List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6633537/publications.pdf Version: 2024-02-01

		22153	25787
197	13,854	59	108
papers	citations	h-index	g-index
211	211	211	10338
all docs	docs citations	times ranked	citing authors

LOPENZO & PINNA

#	Article	IF	CITATIONS
1	Oneâ€thousandâ€andâ€one substrates of protein kinase CK2?. FASEB Journal, 2003, 17, 349-368.	O.5	1,214
2	Casein kinase 2: An â€~eminence grise' in cellular regulation?. Biochimica Et Biophysica Acta - Molecular Cell Research, 1990, 1054, 267-284.	4.1	897
3	How do protein kinases recognize their substrates?. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1314, 191-225.	4.1	444
4	Protein kinase CK2: a challenge to canons. Journal of Cell Science, 2002, 115, 3873-3878.	2.0	430
5	Selectivity of 4,5,6,7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 (â€ ⁻ casein kinase-2'). FEBS Letters, 2001, 496, 44-48.	2.8	316
6	Protein kinase CK2 ("casein kinase-2â€) and its implication in cell division and proliferation. , 1997, 3, 77-97.		308
7	The Protein Kinase CK2 Facilitates Repair of Chromosomal DNA Single-Strand Breaks. Cell, 2004, 117, 17-28.	28.9	302
8	Addiction to protein kinase CK2: A common denominator of diverse cancer cells?. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 499-504.	2.3	292
9	A Single Kinase Generates the Majority of the Secreted Phosphoproteome. Cell, 2015, 161, 1619-1632.	28.9	264
10	Different Susceptibility of Protein Kinases to Staurosporine Inhibition. Kinetic Studies and Molecular Bases for the Resistance of Protein Kinase CK2. FEBS Journal, 1995, 234, 317-322.	0.2	257
11	The selectivity of inhibitors of protein kinase CK2: an update. Biochemical Journal, 2008, 415, 353-365.	3.7	214
12	Protein kinase CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent degradation of haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat cells. Biochemical Journal, 2002, 364, 41-47.	3.7	212
13	Site specificity of casein kinase-2 (TS) from rat liver cytosol. A study with model peptide substrates. FEBS Journal, 1986, 160, 239-244.	0.2	195
14	2-Dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole: a novel powerful and selective inhibitor of protein kinase CK2. Biochemical and Biophysical Research Communications, 2004, 321, 1040-1044.	2.1	172
15	Optimization of Protein Kinase CK2 Inhibitors Derived from 4,5,6,7-Tetrabromobenzimidazole. Journal of Medicinal Chemistry, 2004, 47, 6239-6247.	6.4	168
16	Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 847-859.	4.1	160
17	Casein Kinase 2 Down-Regulation and Activation by Polybasic Peptides Are Mediated by Acidic Residues in the 55-64 Region of the .betaSubunit. A Study with Calmodulin As Phosphorylatable Substrate. Biochemistry, 1994, 33, 4336-4342.	2.5	157
18	Unprecedented Selectivity and Structural Determinants of a New Class of Protein Kinase CK2 Inhibitors in Clinical Trials for the Treatment of Cancer. Biochemistry, 2011, 50, 8478-8488.	2.5	154

#	Article	IF	CITATIONS
19	Biochemical and three-dimensional-structural study of the specific inhibition of protein kinase CK2 by [5-oxo-5,6-dihydroindolo-(1,2-a)quinazolin-7-yl]acetic acid (IQA). Biochemical Journal, 2003, 374, 639-646.	3.7	145
20	Quinalizarin as a potent, selective and cell-permeable inhibitor of protein kinase CK2. Biochemical Journal, 2009, 421, 387-395.	3.7	140
21	The Replacement of ATP by the Competitive Inhibitor Emodin Induces Conformational Modifications in the Catalytic Site of Protein Kinase CK2. Journal of Biological Chemistry, 2000, 275, 29618-29622.	3.4	136
22	Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation. Autophagy, 2014, 10, 2053-2074.	9.1	135
23	Identification of Ellagic Acid as Potent Inhibitor of Protein Kinase CK2:Â A Successful Example of a Virtual Screening Application. Journal of Medicinal Chemistry, 2006, 49, 2363-2366.	6.4	134
24	Structural features underlying selective inhibition of protein kinase CK2 by ATP site-directed tetrabromo-2-benzotriazole. Protein Science, 2008, 10, 2200-2206.	7.6	130
