Guosong Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6634441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MoS ₂ Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2011, 133, 7296-7299.	6.6	4,572
2	Near-infrared fluorophores for biomedical imaging. Nature Biomedical Engineering, 2017, 1, .	11.6	1,982
3	A small-molecule dye for NIR-II imaging. Nature Materials, 2016, 15, 235-242.	13.3	1,314
4	Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chemical Reviews, 2015, 115, 10816-10906.	23.0	1,151
5	Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nature Communications, 2013, 4, 1805.	5.8	976
6	Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nature Medicine, 2012, 18, 1841-1846.	15.2	836
7	Through-skull fluorescence imaging of the brain in a new near-infrared window. Nature Photonics, 2014, 8, 723-730.	15.6	829
8	Oxygen Reduction Electrocatalyst Based on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes. Journal of the American Chemical Society, 2012, 134, 15849-15857.	6.6	747
9	Ag ₂ S Quantum Dot: A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window. ACS Nano, 2012, 6, 3695-3702.	7.3	669
10	Inâ€Vivo Fluorescence Imaging with Ag ₂ S Quantum Dots in the Second Nearâ€Infrared Region. Angewandte Chemie - International Edition, 2012, 51, 9818-9821.	7.2	645
11	Syringe-injectable electronics. Nature Nanotechnology, 2015, 10, 629-636.	15.6	543
12	Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nature Communications, 2014, 5, 4206.	5.8	470
13	Tumor Metastasis Inhibition by Imagingâ€Guided Photothermal Therapy with Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2014, 26, 5646-5652.	11.1	454
14	Novel electrode technologies for neural recordings. Nature Reviews Neuroscience, 2019, 20, 330-345.	4.9	436
15	Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes. Neuron, 2019, 104, 1039-1055.e12.	3.8	396
16	In Vivo Fluorescence Imaging in the Second Near-Infrared Window with Long Circulating Carbon Nanotubes Capable of Ultrahigh Tumor Uptake. Journal of the American Chemical Society, 2012, 134, 10664-10669.	6.6	373
17	A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nature Communications, 2018, 9, 1171.	5.8	353
18	Traumatic Brain Injury Imaging in the Second Nearâ€Infrared Window with a Molecular Fluorophore. Advanced Materials, 2016, 28, 6872-6879.	11.1	311

GUOSONG HONG

#	Article	IF	CITATIONS
19	Fluorescence Imaging In Vivo at Wavelengths beyond 1500â€nm. Angewandte Chemie - International Edition, 2015, 54, 14758-14762.	7.2	310
20	Diketopyrrolopyrroleâ€Based Semiconducting Polymer Nanoparticles for In Vivo Photoacoustic Imaging. Advanced Materials, 2015, 27, 5184-5190.	11.1	305
21	Ultra-Low Doses of Chirality Sorted (6,5) Carbon Nanotubes for Simultaneous Tumor Imaging and Photothermal Therapy. ACS Nano, 2013, 7, 3644-3652.	7.3	279
22	Atomicâ€Precision Gold Clusters for NIRâ€II Imaging. Advanced Materials, 2019, 31, e1901015.	11.1	279
23	Bioinspired neuron-like electronics. Nature Materials, 2019, 18, 510-517.	13.3	277
24	Biological imaging without autofluorescence in the second near-infrared region. Nano Research, 2015, 8, 3027-3034.	5.8	263
25	LiMn _{1â^'<i>x</i>} Fe _{<i>x</i>} PO ₄ Nanorods Grown on Graphene Sheets for Ultrahighâ€Rateâ€Performance Lithium Ion Batteries. Angewandte Chemie - International Edition, 2011, 50, 7364-7368.	7.2	262
26	Biological Imaging Using Nanoparticles of Small Organic Molecules with Fluorescence Emission at Wavelengths Longer than 1000â€nm. Angewandte Chemie - International Edition, 2013, 52, 13002-13006.	7.2	261
27	Stable long-term chronic brain mapping at the single-neuron level. Nature Methods, 2016, 13, 875-882.	9.0	256
28	Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 962-967.	3.3	230
29	Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials, 2013, 34, 3639-3646.	5.7	228
30	General Strategy for Biodetection in High Ionic Strength Solutions Using Transistor-Based Nanoelectronic Sensors. Nano Letters, 2015, 15, 2143-2148.	4.5	215
31	Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5894-5899.	3.3	181
32	Wet Chemical Approaches to Patterned Arrays of Well-Aligned ZnO Nanopillars Assisted by Monolayer Colloidal Crystals. Chemistry of Materials, 2009, 21, 891-897.	3.2	164
33	Chirality Enriched (12,1) and (11,3) Single-Walled Carbon Nanotubes for Biological Imaging. Journal of the American Chemical Society, 2012, 134, 16971-16974.	6.6	162
34	Light-sheet microscopy in the near-infrared II window. Nature Methods, 2019, 16, 545-552.	9.0	151
35	3D NIRâ€II Molecular Imaging Distinguishes Targeted Organs with Highâ€Performance NIRâ€II Bioconjugates. Advanced Materials, 2018, 30, e1705799.	11.1	150
36	A method for single-neuron chronic recording from the retina in awake mice. Science, 2018, 360, 1447-1451.	6.0	132

