List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6632361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Taste transduction and channel synapses in taste buds. Pflugers Archiv European Journal of Physiology, 2021, 473, 3-13.	1.3	70
2	Calcium signaling induces a partial EMT. EMBO Reports, 2021, 22, e51872.	2.0	33
3	ZIP9 Is a Druggable Determinant of Sex Differences in Melanoma. Cancer Research, 2021, 81, 5991-6003.	0.4	14
4	Cancer cells with defective oxidative phosphorylation require endoplasmic reticulum–to–mitochondria Ca ²⁺ transfer for survival. Science Signaling, 2020, 13, .	1.6	45
5	Uncorking MCU to let the calcium flow. Cell Calcium, 2020, 91, 102257.	1.1	5
6	Coupled transmembrane mechanisms control MCU-mediated mitochondrial Ca ²⁺ uptake. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21731-21739.	3.3	38
7	Acute Regulation of Habituation Learning via Posttranslational Palmitoylation. Current Biology, 2020, 30, 2729-2738.e4.	1.8	26
8	Structures of CALHM channels revealed. Nature Structural and Molecular Biology, 2020, 27, 227-228.	3.6	8
9	Variable Assembly of EMRE and MCU Creates Functional Channels with Distinct Gatekeeping Profiles. IScience, 2020, 23, 101037.	1.9	20
10	Sodium–Taste Cells Require <i>Skn-1a</i> for Generation and Share Molecular Features with Sweet, Umami, and Bitter Taste Cells. ENeuro, 2020, 7, ENEURO.0385-20.2020.	0.9	22
11	ER-luminal [Ca2+] regulation of InsP3 receptor gating mediated by an ER-luminal peripheral Ca2+-binding protein. ELife, 2020, 9, .	2.8	19
12	CALHM3 Is Essential for Rapid Ion Channel-Mediated Purinergic Neurotransmission of GPCR-Mediated Tastes. Neuron, 2018, 98, 547-561.e10.	3.8	137
13	Targeting hepatic glutaminase activity to ameliorate hyperglycemia. Nature Medicine, 2018, 24, 518-524.	15.2	50
14	The NH ₂ terminus regulates voltage-dependent gating of CALHM ion channels. American Journal of Physiology - Cell Physiology, 2017, 313, C173-C186.	2.1	21
15	Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells. Journal of Neurophysiology, 2017, 117, 1865-1876.	0.9	22
16	CFTR nonsense mutations: Therapeutic benefits from clinically approved drugs?. Journal of Cystic Fibrosis, 2017, 16, 9-10.	0.3	2
17	Systematic Identification of MCU Modulators by Orthogonal Interspecies Chemical Screening. Molecular Cell, 2017, 67, 711-723.e7.	4.5	99
18	MICU2 Restricts Spatial Crosstalk between InsP 3 R and MCU Channels by Regulating Threshold and Gain of MICU1-Mediated Inhibition and Activation of MCU. Cell Reports, 2017, 21, 3141-3154.	2.9	73

#	Article	IF	CITATIONS
19	Ryanodine receptor resolution revolution: Implications for InsP3 receptors?. Cell Calcium, 2017, 61, 53-56.	1.1	2
20	Familial Alzheimer's disease–associated presenilin 1 mutants promote γ-secretase cleavage of STIM1 to impair store-operated Ca ²⁺ entry. Science Signaling, 2016, 9, ra89.	1.6	75
21	InsP ₃ R, the calcium whisperer: Maintaining mitochondrial function in cancer. Molecular and Cellular Oncology, 2016, 3, e1185563.	0.3	11
22	EMRE Is a Matrix Ca 2+ Sensor that Governs Gatekeeping of the Mitochondrial Ca 2+ Uniporter. Cell Reports, 2016, 14, 403-410.	2.9	134
23	Calcium homeostasis modulator (CALHM) ion channels. Pflugers Archiv European Journal of Physiology, 2016, 468, 395-403.	1.3	76
24	Biphasic regulation of InsP ₃ receptor gating by dual Ca ²⁺ release channel BH3-like domains mediates Bcl-x _L control of cell viability. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1953-62.	3.3	47
