Kong-qiu Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6632887/publications.pdf

Version: 2024-02-01

69	1,439	23	34
papers	citations	h-index	g-index
73	73 docs citations	73	1119
all docs		times ranked	citing authors

#	Article	IF	Citations
1	Silver Ion-Induced Formation of Unprecedented Thorium Nonamer Clusters via Lacuna-Construction Strategy. CCS Chemistry, 2023, 5 , $1144-1153$.	7.8	3
2	Recent Advances in MOFâ€Based Materials for Photocatalytic Nitrogen Fixation. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	15
3	Impact of the proximity effect on uranyl coordination of conformationally variable weakly-bonded cucurbit[6]uril-bipyridinium pseudorotaxane. CrystEngComm, 2022, 24, 1955-1965.	2.6	0
4	Coordination-Adaptive Polydentate Pseudorotaxane Ligand for Capturing Multiple Uranyl Species. Inorganic Chemistry, 2022, , .	4.0	5
5	Encapsulation of Polymetallic Oxygen Clusters in a Mesoporous/Microporous Thorium-Based Porphyrin Metal–Organic Framework for Enhanced Photocatalytic CO ₂ Reduction. Inorganic Chemistry, 2022, 61, 3368-3373.	4.0	16
6	Hierarchical assembly of uranyl metallacycles involving macrocyclic hosts. Chinese Chemical Letters, 2022, 33, 3539-3542.	9.0	8
7	Mixed-Ligand Uranyl Squarate Coordination Polymers: Structure Regulation and Redox Activity. Inorganic Chemistry, 2022, 61, 302-316.	4.0	2
8	Controllable photomechanical bending of metal-organic rotaxane crystals facilitated by regioselective confined-space photodimerization. Nature Communications, 2022, 13, 2030.	12.8	19
9	Modular Assembly of Isostructural Mixed-Ligand Uranyl Coordination Polymers Based on a Patterning Strategy. Inorganic Chemistry, 2022, 61, 10694-10704.	4.0	2
10	Machine-Learning-Guided Identification of Coordination Polymer Ligands for Crystallizing Separation of Cs/Sr. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33076-33084.	8.0	3
11	Construction of Hybrid Bimetallic Uranyl Compounds Based on a Preassembled Terpyridine Metalloligand. Chemistry - A European Journal, 2021, 27, 2124-2130.	3.3	17
12	Coordination-driven assembly of actinide-organic polyrotaxanes involving crown ether macrocycles. Organic Chemistry Frontiers, 2021, 8, 3686-3694.	4.5	2
13	Controlling the secondary assembly of porous anionic uranyl–organic polyhedra through organic cationic templates. Dalton Transactions, 2021, 50, 4499-4503.	3.3	3
14	Temperatureâ€Triggered Structural Dynamics of Nonâ€Coordinating Guest Moieties in a Fluorescent Actinide Polyrotaxane Framework. Chemistry - A European Journal, 2021, 27, 8730-8736.	3.3	10
15	An Azobenzene-Modified Photoresponsive Thorium–Organic Framework: Monitoring and Quantitative Analysis of Reversible <i>trans–cis</i> Photoisomerization. Inorganic Chemistry, 2021, 60, 8519-8529.	4.0	18
16	Facile Access to Uranium and Thorium Phosphaethynolate Complexes Supported by Tren: Experimental and Theoretical Study. Chinese Journal of Chemistry, 2021, 39, 2125-2131.	4.9	15
17	Proximity Effect in Uranyl Coordination of the Cucurbit[6]uril-Bipyridinium Pseudorotaxane Ligand for Promoting Host–Guest Synergistic Chelating. Inorganic Chemistry, 2021, 60, 10522-10534.	4.0	6