25	A noncanonical sequence phosphorylated by casein kinase 1 in Â-catenin may play a role in casein kinase 1 targeting of important signaling proteins. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10193-10200.	7.1	127
26	Inhibition of Protein Kinase CK2 by Flavonoids and Tyrphostins. A Structural Insight. Biochemistry, 2012, 51, 6097-6107.	2.5	127
27	Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood, 2006, 108, 1698-1707.	1.4	123
28	Coumarin as Attractive Casein Kinase 2 (CK2) Inhibitor Scaffold: An Integrate Approach To Elucidate the Putative Binding Motif and Explain Structure–Activity Relationships. Journal of Medicinal Chemistry, 2008, 51, 752-759.	6.4	123
29	Protein Kinase CK2α′ Is Induced by Serum as a Delayed Early Gene and Cooperates with Ha-ras in Fibroblast Transformation. Journal of Biological Chemistry, 1998, 273, 21291-21297.	3.4	115
30	Secreted protein kinases. Trends in Biochemical Sciences, 2013, 38, 121-130.	7.5	114
31	Tetrabromocinnamic Acid (TBCA) and Related Compounds Represent a New Class of Specific Protein Kinase CK2 Inhibitors. ChemBioChem, 2007, 8, 129-139.	2.6	109
32	Inspecting the Structure-Activity Relationship of Protein Kinase CK2 Inhibitors Derived from Tetrabromo-Benzimidazole. Chemistry and Biology, 2005, 12, 1211-1219.	6.0	108
33	Ribofuranosyl-benzimidazole derivatives as inhibitors of casein kinase-2 and casein kinase-1. FEBS Journal, 1990, 187, 89-94.	0.2	106
34	Aurora-A site specificity: a study with synthetic peptide substrates. Biochemical Journal, 2005, 390, 293-302.	3.7	106
35	Protein kinase CK2 as a druggable target. Molecular BioSystems, 2008, 4, 889.	2.9	106
36	Casein kinase: the triple meaning of a misnomer. Biochemical Journal, 2014, 460, 141-156.	3.7	102

#	Article	IF	CITATIONS
37	The Raison D'Être of Constitutively Active Protein Kinases:  The Lesson of CK2. Accounts of Chemical Research, 2003, 36, 378-384.	15.6	100
38	Multiple phosphorylation of αâ€synuclein by protein tyrosine kinase Syk prevents eosinâ€induced aggregation. FASEB Journal, 2002, 16, 1-22.	0.5	99
39	The ATPâ€Binding Site of Protein Kinase CK2 Holds a Positive Electrostatic Area and Conserved Water Molecules. ChemBioChem, 2007, 8, 1804-1809.	2.6	98
40	Subunit structure and autophosphorylation mechanism of casein kinase-TS (type-2) from rat liver cytosol. FEBS Journal, 1984, 145, 593-599.	0.2	92
41	Phosphorylation by Protein Kinase CK2 Changes the DNA Binding Properties of the Human Chromatin Protein DEK. Molecular and Cellular Biology, 2004, 24, 6011-6020.	2.3	92
42	Inhibition of Protein Kinase CK2 by Condensed Polyphenolic Derivatives. An in Vitro and in Vivo Study. Biochemistry, 2004, 43, 12931-12936.	2.5	87
43	Development and exploitation of CK2 inhibitors. Molecular and Cellular Biochemistry, 2005, 274, 69-76.	3.1	87
44	The consensus sequences for cdc2 kinase and for casein kinase-2 are mutually incompatible A study with peptides derived from the β-subunit of casein kinase-2. FEBS Letters, 1992, 301, 111-114.	2.8	81
45	Golgi apparatus mammary gland casein kinase: monitoring by a specific peptide substrate and definition of specificity determinants. FEBS Letters, 1996, 382, 149-152.	2.8	81
46	Phosphorylated synthetic peptides as tools for studying protein phosphatases. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1222, 415-431.	4.1	78
47	Rat Liver Golgi Apparatus Contains a Protein Kinase Similar to the Casein Kinase of Lactating Mammary Gland. FEBS Journal, 1997, 243, 719-725.	0.2	75
48	Inhibition of Protein Kinase CK2 by Anthraquinone-related Compounds. Journal of Biological Chemistry, 2003, 278, 1831-1836.	3.4	75
49	Involvement of Protein Kinase CK2 in Angiogenesis and Retinal Neovascularization. , 2004, 45, 4583.		73
50	Unique Activation Mechanism of Protein Kinase CK2. Journal of Biological Chemistry, 2002, 277, 22509-22514.	3.4	72
51	Casein kinases as potential therapeutic targets. Expert Opinion on Therapeutic Targets, 2016, 20, 319-340.	3.4	72