Guosong Hong

#	Article	IF	CITATIONS
37	Mesh electronics: a new paradigm for tissue-like brain probes. Current Opinion in Neurobiology, 2018, 50, 33-41.	2.0	131
38	Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10046-E10055.	3.3	120
39	Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26332-26342.	3.3	118
40	Facile Fabrication of Twoâ€Dimensionally Ordered Macroporous Silver Thin Films and Their Application in Molecular Sensing. Advanced Functional Materials, 2010, 20, 3774-3783.	7.8	116
41	Syringe Injectable Electronics: Precise Targeted Delivery with Quantitative Input/Output Connectivity. Nano Letters, 2015, 15, 6979-6984.	4.5	109
42	Metal-Enhanced Fluorescence of Carbon Nanotubes. Journal of the American Chemical Society, 2010, 132, 15920-15923.	6.6	105
43	Live imaging of follicle stimulating hormone receptors in gonads and bones using near infrared II fluorophore. Chemical Science, 2017, 8, 3703-3711.	3.7	96
44	Near-Infrared II Fluorescence for Imaging Hindlimb Vessel Regeneration With Dynamic Tissue Perfusion Measurement. Circulation: Cardiovascular Imaging, 2014, 7, 517-525.	1.3	88
45	Nanosphere Lithography at the Gas/Liquid Interface: A General Approach toward Free-Standing High-Quality Nanonets. Chemistry of Materials, 2010, 22, 476-481.	3.2	84
46	Nearâ€Infraredâ€Fluorescenceâ€Enhanced Molecular Imaging of Live Cells on Gold Substrates. Angewandte Chemie - International Edition, 2011, 50, 4644-4648.	7.2	78
47	In Vivo Contactless Brain Nanothermometry. Advanced Functional Materials, 2018, 28, 1806088.	7.8	78
48	Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window. Nature Biomedical Engineering, 2022, 6, 754-770.	11.6	78
49	Three-dimensional imaging of single nanotube molecule endocytosis on plasmonic substrates. Nature Communications, 2012, 3, 700.	5.8	76
50	Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues. Accounts of Chemical Research, 2018, 51, 309-318.	7.6	68
51	Targeting Hypoxic Tumors with Hybrid Nanobullets for Oxygen-Independent Synergistic Photothermal andÂThermodynamic Therapy. Nano-Micro Letters, 2021, 13, 99.	14.4	64
52	Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes. Nature Electronics, 2021, 4, 653-663.	13.1	61
53	Syringe-Injectable Electronics with a Plug-and-Play Input/Output Interface. Nano Letters, 2017, 17, 5836-5842.	4.5	59
54	Aligned-Braided Nanofibrillar Scaffold with Endothelial Cells Enhances Arteriogenesis. ACS Nano, 2015, 9, 6900-6908.	7.3	58