25	Selective Vulnerability of Cancer Cells by Inhibition of Ca2+ Transfer from Endoplasmic Reticulum to Mitochondria. Cell Reports, 2016, 14, 2313-2324.	2.9	195
26	Analyzing and Quantifying the Gain-of-Function Enhancement of IP3 Receptor Gating by Familial Alzheimer's Disease-Causing Mutants in Presenilins. PLoS Computational Biology, 2015, 11, e1004529.	1.5	33
27	Normal Taste Acceptance and Preference of PANX1 Knockout Mice. Chemical Senses, 2015, 40, 453-459.	1.1	26
28	Inositol 1,4,5-trisphosphate receptors in the endoplasmic reticulum: A single-channel point of view. Cell Calcium, 2015, 58, 67-78.	1.1	66
29	MCUR1, CCDC90A, Is a Regulator of the Mitochondrial Calcium Uniporter. Cell Metabolism, 2015, 22, 533-535.	7.2	71
30	The mitochondrial Ca2+ uniporter complex. Journal of Molecular and Cellular Cardiology, 2015, 78, 3-8.	0.9	90
31	Effect of the CALHM1 G330D and R154H Human Variants on the Control of Cytosolic Ca2+ and AÎ ² Levels. PLoS ONE, 2014, 9, e112484.	1.1	11
32	Regulation of the mitochondrial Ca2+ uniporter by MICU1 and MICU2. Biochemical and Biophysical Research Communications, 2014, 449, 377-383.	1.0	26
33	Suppression of InsP ₃ Receptor-Mediated Ca ²⁺ Signaling Alleviates Mutant Presenilin-Linked Familial Alzheimer's Disease Pathogenesis. Journal of Neuroscience, 2014, 34, 6910-6923.	1.7	95
34	LETM1â€dependent mitochondrial Ca ²⁺ flux modulates cellular bioenergetics and proliferation. FASEB Journal, 2014, 28, 4936-4949.	0.2	99
35	Salty Taste Deficits in CALHM1 Knockout Mice. Chemical Senses, 2014, 39, 515-528.	1.1	38
36	Ca2+ signaling and fluid secretion by secretory cells of the airway epithelium. Cell Calcium, 2014, 55, 325-336.	1.1	50

#	Article	IF	CITATIONS
37	General Anesthetic Isoflurane Modulates Inositol 1,4,5-Trisphosphate Receptor Calcium Channel Opening. Anesthesiology, 2014, 121, 528-537.	1.3	27
38	Calcium Homeostasis Modulator (CALHM) Ion Channels: Structure, Functions and Physiological Roles. Membrane, 2014, 39, 41-47.	0.0	0
39	Isolating Nuclei from Cultured Cells for Patch-Clamp Electrophysiology of Intracellular Ca ²⁺ Channels. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot073056.	0.2	13
40	How do taste cells lacking synapses mediate neurotransmission? <scp>CALHM</scp> 1, a voltageâ€gated <scp>ATP</scp> channel. BioEssays, 2013, 35, 1111-1118.	1.2	66
41	A Host GPCR Signaling Network Required for the Cytolysis of Infected Cells Facilitates Release of Apicomplexan Parasites. Cell Host and Microbe, 2013, 13, 15-28.	5.1	37
42	Structural and Functional Similarities of Calcium Homeostasis Modulator 1 (CALHM1) Ion Channel with Connexins, Pannexins, and Innexins*. Journal of Biological Chemistry, 2013, 288, 6140-6153.	1.6	101
43	CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature, 2013, 495, 223-226.	13.7	405
44	CLHM-1 is a Functionally Conserved and Conditionally Toxic Ca2+-Permeable Ion Channel in Caenorhabditis elegans. Journal of Neuroscience, 2013, 33, 12275-12286.	1.7	34
45	Patch-Clamp Electrophysiology of Intracellular Ca ²⁺ Channels. Cold Spring Harbor Protocols, 2013, 2013, pdb.top066217.	0.2	22
46	Phosphorylated K-Ras limits cell survival by blocking Bcl-xL sensitization of inositol trisphosphate receptors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20593-20598.	3.3	86
47	Nuclear Patch-Clamp Electrophysiology of Ca ²⁺ Channels. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot073064.	0.2	11
48	Reply to Bezprozvanny et al.: Response to Shilling et al. (10.1074/jbc.M111.300491). Journal of Biological Chemistry, 2012, 287, 20470.	1.6	1
