposition, characterization and optimization of zinc oxide thin film for piezoelectric cantilevers. Applied Surface Science, 2012, 258, 9510-9517.	6.1	28
34	Microstructure, optical, electrical properties, and leakage current transport mechanism of sol–gel-processed high- k HfO 2 gate dielectrics. Ceramics International, 2016, 42, 6761-6769.	4.8	27
35	Multi-cylinder-based hybridized electromagnetic-triboelectric nanogenerator harvesting multiple fluid energy for self-powered pipeline leakage monitoring and anticorrosion protection. Nano Energy, 2021, 89, 106467.	16.0	25
36	Design, fabrication and characterization of a bistable electromagnetic microrelay with large displacement. Microelectronics Journal, 2011, 42, 992-998.	2.0	24

PEIHONG WANG

#	Article	IF	CITATIONS
37	Contribution of citrulline to the formation of ethyl carbamate during Chinese rice wine production. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 587-592.	2.3	23
38	Ni3Zn ferrite octahedral nanoparticles with high microwave permeability and high magnetic loss tangent. Journal of Magnetism and Magnetic Materials, 2013, 344, 101-104.	2.3	22
39	Interfacial modulation and electrical properties improvement of solution-processed ZrO 2 gate dielectrics upon Gd incorporation. Journal of Alloys and Compounds, 2017, 699, 415-420.	5.5	22
40	Preparation and characterization of ZnO microcantilever for nanoactuation. Nanoscale Research Letters, 2012, 7, 176.	5.7	21
41	A ZnO thin-film driven microcantilever for nanoscale actuation and sensing. International Journal of Smart and Nano Materials, 2013, 4, 128-141.	4.2	20
42	Wet releasing and stripping SU-8 structures with a nanoscale sacrificial layer. Microelectronic Engineering, 2009, 86, 2232-2235.	2.4	18
43	Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets. , 2012, , .		18
44	Single-layer and double-layer microwave absorbers based on Co67Ni33 microspheres and Ni0.6Zn0.4Fe2O4 nanocrystals. Journal of Magnetism and Magnetic Materials, 2017, 425, 25-30.	2.3	18
45	A Direction Self-Tuning Two-Dimensional Piezoelectric Vibration Energy Harvester. Sensors, 2020, 20, 77.	3.8	18
46	Design, simulation, fabrication and characterization of a micro electromagnetic vibration energy harvester with sandwiched structure and air channel. Microelectronics Journal, 2012, 43, 154-159.	2.0	17
47	A two-dimensional energy harvester with radially distributed piezoelectric array for vibration with arbitrary in-plane directions. Journal of Intelligent Material Systems and Structures, 2019, 30, 1094-1104.	2.5	17
48	A piezoelectric power generator based on axisymmetrically distributed PVDF array for two-dimension vibration energy harvesting and direction sensing. Sustainable Energy Technologies and Assessments, 2021, 44, 101001.	2.7	16
49	High microwave permittivity and resonance–antiresonance electromagnetic behaviors of flake-shaped cobalt microcrystals. Materials Chemistry and Physics, 2015, 159, 173-177.	4.0	15
50	Modification of band offsets of InGaZnO4/Si heterojunction through nitrogenation treatment. Journal of Alloys and Compounds, 2015, 647, 1035-1039.	5.5	15
51	Microstructure and Doping/Temperature-Dependent Photoluminescence of ZnO Nanospears Array Prepared by Hydrothermal Method. Nanoscale Research Letters, 2018, 13, 223.	5.7	15
52	Effect of post-annealing on microstructure and piezoelectric properties of ZnO thin film for triangular shaped vibration energy harvester. Surface and Coatings Technology, 2019, 361, 123-129.	4.8	14
53	Microstructure, opotoelectrical and pre-strain dependent electrical properties of AZO films on flexible glass substrates for flexible electronics. Surface and Coatings Technology, 2017, 320, 34-38.	4.8	11
54	Enhanced Electromagnetic Wave Absorption Performance of Co0.5Zn0.5 ZIF-Derived Binary Co/ZnO and RGO Composites. Journal of Electronic Materials, 2018, 47, 4910-4918.	2.2	10

