
John Mitrofanis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6634221/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Perspective on the Potential of Opsins as an Integral Mechanism of Photobiomodulation: It's Not Just the Eyes. Photobiomodulation, Photomedicine, and Laser Surgery, 2022, 40, 123-135.	1.4	5
2	Does photobiomodulation influence the resting-state brain networks in young human subjects?. Experimental Brain Research, 2021, 239, 435-449.	1.5	7
3	Exploring the Use of Intracranial and Extracranial (Remote) Photobiomodulation Devices in Parkinson's Disease: A Comparison of Direct and Indirect Systemic Stimulations. Journal of Alzheimer's Disease, 2021, 83, 1399-1413.	2.6	18
4	Improvements in clinical signs of Parkinson's disease using photobiomodulation: a prospective proof-of-concept study. BMC Neurology, 2021, 21, 256.	1.8	50
5	How and why does photobiomodulation change brain activity?. Neural Regeneration Research, 2020, 15, 2243.	3.0	19
6	Neuroprotection in animal models of Parkinson's disease: exploring exercise, sound, and light. , 2020, , 663-676.		1
7	The experimental evidence for photobiomodulation-induced cellular and behavioral changes in animal models of Parkinson's disease: a template for translation to patients. , 2019, , 219-231.		0
8	Transcranial photobiomodulation therapy: observations from four movement disorder patients. , 2019, , 463-472.		8
9	A day in the life of mitochondria reveals shifting workloads. Scientific Reports, 2019, 9, 13898.	3.3	21
10	Exploring the Effects of Near Infrared Light on Resting and Evoked Brain Activity in Humans Using Magnetic Resonance Imaging. Neuroscience, 2019, 422, 161-171.	2.3	29
11	"Bucketsâ€ı Early Observations on the Use of Red and Infrared Light Helmets in Parkinson's Disease Patients. Photobiomodulation, Photomedicine, and Laser Surgery, 2019, 37, 615-622.	1.4	30
12	Pre-conditioning with Remote Photobiomodulation Modulates the Brain Transcriptome and Protects Against MPTP Insult in Mice. Neuroscience, 2019, 400, 85-97.	2.3	45
13	Remote tissue conditioning is neuroprotective against MPTP insult in mice. IBRO Reports, 2018, 4, 14-17.	0.3	29
14	Evidence for encephalopsin immunoreactivity in interneurones and striosomes of the monkey striatum. Experimental Brain Research, 2018, 236, 955-961.	1.5	15
15	Photobiomodulation reduces gliosis in the basal ganglia of aged mice. Neurobiology of Aging, 2018, 66, 131-137.	3.1	23
16	Acquired Resilience: An Evolved System of Tissue Protection in Mammals. Dose-Response, 2018, 16, 155932581880342.	1.6	29
17	Does photobiomodulation influence ageing?. Aging, 2018, 10, 2224-2225.	3.1	13
18	Exploring the use of transcranial photobiomodulation in Parkinson's disease patients. Neural Regeneration Research, 2018, 13, 1738.	3.0	21

#	Article	IF	CITATIONS
19	Remote tissue conditioning — An emerging approach for inducing body-wide protection against diseases of ageing. Ageing Research Reviews, 2017, 37, 69-78.	10.9	28
20	Photobiomodulation-induced changes in a monkey model of Parkinson's disease: changes in tyrosine hydroxylase cells and GDNF expression in the striatum. Experimental Brain Research, 2017, 235, 1861-1874.	1.5	41
21	The behavioural and neuroprotective outcomes when 670 nm and 810 nm near infrared light are applied together in MPTP-treated mice. Neuroscience Research, 2017, 117, 42-47.	1.9	36
22	No evidence for toxicity after long-term photobiomodulation in normal non-human primates. Experimental Brain Research, 2017, 235, 3081-3092.	1.5	29
23	Neuroprotective Surgical Strategies in Parkinson's Disease: Role of Preclinical Data. International Journal of Molecular Sciences, 2017, 18, 2190.	4.1	17
24	Why and how does light therapy offer neuroprotection in Parkinson's disease?. Neural Regeneration Research, 2017, 12, 574.	3.0	25