49	Why Mouse Airway Submucosal Gland Serous Cells Do Not Secrete Fluid in Response to cAMP Stimulation. Journal of Biological Chemistry, 2012, 287, 38316-38326.	1.6	19
50	Permeant calcium ion feed-through regulation of single inositol 1,4,5-trisphosphate receptor channel gating. Journal of General Physiology, 2012, 140, 697-716.	0.9	30
51	Calcium homeostasis modulator 1 (CALHM1) is the pore-forming subunit of an ion channel that mediates extracellular Ca ²⁺ regulation of neuronal excitability. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1963-71.	3.3	132
52	Role of Binding and Nucleoside Diphosphate Kinase A in the Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator by AMP-activated Protein Kinase. Journal of Biological Chemistry, 2012, 287, 33389-33400.	1.6	25
53	MICU1 Is an Essential Gatekeeper for MCU-Mediated Mitochondrial Ca2+ Uptake that Regulates Cell Survival. Cell, 2012, 151, 630-644.	13.5	543
54	Calpain leaved type 1 inositol 1,4,5â€ŧrisphosphate receptor impairs ER Ca ²⁺ buffering and causes neurodegeneration in primary cortical neurons. Journal of Neurochemistry, 2012, 123, 147-158.	2.1	18

#	Article	IF	CITATIONS
55	MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nature Cell Biology, 2012, 14, 1336-1343.	4.6	450
56	Lack of Evidence for Presenilins as Endoplasmic Reticulum Ca2+ Leak Channels. Journal of Biological Chemistry, 2012, 287, 10933-10944.	1.6	80
57	Mitochondrial Ca2+ signals in autophagy. Cell Calcium, 2012, 52, 44-51.	1.1	108
58	Enhanced ROS Generation Mediated by Alzheimer's Disease Presenilin Regulation of InsP ₃ R Ca ²⁺ Signaling. Antioxidants and Redox Signaling, 2011, 14, 1225-1235.	2.5	50
59	InsP3R channel gating altered by clustering?. Nature, 2011, 478, E1-E2.	13.7	10
60	Constitutive cAMP response element binding protein (CREB) activation by Alzheimer's disease presenilin-driven inositol trisphosphate receptor (InsP ₃ R) Ca ²⁺ signaling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13293-13298.	3.3	79
61	Calpain-cleaved Type 1 Inositol 1,4,5-Trisphosphate Receptor (InsP3R1) Has InsP3-independent Gating and Disrupts Intracellular Ca2+ Homeostasis*. Journal of Biological Chemistry, 2011, 286, 35998-36010.	1.6	33
62	Inositol trisphosphate receptor Ca2+ release channels in neurological diseases. Pflugers Archiv European Journal of Physiology, 2010, 460, 481-494.	1.3	80
63	Gain-of-Function Enhancement of IP ₃ Receptor Modal Gating by Familial Alzheimer's Disease–Linked Presenilin Mutants in Human Cells and Mouse Neurons. Science Signaling, 2010, 3, ra22.	1.6	189
64	Apoptosis Protection by Mcl-1 and Bcl-2 Modulation of Inositol 1,4,5-Trisphosphate Receptor-dependent Ca2+ Signaling. Journal of Biological Chemistry, 2010, 285, 13678-13684.	1.6	156
65	Pseudomonas aeruginosa Homoserine Lactone Activates Store-operated cAMP and Cystic Fibrosis Transmembrane Regulator-dependent Clâ^ Secretion by Human Airway Epithelia. Journal of Biological Chemistry, 2010, 285, 34850-34863.	1.6	31
66	Unitary Ca2+ current through recombinant type 3 InsP3 receptor channels under physiological ionic conditions. Journal of General Physiology, 2010, 136, 687-700.	0.9	41
67	Mechanisms of Ca ²⁺ -stimulated fluid secretion by porcine bronchial submucosal gland serous acinar cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L210-L231.	1.3	60
68	Regulation of IP3R Channel Gating by Ca2+ and Ca2+ Binding Proteins. Current Topics in Membranes, 2010, 66, 235-272.	0.5	23
69	Redox-Regulated Heterogeneous Thresholds for Ligand Recruitment among InsP3R Ca2+-Release Channels. Biophysical Journal, 2010, 99, 407-416.	0.2	17
