Piotr Sicinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6634951/publications.pdf

Version: 2024-02-01

85 papers 14,624 citations

44069 48 h-index 84 g-index

86 all docs 86 docs citations

86 times ranked 18313 citing authors

#	Article	IF	CITATIONS
1	Interrogating Kinase–Substrate Relationships with Proximity Labeling and Phosphorylation Enrichment. Journal of Proteome Research, 2022, 21, 494-506.	3.7	6
2	CDK4 and CDK6 kinases: From basic science to cancer therapy. Science, 2022, 375, eabc1495.	12.6	142
3	CDC7-independent G1/S transition revealed by targeted protein degradation. Nature, 2022, 605, 357-365.	27.8	38
4	Targeting cell-cycle machinery in cancer. Cancer Cell, 2021, 39, 759-778.	16.8	207
5	Inhibition of CK1 $\hat{l}\mu$ potentiates the therapeutic efficacy of CDK4/6 inhibitor in breast cancer. Nature Communications, 2021, 12, 5386.	12.8	22
6	Cyclin E in normal physiology and disease states. Trends in Cell Biology, 2021, 31, 732-746.	7.9	54
7	A kinase of many talents: non-neuronal functions of CDK5 in development and disease. Open Biology, 2020, 10, 190287.	3.6	32
8	The requirement for cyclin E in c-Myc overexpressing breast cancers. Cell Cycle, 2020, 19, 2589-2599.	2.6	5
9	Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nature Cell Biology, 2020, 22, 1064-1075.	10.3	182
10	Cyclin A2 is essential for mouse gonocyte maturation. Cell Cycle, 2020, 19, 1654-1664.	2.6	5
11	Acquired resistance to combined BET and CDK4/6 inhibition in triple-negative breast cancer. Nature Communications, 2020, 11 , 2350.	12.8	45
12	Increased lysosomal biomass is responsible for the resistance of triple-negative breast cancers to CDK4/6 inhibition. Science Advances, 2020, 6, eabb2210.	10.3	46
13	Chemotherapy and CDK4/6 Inhibition in Cancer Treatment: Timing Is Everything. Cancer Cell, 2020, 37, 265-267.	16.8	7
14	Targeting the cyclin-dependent kinase 5 in metastatic melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8001-8012.	7.1	21
15	Obesity/Type 2 Diabetes-Associated Liver Tumors Are Sensitive to Cyclin D1 Deficiency. Cancer Research, 2020, 80, 3215-3221.	0.9	12
16	A negative reciprocal regulatory axis between cyclin D1 and HNF4 $\hat{l}\pm$ modulates cell cycle progression and metabolism in the liver. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17177-17186.	7.1	34
17	Cdk1 Controls Global Epigenetic Landscape in Embryonic Stem Cells. Molecular Cell, 2020, 78, 459-476.e13.	9.7	76
18	The cell cycle in stem cell proliferation, pluripotency and differentiation. Nature Cell Biology, 2019, 21, 1060-1067.	10.3	233