52	Site specificity of p72sykprotein tyrosine kinase: efficient phosphorylation of motifs recognized by Src homology 2 domains of the Src family. FEBS Letters, 1995, 367, 149-152.	2.8	71
53	Phosphorylation of Osteopontin by Golgi Apparatus Casein Kinase. Biochemical and Biophysical Research Communications, 1997, 240, 602-605.	2.1	70
54	Features and potentials of ATP-site directed CK2 inhibitors. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1754, 263-270.	2.3	69

#	Article	IF	CITATIONS
55	Protein kinase CK2 inhibitors: a patent review. Expert Opinion on Therapeutic Patents, 2012, 22, 1081-1097.	5.0	67
56	Autophosphorylation of type 2 casein kinase TS at both its α- and β-subunits. FEBS Letters, 1983, 160, 203-208.	2.8	66
57	Casein kinase-2 structure-function relationship: Creation of a set of mutants of the β subunit that variably surrogate the wildtype β subunit function. Biochemical and Biophysical Research Communications, 1992, 188, 228-234.	2.1	65
58	Protein Kinase CK2 in Health and Disease. Cellular and Molecular Life Sciences, 2009, 66, 1795-1799.	5.4	63
59	Substrate-specificity determinants for a membrane-bound casein kinase of lactating mammary gland A study with synthetic peptides. FEBS Journal, 1988, 177, 281-284.	0.2	62
60	Chemical derivatization of phosphoserine and phosphothreonine containing peptides to increase sensitivity for MALDI-based analysis and for selectivity of MS/MS analysis. Proteomics, 2006, 6, 757-766.	2.2	61
61	Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin. Biochemical Journal, 2004, 377, 395-405.	3.7	60
62	Dephosphorylation and inactivation of Akt/PKB is counteracted by protein kinase CK2 in HEK 293T cells. Cellular and Molecular Life Sciences, 2009, 66, 3363-3373.	5.4	59
63	Tetraiodobenzimidazoles are potent inhibitors of protein kinase CK2. Bioorganic and Medicinal Chemistry, 2009, 17, 7281-7289.	3.0	59
64	Developmental phosphoproteomics identifies the kinase CK2 as a driver of Hedgehog signaling and a therapeutic target in medulloblastoma. Science Signaling, 2018, 11, .	3.6	59
65	Structural Determinants of Protein Kinase CK2 Regulation by Autoinhibitory Polymerization. ACS Chemical Biology, 2012, 7, 1158-1163.	3.4	58
66	Tyrosine phosphorylation of protein kinase CK2 by Src-related tyrosine kinases correlates with increased catalytic activity. Biochemical Journal, 2003, 372, 841-849.	3.7	56
67	SH2 Domains Mediate the Sequential Phosphorylation of HS1 Protein by p72syk and Src-Related Protein Tyrosine Kinases. Biochemistry, 1996, 35, 5327-5332.	2.5	54
68	Mutational Analysis of Residues Implicated in the Interaction between Protein Kinase CK2 and Peptide Substratesâ€. Biochemistry, 1997, 36, 11717-11724.	2.5	54
69	Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at Ser ¹⁶ to trigger its nuclear localization. Science Signaling, 2015, 8, ra35.	3.6	54
70	Role of phosphorylated aminoacyl residues in generating atypical consensus sequences which are recognized by casein kinase-2 but not by casein kinase-1. Biochemistry, 1992, 31, 5893-5897.	2.5	52
71	Effects of the CK2 Inhibitors CX-4945 and CX-5011 on Drug-Resistant Cells. PLoS ONE, 2012, 7, e49193.	2.5	51
72	CK2-dependent phosphorylation of the E2 ubiquitin conjugating enzyme UBC3B induces its interaction with β-TrCP and enhances β-catenin degradation. Oncogene, 2002, 21, 3978-3987.	5.9	50

#	Article	IF	CITATIONS
73	Re-evaluation of protein kinase CK2 pleiotropy: new insights provided by a phosphoproteomics analysis of CK2 knockout cells. Cellular and Molecular Life Sciences, 2018, 75, 2011-2026.	5.4	49
74	Phosphorylation of HIV-1 Rev Protein: Implication of Protein Kinase CK2 and Pro-Directed Kinases. Biochemical and Biophysical Research Communications, 1996, 226, 547-554.	2.1	48
75	Unique features of HIV-1 Rev protein phosphorylation by protein kinase CK2 (â€~casein kinase-2'). FEBS Letters, 2000, 481, 63-67.	2.8	47
76	Urolithin as a Converging Scaffold Linking Ellagic acid and Coumarin Analogues: Design of Potent Protein Kinase CK2 Inhibitors. ChemMedChem, 2011, 6, 2273-2286.	3.2	47