25	Reply. Annals of Neurology, 2016, 80, 310-311.	5.3	1
26	Near-infrared light treatment reduces astrogliosis in MPTP-treated monkeys. Experimental Brain Research, 2016, 234, 3225-3232.	1.5	36
27	Effects of a higher dose of near-infrared light on clinical signs and neuroprotection in a monkey model of Parkinson's disease. Brain Research, 2016, 1648, 19-26.	2.2	31
28	Nearâ€infrared light is neuroprotective in a monkey model of <scp>P</scp> arkinson disease. Annals of Neurology, 2016, 79, 59-75.	5.3	83
29	Widespread brain transcriptome alterations underlie the neuroprotective actions of dietary saffron. Journal of Neurochemistry, 2016, 139, 858-871.	3.9	14
30	The effect of different doses of near infrared light on dopaminergic cell survival and gliosis in MPTP-treated mice. International Journal of Neuroscience, 2016, 126, 76-87.	1.6	34
31	Near-infrared light (670Ânm) reduces MPTP-induced parkinsonism within a broad therapeutic time window. Experimental Brain Research, 2016, 234, 1787-1794.	1.5	31
32	Intracranial application of near-infrared light in a hemi-parkinsonian rat model: the impact on behavior and cell survival. Journal of Neurosurgery, 2016, 124, 1829-1841.	1.6	38
33	Near infrared light mitigates cerebellar pathology in transgenic mouse models of dementia. Neuroscience Letters, 2015, 591, 155-159.	2.1	55
34	810nm near-infrared light offers neuroprotection and improves locomotor activity in MPTP-treated mice. Neuroscience Research, 2015, 92, 86-90.	1.9	51
35	The Mechanical Cause of Age-Related Dementia (Alzheimer's Disease): The Brain is Destroyed by the Pulse. Journal of Alzheimer's Disease, 2015, 44, 355-373.	2.6	79
36	Turning On Lights to Stop Neurodegeneration: The Potential of Near Infrared Light Therapy in Alzheimer's and Parkinson's Disease. Frontiers in Neuroscience, 2015, 9, 500.	2.8	122

#	Article	IF	CITATIONS
37	Targeting the body to protect the brain: inducing neuroprotection with remotely-applied near infrared light. Neural Regeneration Research, 2015, 10, 349.	3.0	35
38	Photobiomodulation inside the brain: a novel method of applying near-infrared light intracranially and its impact on dopaminergic cell survival in MPTP-treated mice. Journal of Neurosurgery, 2014, 120, 670-683.	1.6	81
39	Photobiomodulation with near infrared light mitigates Alzheimer's disease-related pathology in cerebral cortex – evidence from two transgenic mouse models. Alzheimer's Research and Therapy, 2014, 6, 2.	6.2	118
40	The impact of near-infrared light on dopaminergic cell survival in a transgenic mouse model of parkinsonism. Brain Research, 2013, 1535, 61-70.	2.2	64
41	Saffron Pre-Treatment Offers Neuroprotection to Nigral and Retinal Dopaminergic Cells of MPTP-Treated mice. Journal of Parkinson's Disease, 2013, 3, 77-83.	2.8	56
42	Photobiomodulation enhances nigral dopaminergic cell survival in a chronic MPTP mouse model of Parkinson's disease. Parkinsonism and Related Disorders, 2012, 18, 469-476.	2.2	75
43	Neuroprotection of midbrain dopaminergic cells in MPTPâ€treated mice after nearâ€infrared light treatment. Journal of Comparative Neurology, 2010, 518, 25-40.	1.6	123
44	Dopaminergic cells in the periaqueductal grey matter of MPTP-treated monkeys and mice; patterns of survival and effect of deep brain stimulation and lesion of the subthalamic nucleus. Parkinsonism and Related Disorders, 2010, 16, 338-344.	2.2	27
45	Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease. Lancet Neurology, The, 2009, 8, 67-81.	10.2	1,105
46	Does melatonin help save dopaminergic cells in MPTP-treated mice?. Parkinsonism and Related Disorders, 2009, 15, 307-314.	2.2	49
47	Does the cerebral cortex exacerbate dopaminergic cell death in the substantia nigra of 6OHDA-lesioned rats?. Parkinsonism and Related Disorders, 2008, 14, 213-223.	2.2	4