70	Visualization of inositol 1,4,5-trisphosphate receptors on the nuclear envelope outer membrane by freeze-drying and rotary shadowing for electron microscopy. Journal of Structural Biology, 2010, 171, 372-381.	1.3	14
71	Essential Regulation of Cell Bioenergetics by Constitutive InsP3 Receptor Ca2+ Transfer to Mitochondria. Cell, 2010, 142, 270-283.	13.5	888
72	AMPK supports growth in Drosophila by regulating muscle activity and nutrient uptake in the gut. Developmental Biology, 2010, 344, 293-303.	0.9	42

#	Article	IF	CITATIONS
73	cAMP-activated Ca2+ signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways. Journal of Clinical Investigation, 2010, 120, 3137-3148.	3.9	75
74	AMP-activated protein kinase phosphorylation of the R domain inhibits PKA stimulation of CFTR. American Journal of Physiology - Cell Physiology, 2009, 297, C94-C101.	2.1	67
75	Mechanism of Ca2+ Disruption in Alzheimer's Disease by Presenilin Regulation of InsP3 Receptor Channel Gating. Neuron, 2008, 58, 871-883.	3.8	426
76	A Polymorphism in CALHM1 Influences Ca2+ Homeostasis, Aβ Levels, and Alzheimer's Disease Risk. Cell, 2008, 133, 1149-1161.	13.5	310
77	HCO3â^ Secretion by Murine Nasal Submucosal Gland Serous Acinar Cells during Ca2+-stimulated Fluid Secretion. Journal of General Physiology, 2008, 132, 161-183.	0.9	23
78	Mode Switching Is the Major Mechanism of Ligand Regulation of InsP3 Receptor Calcium Release Channels. Journal of General Physiology, 2007, 130, 631-645.	0.9	59
79	G Protein-Coupled Receptor Ca ²⁺ -Linked Mitochondrial Reactive Oxygen Species Are Essential for Endothelial/Leukocyte Adherence. Molecular and Cellular Biology, 2007, 27, 7582-7593.	1.1	45
80	The Proapoptotic Factors Bax and Bak Regulate T Cell Proliferation through Control of Endoplasmic Reticulum Ca2+ Homeostasis. Immunity, 2007, 27, 268-280.	6.6	92
81	Inositol Trisphosphate Receptor Ca2+ Release Channels. Physiological Reviews, 2007, 87, 593-658.	13.1	1,066
82	Apoptosis regulation by Bcl-x _L modulation of mammalian inositol 1,4,5-trisphosphate receptor channel isoform gating. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12565-12570.	3.3	141
83	A Kinetic Model of Single and Clustered IP3 Receptors in the Absence of Ca2+ Feedback. Biophysical Journal, 2007, 93, 1151-1162.	0.2	86
84	Optical imaging of Ca2+-evoked fluid secretion by murine nasal submucosal gland serous acinar cells. Journal of Physiology, 2007, 582, 1099-1124.	1.3	28
85	Rapid ligandâ€regulated gating kinetics of single inositol 1,4,5â€trisphosphate receptor Ca ²⁺ release channels. EMBO Reports, 2007, 8, 1044-1051.	2.0	59
86	CIB1 and CaBP1 bind to the myo1c regulatory domain. Journal of Muscle Research and Cell Motility, 2007, 28, 285-291.	0.9	26
87	Characterization of ammonia transport by the kidney Rh glycoproteins RhBG and RhCG. American Journal of Physiology - Renal Physiology, 2006, 290, F297-F305.	1.3	99
88	Graded recruitment and inactivation of single InsP3receptor Ca2+-release channels: implications for quartal Ca2+release. Journal of Physiology, 2006, 573, 645-662.	1.3	57
89	CIB1, a Ubiquitously Expressed Ca2+-binding Protein Ligand of the InsP3 Receptor Ca2+ Release Channel. Journal of Biological Chemistry, 2006, 281, 20825-20833.	1.6	53
90	The Presenilin-2 Loop Peptide Perturbs Intracellular Ca2+ Homeostasis and Accelerates Apoptosis. Journal of Biological Chemistry, 2006, 281, 16649-16655.	1.6	40

#	Article	IF	CITATIONS
91	DANGER, a Novel Regulatory Protein of Inositol 1,4,5-Trisphosphate-Receptor Activity. Journal of Biological Chemistry, 2006, 281, 37111-37116.	1.6	36