18	Double-Layer Nitrogen-Rich Two-Dimensional Anionic Uranyl–Organic Framework for Cation Dye Capture and Catalytic Fixation of Carbon Dioxide. Inorganic Chemistry, 2021, 60, 11485-11495.	4.0	12

#	Article	IF	CITATIONS
19	Stepwise Assembly of a Multicomponent Heterometallic Metal–Organic Framework via Th ₆ -Based Metalloligands. Inorganic Chemistry, 2021, 60, 14535-14539.	4.0	7
20	High-Temperature Synthesis of a Uranyl Peroxo Complex Facilitated by Hydrothermally In Situ Formed Organic Peroxide. Inorganic Chemistry, 2021, 60, 2133-2137.	4.0	5
21	Potassium Ions Induced Framework Interpenetration for Enhancing the Stability of Uranium-Based Porphyrin MOF with Visible-Light-Driven Photocatalytic Activity. Inorganic Chemistry, 2021, 60, 651-659.	4.0	40
22	Viologenâ€Based Uranyl Coordination Polymers: Anionâ€Induced Structural Diversity and the Potential as a Fluorescent Probe. European Journal of Inorganic Chemistry, 2021, 2021, 5077-5084.	2.0	8
23	A mixed-ligand strategy regulates thorium-based MOFs. Dalton Transactions, 2020, 49, 983-987.	3.3	39
24	Noncomplexed Cucurbituril-Mediated Structural Evolution of Layered Uranyl Terephthalate Compounds. Inorganic Chemistry, 2020, 59, 943-955.	4.0	8
25	Coordination behavior of uranyl with PDAM derivatives in solution: Combined study with ESI-MS and DFT. Journal of Molecular Liquids, 2020, 300, 112287.	4.9	12
26	Visibleâ€Lightâ€Enabled Câ^'H Functionalization by a Direct Hydrogen Atom Transfer Uranyl Photocatalyst. Chemistry - A European Journal, 2020, 26, 16521-16529.	3.3	35
27	A New Preorganized Metalloligand Linker for the Construction of Luminescent Coordination Polymers. Crystal Growth and Design, 2020, 20, 6966-6972.	3.0	9
28	Solarâ€Driven Nitrogen Fixation Catalyzed by Stable Radicalâ€Containing MOFs: Improved Efficiency Induced by a Structural Transformation. Angewandte Chemie - International Edition, 2020, 59, 20666-20671.	13.8	71
29	Solarâ€Driven Nitrogen Fixation Catalyzed by Stable Radicalâ€Containing MOFs: Improved Efficiency Induced by a Structural Transformation. Angewandte Chemie, 2020, 132, 20847-20852.	2.0	46
30	Actinide Separation Inspired by Self-Assembled Metal–Polyphenolic Nanocages. Journal of the American Chemical Society, 2020, 142, 16538-16545.	13.7	56
31	Rational Design of a Tripodal Ligand for U(IV): Synthesis and Characterization of a U–Cl Species and Insights into Its Reactivity. Organometallics, 2020, 39, 4069-4077.	2.3	13
32	Molecular Springâ€like Tripleâ€Helix Coordination Polymers as Dualâ€Stress and Thermally Responsive Crystalline Metal–Organic Materials. Angewandte Chemie, 2020, 132, 16195-16202.	2.0	4
33	Kinked-Helix Actinide Polyrotaxanes from Weakly Bound Pseudorotaxane Linkers with Variable Conformations. Inorganic Chemistry, 2020, 59, 4058-4067.	4.0	12
34	Molecular Springâ€like Tripleâ€Helix Coordination Polymers as Dualâ€Stress and Thermally Responsive Crystalline Metal–Organic Materials. Angewandte Chemie - International Edition, 2020, 59, 16061-16068.	13.8	39
35	Structural Diversity of Bipyridinium-Based Uranyl Coordination Polymers: Synthesis, Characterization, and Ion-Exchange Application. Inorganic Chemistry, 2019, 58, 14075-14084.	4.0	37
36	Metalâ€Carboxyl Helical Chain Secondary Units Supported Ionâ€Exchangeable Anionic Uranyl–Organic Framework. Chemistry - A European Journal, 2019, 25, 10309-10313.	3.3	12