77	Phosphorylation of rat heart ornithine decarâ [°] ylase by type-2 casein kinase. Biochemical and Biophysical Research Communications, 1984, 122, 997-1004.	2.1	46
78	Inhibition of protein kinase CK2 with the clinical-grade small ATP-competitive compound CX-4945 or by RNA interference unveils its role in acute myeloid leukemia cell survival, p53-dependent apoptosis and daunorubicin-induced cytotoxicity. Journal of Hematology and Oncology, 2013, 6, 78.	17.0	46
79	GRP94 (endoplasmin) co-purifies with and is phosphorylated by Golgi apparatus casein kinase. FEBS Letters, 2000, 471, 151-155.	2.8	45
80	Cell-permeable dual inhibitors of protein kinases CK2 and PIM-1: structural features and pharmacological potential. Cellular and Molecular Life Sciences, 2014, 71, 3173-3185.	5.4	45
81	Synthetic fragments of beta-casein as model substrates for liver and mammary gland casein kinases. FEBS Journal, 1989, 186, 459-464.	0.2	44
82	A structural insight into CK2 inhibition. Molecular and Cellular Biochemistry, 2008, 316, 57-62.	3.1	43
83	Isolation from Spleen of a 57-kDa Protein Substrate of the Tyrosine Kinase Lyn. Identification as a Protein Related to Protein Disulfide-Isomerase and Localisation of the Phosphorylation Sites. FEBS Journal, 1996, 235, 18-25.	0.2	42
84	Novel consensus sequence for the Golgi apparatus casein kinase, revealed using proline-rich protein-1 (PRP1)-derived peptide substrates. Biochemical Journal, 2000, 351, 765-768.	3.7	42
85	Discrimination between the activity of protein kinase CK2 holoenzyme and its catalytic subunits. FEBS Letters, 2006, 580, 3948-3952.	2.8	42
86	Structure and properties of casein kinase-2 from Saccharomyces cerevisiae. A comparison with the liver enzyme. FEBS Journal, 1986, 159, 31-38.	0.2	41
87	Structure–function analysis of yeast piD261/Bud32, an atypical protein kinase essential for normal cell life. Biochemical Journal, 2002, 364, 457-463.	3.7	40
88	The Regulatory \hat{I}^2 Subunit of Protein Kinase CK2 Contributes to the Recognition of the Substrate Consensus Sequence. A Study with an elF2 \hat{I}^2 -Derived Peptide. Biochemistry, 2008, 47, 8317-8325.	2.5	40
89	Identification of novel protein kinase CK1 delta (CK1Î) inhibitors through structure-based virtual screening. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5672-5675.	2.2	39
90	Modulation of Protein Kinase CK2 Activity by Fragments of CFTR Encompassing F508 May Reflect Functional Links with Cystic Fibrosis Pathogenesis. Biochemistry, 2008, 47, 7925-7936.	2.5	39

#	Article	IF	CITATIONS
91	Motif Analysis of Phosphosites Discloses a Potential Prominent Role of the Golgi Casein Kinase (GCK) in the Generation of Human Plasma Phospho-Proteome. Journal of Proteome Research, 2010, 9, 3335-3338.	3.7	39
92	Chemical Dissection of the APC Repeat 3 Multistep Phosphorylation by the Concerted Action of Protein Kinases CK1 and GSK3. Biochemistry, 2007, 46, 11902-11910.	2.5	38
93	Generation and quantitative proteomics analysis of CK2α/α'(â^'/â^') cells. Scientific Reports, 2017, 7, 42409.	3.3	38
94	Biochemical evidence thatSaccharomyces cerevisiae YGR262cgene, required for normal growth, encodes a novel Ser/Thr-specific protein kinase. FEBS Letters, 1997, 414, 171-175.	2.8	37
95	Autophosphorylation at the regulatory β subunit reflects the supramolecular organization of protein kinase CK2. Molecular and Cellular Biochemistry, 2005, 274, 23-29.	3.1	37
96	Nanoencapsulated anti-CK2 small molecule drug or siRNA specifically targets malignant cancer but not benign cells. Cancer Letters, 2012, 315, 48-58.	7.2	37
97	A chemogenomic screening identifies CK2 as a target for pro-senescence therapy in PTEN-deficient tumours. Nature Communications, 2015, 6, 7227.	12.8	37
98	Autocatalytic tyrosine-phosphorylation of protein kinase CK2 α and α′ subunits: implication of Tyr182. Biochemical Journal, 2001, 357, 563-567.	3.7	36
99	Extracellular phosphorylation of C9 by protein kinase CK2 regulates complement-mediated lysis. European Journal of Immunology, 2005, 35, 1939-1948.	2.9	36