92	The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R. Nature Cell Biology, 2005, 7, 1021-1028.	4.6	383
93	Inhibition of TRPC5 channels by Ca2+-binding protein 1 in Xenopus oocytes. Pflugers Archiv European Journal of Physiology, 2005, 450, 345-354.	1.3	50
94	Translational Mobility of the Type 3 Inositol 1,4,5-Trisphosphate Receptor Ca2+ Release Channel in Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 2005, 280, 3824-3831.	1.6	46
95	Nuclear Patch Clamp Electrophysiology of Inositol Trisphosphate Receptor Ca2+ Release Channels. , 2005, , 203-229.		1
96	Mechanism of Genetic Complementation of Ammonium Transport in Yeast by Human Erythrocyte Rh-associated Glycoprotein. Journal of Biological Chemistry, 2004, 279, 17443-17448.	1.6	53
97	Assembly and Trafficking of a Multiprotein ROMK (Kir 1.1) Channel Complex by PDZ Interactions. Journal of Biological Chemistry, 2004, 279, 6863-6873.	1.6	86
98	Novel model of calcium and inositol 1,4,5-trisphosphate regulation of InsP3 receptor channel gating in native endoplasmic reticulum. Biological Research, 2004, 37, 513-9.	1.5	12
99	A New Mode of Ca2+ Signaling by G Protein-Coupled Receptors. Current Biology, 2003, 13, 872-876.	1.8	85
100	Regulation of Channel Gating by AMP-activated Protein Kinase Modulates Cystic Fibrosis Transmembrane Conductance Regulator Activity in Lung Submucosal Cells. Journal of Biological Chemistry, 2003, 278, 998-1004.	1.6	102
101	Novel Regulation of Calcium Inhibition of the Inositol 1,4,5-trisphosphate Receptor Calcium-release Channel. Journal of General Physiology, 2003, 122, 569-581.	0.9	39
102	A kinase-regulated mechanism controls CFTR channel gating by disrupting bivalent PDZ domain interactions. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9620-9625.	3.3	91
103	Spontaneous Channel Activity of the Inositol 1,4,5-Trisphosphate (InsP3) Receptor (InsP3R). Application of Allosteric Modeling to Calcium and InsP3 Regulation of InsP3R Single-channel Gating. Journal of General Physiology, 2003, 122, 583-603.	0.9	53
104	Physiological modulation of CFTR activity by AMP-activated protein kinase in polarized T84 cells. American Journal of Physiology - Cell Physiology, 2003, 284, C1297-C1308.	2.1	106
105	Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca2+ release channels. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7711-7716.	3.3	180
106	Identification of the Erythrocyte Rh Blood Group Glycoprotein as a Mammalian Ammonium Transporter. Journal of Biological Chemistry, 2002, 277, 12499-12502.	1.6	168
107	Single-Channel Recordings of Recombinant Inositol Trisphosphate Receptors in Mammalian Nuclear Envelope. Biophysical Journal, 2001, 81, 117-124.	0.2	51
108	Molecular Determinants of Ion Permeation and Selectivity in Inositol 1,4,5-Trisphosphate Receptor Ca2+ Channels. Journal of Biological Chemistry, 2001, 276, 13509-13512.	1.6	78

#	Article	IF	CITATIONS
109	Regulation by Ca2+ and Inositol 1,4,5-Trisphosphate (Insp3) of Single Recombinant Type 3 Insp3 Receptor Channels. Journal of General Physiology, 2001, 117, 435-446.	0.9	131
110	Atp-Dependent Adenophostin Activation of Inositol 1,4,5-Trisphosphate Receptor Channel Gating. Journal of General Physiology, 2001, 117, 299-314.	0.9	45
111	Atp Regulation of Recombinant Type 3 Inositol 1,4,5-Trisphosphate Receptor Gating. Journal of General Physiology, 2001, 117, 447-456.	0.9	39
112	Single-Channel Properties in Endoplasmic Reticulum Membrane of Recombinant Type 3 Inositol Trisphosphate Receptor. Journal of General Physiology, 2000, 115, 241-256.	0.9	81