#	Article	IF	CITATIONS
37	Bipyridine-Directed Syntheses of Uranyl Compounds Containing Semirigid Dicarboxylate Linkers: Diversity and Consistency in Uranyl Speciation. Inorganic Chemistry, 2019, 58, 6934-6945.	4.0	22
38	Anion-adaptive crystalline cationic material for 99TcO4\^a^{2} trapping. Nature Communications, 2019 , 10 , 1532 .	12.8	87
39	Uranyl Compounds Involving a Weakly Bonded Pseudorotaxane Linker: Combined Effect of pH and Competing Ligands on Uranyl Coordination and Speciation. Inorganic Chemistry, 2019, 58, 3271-3282.	4.0	27
40	<i>In situ</i> nitroso formation induced structural diversity of uranyl coordination polymers. Inorganic Chemistry Frontiers, 2019, 6, 775-785.	6.0	19
41	A Tetra-amido-Protected Ge ₅ -Spiropentadiene. Journal of the American Chemical Society, 2019, 141, 19252-19256.	13.7	9
42	Semirigid Tripodal Ligand Based Uranyl Coordination Polymer Isomers Featuring 2D Honeycomb Nets. Inorganic Chemistry, 2018, 57, 4492-4501.	4.0	29
43	Stepwise ortho Chlorination of Carboxyl Groups for Promoting Structure Variance of Heterometallic Uranyl–Silver Coordination Polymers of Isonicotinate. Inorganic Chemistry, 2018, 57, 4673-4685.	4.0	21
44	Bimetallic Uranyl Organic Frameworks Supported by Transition-Metal-Ion-Based Metalloligand Motifs: Synthesis, Structure Diversity, and Luminescence Properties. Inorganic Chemistry, 2018, 57, 6084-6094.	4.0	33
45	Template-Driven Assembly of Rare Hexameric Uranyl-Organic Rotaxane Networks Threaded on Dimeric Uranyl Chains. Crystal Growth and Design, 2018, 18, 3073-3081.	3.0	10
46	Uranyl-Organic Coordination Compounds Incorporating Photoactive Vinylpyridine Moieties: Synthesis, Structural Characterization, and Light-Induced Fluorescence Attenuation. Inorganic Chemistry, 2018, 57, 14772-14785.	4.0	18
47	Releasing Metal-Coordination Capacity of Cucurbit[6]uril Macrocycle in Pseudorotaxane Ligands for the Construction of Interwoven Uranyl–Rotaxane Coordination Polymers. Inorganic Chemistry, 2018, 57, 13513-13523.	4.0	29
48	Actinideâ€Based Porphyrinic MOF as a Dehydrogenation Catalyst. Chemistry - A European Journal, 2018, 24, 16766-16769.	3.3	37
49	Large-Pore Layered Networks, Polycatenated Frameworks, and Three-Dimensional Frameworks of Uranyl Tri(biphenyl)amine/Tri(phenyl)amine Tricarboxylate: Solvent-/Ligand-Dependent Dual Regulation. Crystal Growth and Design, 2018, 18, 4347-4356.	3.0	23
50	An Insight into Adaptive Deformation of Rigid Cucurbit[6]uril Host in Symmetric [2]Pseudorotaxanes. European Journal of Organic Chemistry, 2018, 2018, 4426-4430.	2.4	5
51	A neptunium(<scp>v</scp>)-mediated interwoven transuranium-rotaxane network incorporating a mechanically interlocked [<i>c</i> 2]daisy chain unit. Chemical Communications, 2018, 54, 8645-8648.	4.1	21
52	Uranyl-containing heterometallic coordination polymers based on 4-(4'-carboxyphenyl)-1,2,4-triazole ligand: structure regulation through subtle changes of the secondary metal centers. Journal of Coordination Chemistry, 2018, 71, 3021-3033.	2.2	3
53	Two Three-Dimensional Actinide-Silver Heterometallic Coordination Polymers Based on 2,2′-Bipyridine-3,3′-dicarboxylic Acid with Helical Chains Containing Dimeric or Trimeric Motifs. European Journal of Inorganic Chemistry, 2017, 2017, 1472-1477.	2.0	18