PEIHONG WANG

#	Article	IF	CITATIONS
55	Fabrication and dynamic analysis of the electrostatically actuated MEMS variable capacitor. Microsystem Technologies, 2008, 14, 397-402.	2.0	9
56	Electromagnetic self-powered low-level vibration energy scavenger with microelectroplated nickel resonator. Electronics Letters, 2009, 45, 832.	1.0	9
57	A ZnO microcantilever for high-frequency nanopositioning: Modeling, fabrication and characterization. Sensors and Actuators A: Physical, 2013, 194, 75-83.	4.1	9
58	A Tower-Shaped Three-Dimensional Piezoelectric Energy Harvester for Low-Level and Low-Frequency Vibration. International Journal of Precision Engineering and Manufacturing - Green Technology, 2020, 8, 1537.	4.9	9
59	Baking-temperature-modulated optical and electrical properties of HfTiOx gate dielectrics via sol-gel method. Journal of Alloys and Compounds, 2016, 688, 925-932.	5.5	8
60	Development of microelectromechanical systems electromagnetic vibration energy scavengers with a nonlinear electroplated nickel spring. Micro and Nano Letters, 2012, 7, 1173-1175.	1.3	6
61	Electromagnetic bistable microactuator fabricated on a single wafer. Micro and Nano Letters, 2012, 7, 99.	1.3	6
62	Resin-bonded NdFeB micromagnets for integration into electromagnetic vibration energy harvesters. Journal of Zhejiang University: Science C, 2013, 14, 283-287.	0.7	6
63	Effect of ZnS layers on optical properties of prepared CdS/TiO2 nanotube arrays for photocatalyst. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	6
64	Effect of oxygen partial pressure and transparent substrates on the structural and optical properties of ZnO thin films and their performance in energy harvesters. International Journal of Minerals, Metallurgy and Materials, 2017, 24, 675-680.	4.9	6
65	Determination of optical constant and electrical properties of sputtering-derived HfTiON gate dielectrics. Journal of Alloys and Compounds, 2015, 646, 10-15.	5.5	5
66	Fabrication of Well-Aligned TiO ₂ Nanotube Arrays with Outstanding Light-Induced Hydrophilicity Performance. Journal of the Electrochemical Society, 2016, 163, E372-E377.	2.9	5
67	A-to-I mRNA Editing in a Ferric Siderophore Receptor Improves Competition for Iron in Xanthomonas oryzae pv. oryzicola. Microbiology Spectrum, 2021, 9, e0157121.	3.0	5
68	Effects of sterilization temperature on the concentration of ethyl carbamate and other quality traits in Chinese rice wine. Journal of the Institute of Brewing, 2014, 120, n/a-n/a.	2.3	4
69	Fabrication and performance of ZnO piezoelectric cantilever for vibration energy harvesting. , 2015, , .		4
70	Enhanced Microwave Absorption Properties of Metal Organic Framework (MOF)-Derived Carbonaceous ZnO Incorporated Reduced Graphene Oxide Composites. Nano, 2019, 14, 1950005.	1.0	4
71	Design of nonlinear springs for wideband magnetic vibration energy harvester. , 2011, , .		3
72	Fabrication and Characterization of Bonded NdFeB Microstructures for Microelectromechanical Systems Applications. Advanced Materials Research, 0, 211-212, 561-564.	0.3	3

#	Article	IF	CITATIONS
73	A key antisense sRNA modulates the oxidative stress response and virulence in Xanthomonas oryzae pv. oryzicola. PLoS Pathogens, 2021, 17, e1009762.	4.7	3
74	Annealing-Ambient-Dependent Thermal Stability of Ultrathin AlO <i>_x</i> N <i>_y</i> Films Grown by Metalorganic Chemical Vapor Deposition. Science of Advanced Materials, 2012, 4, 1078-1084.	0.7	2
75	A microelectroplated magnetic vibration energy scavenger for wireless sensor microsystems. , 2010, , .		1
76	Simulation of thermal flying height control slider with built-in contact sensor. Microsystem Technologies, 2012, 18, 1591-1596.	2.0	1
77	A new electroplating mask for deep wet etching on glass. , 2010, , .		0
78	Fabircaiton and Characterization of a New Bi-Stable Electromagnetic Microrelay. Advanced Materials Research, 2011, 211-212, 605-608.	0.3	0
79	A ZnO Driven Silicon Cantilever for Nanoscale Actuation. Advanced Materials Research, 2012, 486, 23-26.	0.3	0
80	Design and Simulation of Fully Integrated Micro Electromagnetic Vibration Energy Harvester. Applied Mechanics and Materials, 2012, 152-154, 1087-1090.	0.2	0