48	SPECT imaging, immunohistochemical and behavioural correlations in the primate models of Parkinson's disease. Parkinsonism and Related Disorders, 2007, 13, 266-275.	2.2	31
49	Survival of midbrain dopaminergic cells after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys. Brain, 2007, 130, 2129-2145.	7.6	215
50	Fos immunoreactivity in some locomotor neural centres of 6OHDA-lesioned rats. Anatomy and Embryology, 2006, 211, 659-671.	1.5	14
51	Differential survival patterns among midbrain dopaminergic cells of MPTP-treated monkeys and 6OHDA-lesioned rats. Anatomy and Embryology, 2005, 210, 101-123.	1.5	16
52	Cell survival patterns in the pedunculopontine tegmental nucleus of methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys and 6OHDA-lesioned rats: evidence for differences to idiopathic Parkinson disease patients?. Anatomy and Embryology, 2005, 210, 287-302.	1.5	16
53	Therapeutic electrical stimulation of the central nervous system. Comptes Rendus - Biologies, 2005, 328, 177-186.	0.2	80
54	A putative generalized model of the effects and mechanism of action of high frequency electrical stimulation of the central nervous system. Acta Neurologica Belgica, 2005, 105, 149-57.	1.1	70

#	Article	IF	CITATIONS
55	Chemoarchitectonic heterogeneities in the primate zona incerta: Clinical and functional implications. Journal of Neurocytology, 2004, 33, 429-440.	1.5	27
56	Evidence for a glutamatergic projection from the zona incerta to the basal ganglia of rats. Journal of Comparative Neurology, 2004, 468, 482-495.	1.6	61
57	Ultrastructure of afferents from the zona incerta to the posterior and parafascicular thalamic nuclei of rats. Journal of Comparative Neurology, 2002, 451, 33-44.	1.6	19
58	Distinctive patterns of connectivity between the zona incerta and the red nucleus of rats. Anatomy and Embryology, 2002, 205, 283-289.	1.5	14
59	Evidence for an auditory subsector within the zona incerta of rats. Anatomy and Embryology, 2002, 205, 453-462.	1.5	17
60	Anatomical evidence for somatotopic maps in the zona incerta of rats. Anatomy and Embryology, 2002, 206, 119-130.	1.5	28
61	Evidence for a visual subsector within the zona incerta. Visual Neuroscience, 2001, 18, 179-186.	1.0	28
62	Zona incerta: Substrate for contralateral interconnectivity in the thalamus of rats. Journal of Comparative Neurology, 2001, 436, 52-63.	1.6	37
63	Lamination of spinal cells projecting to the zona incerta of rats. Journal of Neurocytology, 2001, 30, 695-704.	1.5	12
64	Organization of brain stem afferents to the ventral lateral geniculate nucleus of rats. Visual Neuroscience, 2000, 17, 313-318.	1.0	26
65	Dorsal thalamic connections of the ventral lateral geniculate nucleus of rats. Journal of Neurocytology, 2000, 29, 31-41.	1.5	11
66	Specificity of projection among cells of the zona incerta. , 1999, 28, 481-493.		19
67	Evidence for a large projection from the zona incerta to the dorsal thalamus. Journal of Comparative Neurology, 1999, 404, 554-565.	1.6	122
68	Organisation of the cortical projection to the zona incerta of the thalamus. Journal of Comparative Neurology, 1999, 412, 173-185.	1.6	113
69	Evidence for extensive inter-connections within the zona incerta in rats. Neuroscience Letters, 1999, 267, 9-12.	2.1	31
70	Organization of the basal forebrain projection to the thalamus in rats. Neuroscience Letters, 1999, 272, 151-154.	2.1	37
71	Development of glia and blood vessels in the internal capsule of rats. , 1998, 27, 127-139.		19
72	Patterns of brainstem projection to the thalamic reticular nucleus. Journal of Comparative Neurology, 1998, 396, 531-543.	1.6	62

#	Article	IF	CITATIONS
73	Patterns of connections between zona incerta and brainstem in rats. Journal of Comparative Neurology, 1998, 396, 544-555.	1.6	109
