Nils M Kronenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/663264/publications.pdf

Version: 2024-02-01

430874 477307 32 1,956 18 29 citations g-index h-index papers 35 35 35 2948 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	KIAA0319 influences cilia length, cell migration and mechanical cell–substrate interaction. Scientific Reports, 2022, 12, 722.	3.3	7
2	Cell Force-Driven Basement Membrane Disruption Fuels EGF- and Stiffness-Induced Invasive Cell Dissemination from Benign Breast Gland Acini. International Journal of Molecular Sciences, 2021, 22, 3962.	4.1	10
3	Real-time imaging of cellular forces using optical interference. Nature Communications, 2021, 12, 3552.	12.8	5
4	Willin/FRMD6 Influences Mechanical Phenotype and Neuronal Differentiation in Mammalian Cells by Regulating ERK1/2 Activity. Frontiers in Cellular Neuroscience, 2020, 14, 552213.	3.7	6
5	Direct measurement of vertical forces shows correlation between mechanical activity and proteolytic ability of invadopodia. Science Advances, 2020, 6, eaax6912.	10.3	35
6	Cortical cell stiffness is independent of substrate mechanics. Nature Materials, 2020, 19, 1019-1025.	27.5	89
7	Flexible and Ultra-Lightweight Polymer Membrane Lasers. , 2019, , .		1
8	Flexible and ultra-lightweight polymer membrane lasers. Nature Communications, 2018, 9, 1525.	12.8	122
9	The Role of Metallic Dopants in Improving the Thermal Stability of the Electron Transport Layer in Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800496.	7.3	15
10	Podocyte injury elicits loss and recovery of cellular forces. Science Advances, 2018, 4, eaap8030.	10.3	17
11	Analysis of the Precision, Robustness, and Speed of Elastic Resonator Interference Stress Microscopy. Biophysical Journal, 2018, 114, 2180-2193.	0.5	12
12	Polariton-lasing in microcavities filled with fluorescent proteins. , 2018, , .		2
13	Long-term imaging of cellular forces with high precision by elastic resonator interference stress microscopy. Nature Cell Biology, 2017, 19, 864-872.	10.3	61
14	Elastomer based electrically tunable, optical microcavities. Applied Physics Letters, 2016, 109, 171104.	3.3	3
15	An exciton-polariton laser based on biologically produced fluorescent protein. Science Advances, 2016, 2, e1600666.	10.3	159
16	Fano-Like Interference in the Emission Spectra of a Multimode Organic Microcavity. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 60-65.	2.9	2
17	In-situ modification of PEDOT:PSS work function using alkyl alcohols as secondary processing solvents and their impact on merocyanine based bulk heterojunction solar cells. Organic Electronics, 2015, 21, 171-176.	2.6	28
18	Lasing within Live Cells Containing Intracellular Optical Microresonators for Barcode-Type Cell Tagging and Tracking. Nano Letters, 2015, 15, 5647-5652.	9.1	158

#	Article	IF	CITATIONS
19	MICRO-CAVITY BASED FORCE SENSORS - A NOVEL AND SIMPLE INTERFEROMETRIC TOOL FOR CELL-MECHANICAL INVESTIGATIONS. , 2015, , .		0
20	NIR-Absorbing Merocyanine Dyes for BHJ Solar Cells. Chemistry of Materials, 2014, 26, 4856-4866.	6.7	53
21	Towards highly efficient solar cells based on merocyanine dyes. Materials Research Society Symposia Proceedings, 2012, 1390, 24.	0.1	0
22	Optimized solution-processed merocyanine:PCBM organic bulk heterojunction solar cell. Journal of Photonics for Energy, 2011, 1, 011101.	1.3	6
23	Simple, Highly Efficient Vacuumâ€Processed Bulk Heterojunction Solar Cells Based on Merocyanine Dyes. Advanced Energy Materials, 2011, 1, 888-893.	19.5	141
24	Efficient Solutionâ€Processed Bulk Heterojunction Solar Cells by Antiparallel Supramolecular Arrangement of Dipolar Donor–Acceptor Dyes. Angewandte Chemie - International Edition, 2011, 50, 11628-11632.	13.8	239
25	A simple merocyanine tandem solar cell with extraordinarily high open-circuit voltage. Applied Physics Letters, 2011, 99, 193306.	3.3	15
26	Direct Comparison of Highly Efficient Solution―and Vacuumâ€Processed Organic Solar Cells Based on Merocyanine Dyes. Advanced Materials, 2010, 22, 4193-4197.	21.0	84
27	Monolithic Integration of Multiâ€Color Organic LEDs by Grayscale Lithography. Advanced Materials, 2010, 22, 4634-4638.	21.0	30
28	Tailored merocyaninedyes for solution-processed BHJ solar cells. Journal of Materials Chemistry, 2010, 20, 240-243.	6.7	124
29	Near-Infrared Absorbing Merocyanine Dyes for Bulk Heterojunction Solar Cells. Organic Letters, 2010, 12, 3666-3669.	4.6	59
30	Two Novel Cyclopentadithiophene-Based Alternating Copolymers as Potential Donor Components for High-Efficiency Bulk-Heterojunction-Type Solar Cells. Chemistry of Materials, 2008, 20, 4045-4050.	6.7	179
31	Bulk heterojunction organic solar cells based on merocyanine colorants. Chemical Communications, 2008, , 6489.	4.1	172
32	Effect of Polymer Nanoparticle Formation on the Efficiency of Polythiophene Based "Bulk-Heterojunction―Solar Cells. Journal of Physical Chemistry C, 2008, 112, 12583-12589.	3.1	60