100	Assessment of CK2 Constitutive Activity in Cancer Cells. Methods in Enzymology, 2010, 484, 495-514.	1.0	36
101	Exploring the CK2 Paradox: Restless, Dangerous, Dispensable. Pharmaceuticals, 2017, 10, 11.	3.8	36
102	Structural Features Underlying the Unusual Mode of Calmodulin Phosphorylation by Protein Kinase CK2: A Study with Synthetic Calmodulin Fragments. Biochemical and Biophysical Research Communications, 1999, 256, 442-446.	2.1	34
103	The crystal structure of the complex of Zea maysα subunit with a fragment of human β subunit provides the clue to the architecture of protein kinase CK2 holoenzyme. FEBS Journal, 2000, 267, 5184-5190.	0.2	34
104	Functional homology between yeast piD261/Bud32 and human PRPK: both phosphorylate p53 and PRPK partially complements piD261/Bud32 deficiency. FEBS Letters, 2003, 549, 63-66.	2.8	34
105	Isoform specific phosphorylation of p53 by protein kinase CK1. Cellular and Molecular Life Sciences, 2010, 67, 1105-1118.	5.4	34
106	Spleen protein tyrosine kinases TPK-IIB and CSK display different immunoreactivity and opposite specificities toward c-src-derived peptides. FEBS Letters, 1992, 313, 291-294.	2.8	33
107	Isolation and identification of two proto-oncogene products related to c-fgr and fyn in a tyrosine-protein-kinase fraction of rat spleen. FEBS Journal, 1993, 216, 323-327.	0.2	33
108	Mass Spectrometry Analysis of a Protein Kinase CK2β Subunit Interactome Isolated from Mouse Brain by Affinity Chromatography. Journal of Proteome Research, 2008, 7, 990-1000.	3.7	33

#	Article	lF	CITATIONS
109	Aberrant signalling by protein kinase CK2 in imatinibâ€resistant chronic myeloid leukaemia cells: Biochemical evidence and therapeutic perspectives. Molecular Oncology, 2013, 7, 1103-1115.	4.6	33
110	Eukaryotic translation-initiation factor eIF2β binds to protein kinase CK2: effects on CK2α activity. Biochemical Journal, 2003, 375, 623-631.	3.7	32
111	Detection of Phospho-Sites Generated by Protein Kinase CK2 in CFTR: Mechanistic Aspects of Thr1471 Phosphorylation. PLoS ONE, 2013, 8, e74232.	2.5	32
112	Altered protein kinase activities of lymphoid cells transformed by Abelson and Moloney leukemia viruses. FEBS Letters, 1986, 206, 59-63.	2.8	31
113	Susceptibility of the Prion Protein to Enzymic Phosphorylation. Biochemical and Biophysical Research Communications, 2000, 271, 337-341.	2.1	31
114	Phosphorylation of Calmodulin Fragments by Protein Kinase CK2. Mechanistic Aspects and Structural Consequences. Biochemistry, 2004, 43, 12788-12798.	2.5	31
115	Sequence Specificity of C-Terminal Src Kinase (Csk). A Comparison with Src-Related Kinases C-Fgr and Lyn. FEBS Journal, 1997, 246, 433-439.	0.2	30
116	Targeting Protein Kinase CK2: Evaluating CX-4945 Potential for GL261 Glioblastoma Therapy in Immunocompetent Mice. Pharmaceuticals, 2017, 10, 24.	3.8	30
117	Generation of protein kinase Ck1α mutants which discriminate between canonical and non-canonical substrates. Biochemical Journal, 2005, 391, 417-424.	3.7	29
118	Comparative analysis of CK2 expression and function in tumor cell lines displaying sensitivity vs. resistance to chemical induced apoptosis. Molecular and Cellular Biochemistry, 2008, 316, 155-161.	3.1	29
119	Design, validation and efficacy of bisubstrate inhibitors specifically affecting ecto-CK2 kinase activity. Biochemical Journal, 2015, 471, 415-430.	3.7	29
120	Phosphotyrosine as a specificity determinant for casein kinase-2, a growth related Ser/Thr-specific protein kinase. FEBS Letters, 1991, 279, 307-309.	2.8	28
121	Programmed cell death protein 5 (PDCD5) is phosphorylated by CK2 in vitro and in 293T cells. Biochemical and Biophysical Research Communications, 2009, 387, 606-610.	2.1	28
122	Structural features underlying the selectivity of the kinase inhibitors NBC and dNBC: role of a nitro group that discriminates between CK2 and DYRK1A. Cellular and Molecular Life Sciences, 2012, 69, 449-460.	5.4	28