74	Glial organization and chondroitin sulfate proteoglycan expression in the developing thalamus. Journal of Neurocytology, 1997, 26, 83-100.	1.5	12
75	Organisation of the reticular thalamic projection to the intralaminar and midline nuclei in rats. , 1997, 377, 165-178.		77
76	Topography of fibre organisation in the corticofugal pathways of rats. , 1997, 381, 143-157.		23
77	Identification of transient microglial cell colonies in the forebrain white matter of developing rats. , 1997, 387, 371-384.		15
78	Genesis and fate of the perireticular thalamic nucleus during early development. Journal of Comparative Neurology, 1996, 367, 246-263.	1.6	22
79	Reticular thalamic region in the rabbit: Organisation of efferents to the superior colliculus. , 1996, 369, 209-219.		10
80	Organization of the Visual Reticular Thalamic Nucleus of the Rat. European Journal of Neuroscience, 1996, 8, 388-404.	2.6	80
81	Development of the Thalamic Reticular Nucleus in Ferrets with Special Reference to the Perigeniculate and Perireticular Cell Groups. European Journal of Neuroscience, 1994, 6, 253-263.	2.6	41
82	Development of the Pathway From the Reticular and Perireticular Nuclei to the Thalamus in Ferrets: A Dil Study. European Journal of Neuroscience, 1994, 6, 1864-1882.	2.6	20
83	Development of the thalamic reticular and perireticular nuclei in rats and their relationship to the course of growing corticofugal and corticopetal axons. Journal of Comparative Neurology, 1993, 338, 575-587.	1.6	82
84	NADPH-diaphorase reactivity in the ventral and dorsal lateral geniculate nuclei of rats. Visual Neuroscience, 1992, 9, 211-216.	1.0	27
85	Development of catecholaminergic, Indoleamine-accumulating and NADPH-diaphorase amacrine cells in rabbit retinae. Journal of Comparative Neurology, 1992, 319, 560-585.	1.6	33
86	Patterns of antigenic expression in the thalamic reticular nucleus of developing rats. Journal of Comparative Neurology, 1992, 320, 161-181.	1.6	66
87	Cytoarchitectonic heterogeneities in the thalamic reticular nucleus of cats and ferrets. Journal of Comparative Neurology, 1992, 322, 167-180.	1.6	81
88	NADPH-diaphorase reactivity in adult and developing cat retinae. Cell and Tissue Research, 1991, 265, 371-379.	2.9	33
89	Developmental changes in the distribution of retinal catecholaminergic neurones in hamsters and gerbils. Journal of Comparative Neurology, 1990, 292, 480-494.	1.6	23
90	NADPH-diaphorase neurones of human retinae have a uniform topographical distribution. Visual Neuroscience, 1990, 4, 619-623.	1.0	40

#	Article	IF	CITATIONS
91	A distinctive soma size gradient among catecholaminergic neurones of human retinae. Brain Research, 1990, 527, 69-75.	2.2	23
92	Origin of retinal astrocytes in the rat: Evidence of migration from the optic nerve. Journal of Comparative Neurology, 1989, 286, 345-352.	1.6	119
93	Ontogeny of catecholaminergic and cholinergic cell distributions in the cat's retina. Journal of Comparative Neurology, 1989, 289, 228-246.	1.6	29
94	Distinct patterns of distribution among NADPH-diaphorase neurones of the guinea pig retina. Neuroscience Letters, 1989, 103, 1-7.	2.1	34
95	Somatostatinergic neurones of the developing human and cat retinae. Neuroscience Letters, 1989, 104, 209-216.	2.1	39
96	Development of NADPH-diaphorase cells in the rat's retina. Neuroscience Letters, 1989, 102, 165-172.	2.1	69
97	Distribution of catecholaminergic cells in the retina of the rat, guinea pig, cat, and rabbit: Independence from ganglion cell distribution. Journal of Comparative Neurology, 1988, 267, 1-14.	1.6	67
98	Catecholaminergic and cholinergic neurons in the developing retina of the rat. Journal of Comparative Neurology, 1988, 276, 343-359.	1.6	56
99	Distribution of cholinergic amacrine cells in the retinas of normally pigmented and hypopigmented strains of rat and cat. Visual Neuroscience, 1988, 1, 367-376,	1.0	26