54	Mixed-Ligand Uranyl Polyrotaxanes Incorporating a Sulfate/Oxalate Coligand: Achieving Structural Diversity via pH-Dependent Competitive Effect. Inorganic Chemistry, 2017, 56, 3227-3237.	4.0	25

#	Article	IF	CITATIONS
55	Temperature-induced reversible single-crystal-to-single-crystal isomerisation of uranyl polyrotaxanes: an exquisite case of coordination variability of the uranyl center. Dalton Transactions, 2017, 46, 7392-7396.	3.3	16
56	Supramolecular Isomers of Coordinationâ€Directed Sideâ€Chain Polypseudorotaxanes Based on Trimeric Uranyl Oxalate Nodes. Chemistry - A European Journal, 2017, 23, 8380-8384.	3.3	10
57	Supramolecular Host–Guest Inclusion for Distinguishing Cucurbit[7]urilâ€Based Pseudorotaxanes from Smallâ€Molecule Ligands in Coordination Assembly with a Uranyl Center. Chemistry - A European Journal, 2017, 23, 13995-14003.	3.3	33
58	Novel Viologen Derivative Based Uranyl Coordination Polymers Featuring Photochromic Behaviors. Chemistry - A European Journal, 2017, 23, 18074-18083.	3.3	56
59	Solventâ€Dependent Synthesis of Porous Anionic Uranyl–Organic Frameworks Featuring a Highly Symmetrical (3,4)â€Connected <i>ctn</i> or <i>bor</i> Topology for Selective Dye Adsorption. Chemistry - A European Journal, 2017, 23, 529-532.	3.3	57
60	Novel Uranyl Coordination Polymers Based on Quinoline-Containing Dicarboxylate by Altering Auxiliary Ligands: From 1D Chain to 3D Framework. Crystal Growth and Design, 2016, 16, 4886-4896.	3.0	27
61	First three-dimensional actinide polyrotaxane framework mediated by windmill-like six-connected oligomeric uranyl: dual roles of the pseudorotaxane precursor. Dalton Transactions, 2016, 45, 13304-13307.	3.3	17
62	Ligand-directed assembly of trinuclear and one-dimensional heterotrimetallic Cu ^{II} Ln ^{III} Fe ^{III} complexes: unusual antiferromagnetic Cu ^{II} Fe ^{III} coupling via cyano bridges. New Journal of Chemistry, 2016, 40, 8643-8649.	2.8	25
63	An Unprecedented Twoâ€Fold Nested Superâ€Polyrotaxane: Sulfateâ€Directed Hierarchical Polythreading Assembly of Uranyl Polyrotaxane Moieties. Chemistry - A European Journal, 2016, 22, 11329-11338.	3.3	15
64	Tunable gas adsorption properties of porous coordination polymers by modification of macrocyclic metallic tectons. CrystEngComm, 2016, 18, 4084-4093.	2.6	11
65	The templated synthesis of a unique type of tetra-nuclear uranyl-mediated two-fold interpenetrating uranyl–organic framework. Chemical Communications, 2016, 52, 1641-1644.	4.1	34
66	Slow Magnetization Relaxation in Ni ^{II} Dy ^{III} Fe ^{III} Molecular Cycles. Inorganic Chemistry, 2015, 54, 1206-1208.	4.0	42
67	A trimetallic strategy towards ZnII4DyIII2CrIII2 and ZnII4DyIII2CoIII2 single-ion magnets. Dalton Transactions, 2015, 44, 15413-15416.	3.3	28
68	Synthesis, structure, and magnetic properties of heterotrimetallic tetranuclear complexes. Transition Metal Chemistry, 2014, 39, 713-718.	1.4	10
69	Syntheses, structure, and magnetic properties of heteronuclear Cu(<scp>ii</scp>) ₄ Fe(<scp>iii</scp>) ₄ cluster and Cu(<scp>ii</scp>) ₈ bimetallacycles. Dalton Transactions, 2013, 42, 1102-1108.	3.3	9