123	Phosphorylation and Activation of Protein Kinase Ck2 by p34cdc2 are Independent Events. FEBS Journal, 1995, 230, 1025-1031.	0.2	28
124	Hematopoietic lineage cell specific protein 1 associates with and down-regulates protein kinase CK2. FEBS Letters, 1999, 461, 32-36.	2.8	27
125	Protein kinase CK2 phosphorylates BAD at threonine-117. Neurochemistry International, 2004, 45, 747-752.	3.8	27
126	Differential phosphorylation of Akt1 and Akt2 by protein kinase CK2 may account for isoform specific functions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1865-1874.	4.1	27

#	Article	IF	CITATIONS
127	The generation of phosphoserine stretches in phosphoproteins: mechanism and significance. Molecular BioSystems, 2015, 11, 2666-2679.	2.9	27
128	A Journey through the Cytoskeleton with Protein Kinase CK2. Current Protein and Peptide Science, 2019, 20, 547-562.	1.4	27
129	The pleiotropic protein kinase CK2 phosphorylates HTLV-1 Tax protein in vitro, targeting its PDZ-binding motif. Virus Genes, 2010, 41, 149-157.	1.6	26
130	Superiority of PLK-2 as α-synuclein phosphorylating agent relies on unique specificity determinants. Biochemical and Biophysical Research Communications, 2012, 418, 156-160.	2.1	26
131	From phosphoproteins to phosphoproteomes: a historical account. FEBS Journal, 2017, 284, 1936-1951.	4.7	26
132	Protein Kinase CK2 Subunits Differentially Perturb the Adhesion and Migration of GN11 Cells: A Model of Immature Migrating Neurons. International Journal of Molecular Sciences, 2019, 20, 5951.	4.1	26
133	Targeting CK2 in cancer: a valuable strategy or a waste of time?. Cell Death Discovery, 2021, 7, 325.	4.7	26
134	Efficient Fmoc/solidâ€phase peptide synthesis of <i>O</i> â€phosphotyrosylâ€containing peptides and their use as phosphatase substrates. International Journal of Peptide and Protein Research, 1994, 43, 39-46.	0.1	25
135	Sic1 is phosphorylated by CK2 on Ser201 in budding yeast cells. Biochemical and Biophysical Research Communications, 2006, 346, 786-793.	2.1	24
136	Golgi apparatus casein kinase phosphorylates bioactive Serâ€6 of bone morphogenetic protein 15 and growth and differentiation factor 9. FEBS Letters, 2010, 584, 801-805.	2.8	24
137	Protein kinase CK2 phosphorylates the cell cycle regulatory protein Geminin. Biochemical and Biophysical Research Communications, 2004, 315, 1011-1017.	2.1	23
138	Phosphorylation and activation of the atypical kinase p53-related protein kinase (PRPK) by Akt/PKB. Cellular and Molecular Life Sciences, 2007, 64, 2680-2689.	5.4	23
139	Synthesis and Properties of a Selective Inhibitor of Homeodomain–Interacting Protein Kinase 2 (HIPK2). PLoS ONE, 2014, 9, e89176.	2.5	23
140	Cystic fibrosis transmembrane regulator fragments with the Phe508 deletion exert a dual allosteric control over the master kinase CK2. Biochemical Journal, 2010, 426, 19-29.	3.7	22
141	Protein kinase CK2 accumulation in "oncophilic―cells: causes and effects. Molecular and Cellular Biochemistry, 2011, 356, 5-10.	3.1	21
142	Exploiting the repertoire of CK2 inhibitors to target DYRK and PIM kinases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1402-1409.	2.3	21
143	The Selectivity of CK2 Inhibitor Quinalizarin: A Reevaluation. BioMed Research International, 2015, 2015, 1-9.	1.9	21
144	Variable contribution of protein kinases to the generation of the human phosphoproteome: a global weblogo analysis. Biomolecular Concepts, 2010, 1, 185-195.	2.2	20

#	Article	IF	CITATIONS
145	Pharmacophore-guided discovery of CDC25 inhibitors causing cell cycle arrest and tumor regression. Scientific Reports, 2019, 9, 1335.	3.3	20
146	How can a traffic light properly work if it is always green? The paradox of CK2 signaling. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 321-359.	5.2	20
147	Inhibition of protein kinase CK2 by CX-5011 counteracts imatinib-resistance preventing rpS6 phosphorylation in chronic myeloid leukaemia cells: new combined therapeutic strategies. Oncotarget, 2016, 7, 18204-18218.	1.8	19
148	Ser/Thr phosphorylation of hematopoietic specific protein 1 (HS1). FEBS Journal, 2000, 267, 3065-3072.	0.2	18