#	Article	IF	Citations
19	A mitotic CDK5-PP4 phospho-signaling cascade primes 53BP1 for DNA repair in G1. Nature Communications, 2019, 10, 4252.	12.8	17
20	Perturbed myoepithelial cell differentiation in BRCA mutation carriers and in ductal carcinoma in situ. Nature Communications, 2019, 10, 4182.	12.8	37
21	Myc stimulates cell cycle progression through the activation of Cdk1 and phosphorylation of p27. Scientific Reports, 2019, 9, 18693.	3.3	40
22	Kinase-independent function of E-type cyclins in liver cancer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1015-1020.	7.1	32
23	Loss of Cyclin E1 attenuates hepatitis and hepatocarcinogenesis in a mouse model of chronic liver injury. Oncogene, 2018, 37, 3329-3339.	5.9	17
24	The D-Type Cyclins: A Historical Perspective. Current Cancer Research, 2018, , 1-26.	0.2	5
25	Cyclin D–CDK4 kinase destabilizes PD-L1 via cullin 3–SPOP to control cancer immune surveillance. Nature, 2018, 553, 91-95.	27.8	660
26	KDM5 Histone Demethylase Activity Links Cellular Transcriptomic Heterogeneity to Therapeutic Resistance. Cancer Cell, 2018, 34, 939-953.e9.	16.8	170
27	Cell cycle proteins as promising targets in cancer therapy. Nature Reviews Cancer, 2017, 17, 93-115.	28.4	1,418
28	G1 cyclins link proliferation, pluripotency and differentiation of embryonic stem cells. Nature Cell Biology, 2017, 19, 177-188.	10.3	107
29	Cell-Cycle-Targeting MicroRNAs as Therapeutic Tools against Refractory Cancers. Cancer Cell, 2017, 31, 576-590.e8.	16.8	84
30	The metabolic function of cyclin D3–CDK6 kinase in cancer cell survival. Nature, 2017, 546, 426-430.	27.8	276
31	A Sequentially Priming Phosphorylation Cascade Activates the Gliomagenic Transcription Factor Olig2. Cell Reports, 2017, 18, 3167-3177.	6.4	32
32	Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10660-10665.	7.1	81
33	Small-molecule studies identify CDK8 as a regulator of IL-10 in myeloid cells. Nature Chemical Biology, 2017, 13, 1102-1108.	8.0	46
34	Identification of cell cycle-targeting microRNAs through genome-wide screens. Cell Cycle, 2017, 16, 2241-2248.	2.6	7
35	Proteomic Landscape of Tissue-Specific Cyclin E Functions in Vivo. PLoS Genetics, 2016, 12, e1006429.	3.5	20
36	Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nature Reviews Molecular Cell Biology, 2016, 17, 280-292.	37.0	389

#	Article	IF	Citations
37	Inhibition of Rb Phosphorylation Leads to mTORC2-Mediated Activation of Akt. Molecular Cell, 2016, 62, 929-942.	9.7	87
38	MED12 Regulates HSC-Specific Enhancers Independently of Mediator Kinase Activity to Control Hematopoiesis. Cell Stem Cell, 2016, 19, 784-799.	11.1	88
39	Overcoming Therapeutic Resistance in HER2-Positive Breast Cancers with CDK4/6 Inhibitors. Cancer Cell, 2016, 29, 255-269.	16.8	356
40	E-type cyclins modulate telomere integrity in mammalian male meiosis. Chromosoma, 2016, 125, 253-264.	2.2	16
41	Cyclin A2 promotes DNA repair in the brain during both development and aging. Aging, 2016, 8, 1540-1570.	3.1	12
42	Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. ELife, 2014, 3, .	6.0	332
43	Mammalian E-type Cyclins Control Chromosome Pairing, Telomere Stability and CDK2 Localization in Male Meiosis. PLoS Genetics, 2014, 10, e1004165.	3.5	42
44	Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature, 2014, 508, 541-545.	27.8	285
45	Cyclin D1–Cdk4 controls glucose metabolism independently of cell cycle progression. Nature, 2014, 510, 547-551.	27.8	198
46	Cyclin C is a haploinsufficient tumour suppressor. Nature Cell Biology, 2014, 16, 1080-1091.	10.3	124
47	Cyclin D1 Represses Gluconeogenesis via Inhibition of the Transcriptional Coactivator PGC1α. Diabetes, 2014, 63, 3266-3278.	0.6	51
48	D-Cyclins Repress Apoptosis in Hematopoietic Cells by Controlling Death Receptor Fas and Its Ligand FasL. Developmental Cell, 2014, 30, 255-267.	7.0	27
49	Concurrent deletion of cyclin E1 and cyclin-dependent kinase 2 in hepatocytes inhibits DNA replication and liver regeneration in mice. Hepatology, 2014, 59, 651-660.	7.3	41
50	Cerebellar cortical lamination and foliation require cyclin A2. Developmental Biology, 2014, 385, 328-339.	2.0	19
51	PP2A-Mediated Regulation of Ras Signaling in G2 Is Essential for Stable Quiescence and Normal G1 Length. Molecular Cell, 2014, 54, 932-945.	9.7	52
52	Differences in regulation and function of E-cyclins in human cancer cells. Cell Cycle, 2013, 12, 1165-1165.	2.6	7
53	Unexpected Outcomes of CDK4/6 Inhibition. Oncotarget, 2013, 4, 176-177.	1.8	6
54	The Requirement for Cyclin D Function in Tumor Maintenance. Cancer Cell, 2012, 22, 438-451.	16.8	284