GUOSONG HONG

#	Article	IF	CITATIONS
55	Graphite-Coated Magnetic Nanoparticle Microarray for Few-Cells Enrichment and Detection. ACS Nano, 2012, 6, 1094-1101.	7.3	57
56	Facile Fabrication of Honeycomb-Patterned Thin Films of Amorphous Calcium Carbonate and Mosaic Calcite. Chemistry of Materials, 2010, 22, 3206-3211.	3.2	50
57	Optical Properties of Single-Walled Carbon Nanotubes Separated in a Density Gradient: Length, Bundling, and Aromatic Stacking Effects. Journal of Physical Chemistry C, 2010, 114, 19569-19575.	1.5	49
58	Diketopyrrolopyrrole (DPP)â€Based Donor–Acceptor Polymers for Selective Dispersion of Largeâ€Diameter Semiconducting Carbon Nanotubes. Small, 2015, 11, 2946-2954.	5.2	47
59	Bioinspired Materials for InÂVivo Bioelectronic Neural Interfaces. Matter, 2020, 3, 1087-1113.	5.0	43
60	Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence. Nano Research, 2013, 6, 113-120.	5.8	42
61	Nanoenabled Direct Contact Interfacing of Syringe-Injectable Mesh Electronics. Nano Letters, 2019, 19, 5818-5826.	4.5	41
62	Short channel field-effect transistors from highly enriched semiconducting carbon nanotubes. Nano Research, 2012, 5, 388-394.	5.8	40
63	Plasmonic micro-beads for fluorescence enhanced, multiplexed protein detection with flow cytometry. Chemical Science, 2014, 5, 4070-4075.	3.7	38
64	Seeding-Growth of Helical Mesoporous Silica Nanofibers Templated by Achiral Cationic Surfactant. Langmuir, 2009, 25, 6040-6044.	1.6	37
65	Graphene Nanoribbons Under Mechanical Strain. Advanced Materials, 2015, 27, 303-309.	11.1	36
66	Dispersion of Highâ€Purity Semiconducting Arcâ€Discharged Carbon Nanotubes Using Backbone Engineered Diketopyrrolopyrrole (DPP)â€Based Polymers. Advanced Electronic Materials, 2016, 2, 1500299.	2.6	35
67	Seeing the sound. Science, 2020, 369, 638-638.	6.0	34
68	Tissue-like Neural Probes for Understanding and Modulating the Brain. Biochemistry, 2018, 57, 3995-4004.	1.2	33
69	How is flexible electronics advancing neuroscience research?. Biomaterials, 2021, 268, 120559.	5.7	32
70	An Integrated Peptide-Antigen Microarray on Plasmonic Gold Films for Sensitive Human Antibody Profiling. PLoS ONE, 2013, 8, e71043.	1.1	27
71	Single Chirality (6,4) Singleâ€Walled Carbon Nanotubes for Fluorescence Imaging with Silicon Detectors. Small, 2015, 11, 6325-6330.	5.2	26
72	Shedding light on neurons: optical approaches for neuromodulation. National Science Review, 2022, 9, .	4.6	26

GUOSONG HONG

#	Article	IF	CITATIONS
73	Advanced One- and Two-Dimensional Mesh Designs for Injectable Electronics. Nano Letters, 2019, 19, 4180-4187.	4.5	23
74	Syringe-injectable Mesh Electronics for Stable Chronic Rodent Electrophysiology. Journal of Visualized Experiments, 2018, , .	0.2	22
75	In Vivo Fluorescence Imaging in the Second Near-Infrared Window Using Carbon Nanotubes. Methods in Molecular Biology, 2016, 1444, 167-181.	0.4	20
76	Nanotransducers for wireless neuromodulation. Matter, 2021, 4, 1484-1510.	5.0	20
77	Graphite Oxide Nanoparticles with Diameter Greater than 20 nm Are Biocompatible with Mouse Embryonic Stem Cells and Can Be Used in a Tissue Engineering System. Small, 2014, 10, 1479-1484.	5.2	13
78	Differential Heating of Metal Nanostructures at Radio Frequencies. Physical Review Applied, 2021, 15, .	1.5	13
79	All-Tissue-like Multifunctional Optoelectronic Mesh for Deep-Brain Modulation and Mapping. Nano Letters, 2021, 21, 3184-3190.	4.5	9
80	Scalable Three-Dimensional Recording Electrodes for Probing Biological Tissues. Nano Letters, 2022, 22, 4552-4559.	4.5	9
81	Biomimetic morphogenesis of micropottery: helical coiling of mesostructured silica nanofibers. Soft Matter, 2011, 7, 9624.	1.2	5
82	On the feasibility of wireless radio frequency ablation using nanowire antennas. APL Materials, 2021, 9, 071103.	2.2	5
83	Graphene: Graphene Nanoribbons Under Mechanical Strain (Adv. Mater. 2/2015). Advanced Materials, 2015, 27, 392-392.	11.1	3
84	Conjugated Polymers Enable a Liquid Retinal Prosthesis. Trends in Chemistry, 2020, 2, 961-964.	4.4	2
85	Learning from the brain's architecture: bioinspired strategies towards implantable neural interfaces. Current Opinion in Biotechnology, 2021, 72, 8-12.	3.3	2
86	Pristine carbon nanotubes are efficient absorbers at radio frequencies. Nanotechnology, 2022, , .	1.3	2
87	An "All-in-One―Catheter: Surgery of the Future. Matter, 2020, 3, 1829-1831.	5.0	1
88	Bioinspired nanoantennas for opsin sensitization in optogenetic applications: a theoretical investigation. Multifunctional Materials, 0, , .	2.4	1
89	Cooling the pain. Science, 2022, 377, 28-29.	6.0	1
90	Noninvasive fluorescence-based brain imaging. SPIE Newsroom, 0, , .	0.1	0