149	Phosphorylation of the <i>Saccharomyces cerevisiae</i> Grx4p glutaredoxin by the Bud32p kinase unveils a novel signaling pathway involving Sch9p, a yeast member of the Akt / PKB subfamily. FEBS Journal, 2008, 275, 5919-5933.	4.7	17
150	Phosphorylation of phosvitin by casein kinase-2 provides the evidence that phosphoserines can replace carboxylic amino acids as specificity determinants. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 971, 227-231.	1.0	16
151	Phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) serine-511 by the combined action of tyrosine kinases and CK2: the implication of tyrosine-512 and phenylalanine-508. Amino Acids, 2013, 45, 1423-1429.	2.7	16
152	Acidophilic character of yeast PID261/BUD32, a putative ancestor of eukaryotic protein kinases. Biochemical and Biophysical Research Communications, 2002, 296, 1366-1371.	2.1	15
153	CK2 regulates in vitro the activity of the yeast cyclin-dependent kinase inhibitor Sic1. Biochemical and Biophysical Research Communications, 2005, 336, 1040-1048.	2.1	15
154	Heterogeneity of CK2 phosphorylation sites in the NS5A protein of different hepatitis C virus genotypes. Journal of Hepatology, 2007, 47, 768-776.	3.7	15
155	Comparing the efficacy and selectivity of Ck2 inhibitors. A phosphoproteomics approach. European Journal of Medicinal Chemistry, 2021, 214, 113217.	5.5	15
156	An Exploration of the Effects of Constraints on the Phosphorylation of Synthetic Protein Tyrosine Kinase Peptide Substrates. Journal of Peptide Science, 1996, 2, 325-338.	1.4	14
157	Chimeric peptides as modulators of CK2-dependent signaling: Mechanism of action and off-target effects. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1694-1707.	2.3	14
158	A new role for sphingosine: Up-regulation of Fam20C, the genuine casein kinase that phosphorylates secreted proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1718-1726.	2.3	14
159	Dependence of HSP27 cellular level on protein kinase CK2 discloses novel therapeutic strategies. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2902-2910.	2.4	14
160	A proteomics analysis of CK2l̂² ^(â^'/â^') C2C12 cells provides novel insights into the biological functions of the nonâ€catalytic l̂² subunit. FEBS Journal, 2019, 286, 1561-1575.	4.7	14
161	"Janus―efficacy of CX-5011: CK2 inhibition and methuosis induction by independent mechanisms. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118807.	4.1	14
162	Linear and cyclic synthetic peptides related to the main autophosphorylation site of the Src tyrosine kinases as substrates and inhibitors of Lyn ^{â€} . International Journal of Peptide and Protein Research, 1995, 45, 529-539.	0.1	13

#	Article	IF	CITATIONS
163	Understanding protein kinase CK2 mis-regulation upon F508del CFTR expression. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 384, 473-488.	3.0	13
164	CFTR mutations altering CFTR fragmentation. Biochemical Journal, 2013, 449, 295-305.	3.7	13
165	CK2 involvement in ESCRT-III complex phosphorylation. Archives of Biochemistry and Biophysics, 2014, 545, 83-91.	3.0	13
166	Protein kinase CK2 potentiates translation efficiency by phosphorylating eIF3j at Ser127. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1693-1701.	4.1	13
167	Proteomics perturbations promoted by the protein kinase CK2 inhibitor quinalizarin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1676-1686.	2.3	13
168	Prevalence and significance of the commonest phosphorylated motifs in the human proteome: a global analysis. Cellular and Molecular Life Sciences, 2020, 77, 5281-5298.	5.4	13
169	A Comparative Analysis and Review of lysyl Residues Affected by Posttranslational Modifications. Current Genomics, 2015, 16, 128-138.	1.6	12
170	Phosphorylation of ornithine decarboxylase in intact erythroleukemia cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1990, 1052, 345-347.	4.1	11
171	Specific monitoring of Syk protein kinase activity by peptide substrates including constrained analogs of tyrosine. FEBS Letters, 2002, 523, 48-52.	2.8	11