#	Article	IF	Citations
55	Cyclin E1 controls proliferation of hepatic stellate cells and is essential for liver fibrogenesis in mice. Hepatology, 2012, 56, 1140-1149.	7.3	50
56	A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature, 2011, 474, 230-234.	27.8	287
57	Cyclin E Constrains Cdk5 Activity to Regulate Synaptic Plasticity and Memory Formation. Developmental Cell, 2011, 21, 655-668.	7.0	110
58	A Systematic Screen for CDK4/6 Substrates Links FOXM1 Phosphorylation to Senescence Suppression in Cancer Cells. Cancer Cell, 2011, 20, 620-634.	16.8	449
59	Cyclin A2 Plays a Critical Role in Proliferation of Lymphoid Progenitors. Blood, 2011, 118, 914-914.	1.4	0
60	Transcriptional role of cyclin D1 in development revealed by a genetic–proteomic screen. Nature, 2010, 463, 374-378.	27.8	247
61	Cyclin D2–Cyclin-Dependent Kinase 4/6 Is Required for Efficient Proliferation and Tumorigenesis following Apc Loss. Cancer Research, 2010, 70, 8149-8158.	0.9	79
62	Cyclins A and E trigger DNA damage. Cell Cycle, 2010, 9, 1231-1240.	2.6	4
63	Cyclin D1 fine-tunes the neurogenic output of embryonic retinal progenitor cells. Neural Development, 2009, 4, 15.	2.4	60
64	Cyclin A Is Redundant in Fibroblasts but Essential in Hematopoietic and Embryonic Stem Cells. Cell, 2009, 138, 352-365.	28.9	192
65	Aberrant Cell Cycle Progression and Endoreplication in Regenerating Livers of Mice That Lack a Single E-Type Cyclin. Gastroenterology, 2009, 137, 691-703.e6.	1.3	56
66	Cyclin A2 Plays a Critical Role Not Only in Self-Renewal of Hematopoietic Stem Cells, but Also in Non-Self-Renewing Proliferation of Lymphoid Progenitors Blood, 2009, 114, 381-381.	1.4	3
67	Cyclin D3 Is Required for the Germinal Center Reaction. Blood, 2008, 112, 2580-2580.	1.4	0
68	Duality of p27 ^{Kip1} function in tumorigenesis. Genes and Development, 2007, 21, 1703-1706.	5 . 9	46
69	Kinase-Independent Function of Cyclin E. Molecular Cell, 2007, 25, 127-139.	9.7	161
70	A unique function for cyclin D3 in early B cell development. Nature Immunology, 2006, 7, 489-497.	14.5	114
71	Requirement for CDK4 kinase function in breast cancer. Cancer Cell, 2006, 9, 23-32.	16.8	369
72	Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell, 2006, 9, 13-22.	16.8	293

#	Article	IF	CITATIONS
73	Cyclins and cdks in development and cancer: a perspective. Oncogene, 2005, 24, 2909-2915.	5.9	393
74	Genetic Replacement of Cyclin D1 Function in Mouse Development by Cyclin D2. Molecular and Cellular Biology, 2005, 25, 1081-1088.	2.3	57
75	Mouse Development and Cell Proliferation in the Absence of D-Cyclins. Cell, 2004, 118, 477-491.	28.9	590
76	Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell, 2003, 4, 451-461.	16.8	307
77	Cyclin E Ablation in the Mouse. Cell, 2003, 114, 431-443.	28.9	649
78	Development of mice expressing a single D-type cyclin. Genes and Development, 2002, 16, 3277-3289.	5.9	233
79	Specific protection against breast cancers by cyclin D1 ablation. Nature, 2001, 411, 1017-1021.	27.8	878
80	Cyclin D2 is essential for BCR-mediated proliferation and CD5 B cell development. International Immunology, 2000, 12, 631-638.	4.0	124
81	Cyclin D3 Compensates for Loss of Cyclin D2 in Mouse B-lymphocytes Activated via the Antigen Receptor and CD40. Journal of Biological Chemistry, 2000, 275, 3479-3484.	3.4	105
82	Rescue of Cyclin D1 Deficiency by Knockin Cyclin E. Cell, 1999, 97, 767-777.	28.9	331
83	A specific role for cyclin D1 in mammary gland development. Journal of Mammary Gland Biology and Neoplasia, 1997, 2, 335-342.	2.7	55
84	Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature, 1996, 384, 470-474.	27.8	668
85	Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell, 1995, 82, 621-630.	28.9	1,032