172	Different Persistence of the Cellular Effects Promoted by Protein Kinase CK2 Inhibitors CX-4945 and TDB. BioMed Research International, 2015, 2015, 1-9.	1.9	11
173	Effects of CK2β subunit down-regulation on Akt signalling in HK-2 renal cells. PLoS ONE, 2020, 15, e0227340.	2.5	11
174	Under-expression of CK2β subunit in ccRCC represents a complementary biomarker of p-STAT3 Ser727 that correlates with patient survival. Oncotarget, 2018, 9, 5736-5751.	1.8	11
175	Conformational constraints of tyrosine in protein tyrosine kinase substrates: Information about preferred bioactive side-chain orientation. Biopolymers, 2003, 71, 478-488.	2.4	10
176	Spatial Conformation and Topography of the Tyrosine Aromatic Ring in Substrate Recognition by Protein Tyrosine Kinases. Journal of Medicinal Chemistry, 2006, 49, 1916-1924.	6.4	10
177	The p23 co-chaperone protein is a novel substrate of CK2 in Arabidopsis. Molecular and Cellular Biochemistry, 2011, 356, 245-254.	3.1	10
178	Fam20C is under the control of sphingolipid signaling in human cell lines. FEBS Journal, 2017, 284, 1246-1257.	4.7	10
179	The Golgi â€~casein kinase' Fam20C is a genuine â€~phosvitin kinase' and phosphorylates polyserine stretches devoid of the canonical consensus. FEBS Journal, 2018, 285, 4674-4683.	4.7	10
180	A N-terminally deleted form of the CK2α' catalytic subunit is sufficient to support cell viability. Biochemical and Biophysical Research Communications, 2020, 531, 409-415.	2.1	9

#	Article	IF	CITATIONS
181	Contribution of the CK2 Catalytic Isoforms α and α' to the Glycolytic Phenotype of Tumor Cells. Cells, 2021, 10, 181.	4.1	9
182	Identification of the PLK2-Dependent Phosphopeptidome by Quantitative Proteomics. PLoS ONE, 2014, 9, e111018.	2.5	9
183	Protein kinase CK2 modulates HSJ1 function through phosphorylation of the UIM2 domain. Human Molecular Genetics, 2017, 26, ddw420.	2.9	8
184	A "SYDE―effect of hierarchical phosphorylation: possible relevance to the cystic fibrosis basic defect. Cellular and Molecular Life Sciences, 2014, 71, 2193-2196.	5.4	7
185	Deciphering the role of protein kinase CK2 in the maturation/stability of F508del-CFTR. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165611.	3.8	7
186	Cross talk between protein kinase CK2 and eukaryotic translation initiation factor eIF2β subunit. Molecular and Cellular Biochemistry, 2005, 274, 53-61.	3.1	6
187	Up-Regulation of the Alpha Prime Subunit of Protein Kinase CK2 as a Marker of Fast Proliferation in GL261 Cultured Cells. Pathology and Oncology Research, 2019, 25, 1659-1663.	1.9	6
188	Synthetic Tyrâ€phospho and nonâ€hydrolyzable phosphonopeptides as PTKs and TCâ€PTP inhibitors*. International Journal of Peptide and Protein Research, 1995, 46, 535-546.	0.1	5
189	Linear and cyclic peptides as substrates for Lyn tyrosine kinase. , 1998, 4, 33-45.		2
190	Multiple Myeloma Cells Survival and Proliferation Rely on High Levels and Activity of the Serine-Threonine Kinase CK2 Blood, 2004, 104, 643-643.	1.4	2
191	Direct detection of protein kinases on electropherograms. FEBS Letters, 1975, 51, 130-132.	2.8	1
192	Synthesis and biological activities of cyclic lactam peptides as substrates for non-receptors PTKs. International Journal of Peptide Research and Therapeutics, 1999, 6, 117-121.	0.1	1
193	An Updated View on an Emerging Target: Selected Papers from the 8th International Conference on Protein Kinase CK2. Pharmaceuticals, 2017, 10, 33.	3.8	1
194	The importance of negative determinants as modulators of CK2 targeting. The lesson of Akt2 S131. PLoS ONE, 2018, 13, e0193479.	2.5	1
195	Synthesis and biological activities of cyclic lactam peptides as substrates for non-receptors PTKs. International Journal of Peptide Research and Therapeutics, 1999, 6, 117-121.	0.1	0
196	IPK2019: David Shugar and the genesis of the IPK conferences. IUBMB Life, 2020, 72, 1097-1102.	3.4	0
197	1954â€2006: the long march of protein kinase CK2. FASEB Journal, 2006, 20, A499.	0.5	О