113	Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMP-activated protein kinase. Journal of Clinical Investigation, 2000, 105, 1711-1721.	3.9	199
114	High-Efficiency Transfer of Cystic Fibrosis Transmembrane Conductance Regulator cDNA into Cystic Fibrosis Airway Cells in Culture Using Lactosylated Polylysine as a Vector. Human Gene Therapy, 1999, 10, 615-622.	1.4	35
115	ATP Regulation of Type 1 Inositol 1,4,5-Trisphosphate Receptor Channel Gating by Allosteric Tuning of Ca2+ Activation. Journal of Biological Chemistry, 1999, 274, 22231-22237.	1.6	92
116	CIC AND CFTR CHLORIDE CHANNEL GATING. Annual Review of Physiology, 1998, 60, 689-717.	5.6	71
117	Cystic Fibrosis Transmembrane Conductance Regulator–associated ATP Release Is Controlled by a Chloride Sensor. Journal of Cell Biology, 1998, 143, 645-657.	2.3	114
118	Subunit Stoichiometry of the Epithelial Sodium Channel. Journal of Biological Chemistry, 1998, 273, 13469-13474.	1.6	201
119	Effects of divalent cations on single-channel conduction properties of <i>Xenopus</i> IP ₃ receptor. American Journal of Physiology - Cell Physiology, 1998, 275, C179-C188.	2.1	51
120	Single-Channel Kinetics, Inactivation, and Spatial Distribution of Inositol Trisphosphate (IP3) Receptors in Xenopus Oocyte Nucleus. Journal of General Physiology, 1997, 109, 571-587.	0.9	156
121	Cystic Fibrosis Transmembrane Conductance Regulator-associated ATP and Adenosine 3′-Phosphate 5′-Phosphosulfate Channels in Endoplasmic Reticulum and Plasma Membranes. Journal of Biological Chemistry, 1997, 272, 7746-7751.	1.6	82
122	Muscarinic Agonists Induce Phosphorylation-independent Activation of the NHE-1 Isoform of the Na+/H+ Antiporter in Salivary Acinar Cells. Journal of Biological Chemistry, 1997, 272, 287-294.	1.6	43
123	Phenotypic Abnormalities in Long-Term Surviving Cystic Fibrosis Mice. Pediatric Research, 1996, 40, 233-241.	1.1	66
124	[13] Fluorescence measurements of cytosolicsodium concentration. Methods in Neurosciences, 1995, 27, 274-288.	0.5	4
125	Mutant (δF508) Cystic Fibrosis Transmembrane Conductance Regulator Clâ^' Channel Is Functional When Retained in Endoplasmic Reticulum of Mammalian Cells. Journal of Biological Chemistry, 1995, 270, 12347-12350.	1.6	133
126	Suppression of Ca2+ oscillations induced by cholecystokinin (CCK) and its analog OPE in rat pancreatic acinar cells by low-level protein kinase C activation without transition of the CCK receptor from a high- to low-affinity state. Pflugers Archiv European Journal of Physiology, 1994, 427, 455-462.	1.3	8

#	Article	IF	CITATIONS
127	Isosmotic modulation of cell volume and intracellular ion activities during stimulation of single exocrine cells. The Journal of Experimental Zoology, 1994, 268, 104-110.	1.4	49
128	Optical imaging of Clâ^' permeabilities in normal and CFTR-expressing mouse L cells. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1152, 83-90.	1.4	9
129	[39] Scanning electrode localization of transport pathways in epithelial tissues. Methods in Enzymology, 1989, 171, 792-813.	0.4	9
130	The Chloride Cell. , 1987, 1, 83-91.		4
131	Vibrating probe analysis of teleost opercular epithelium: Correlation between active transport and leak pathways of individual chloride cells. Journal of Membrane Biology, 1985, 85, 25-35.	1.0	37
132	Localization of ionic pathways in the teleost opercular membrane by extracellular recording with a vibrating probe. Journal of Membrane Biology, 1983, 75, 193-203.	1.0	44
133	Effects of epinephrine, glucagon and vasoactive intestinal polypeptide on chloride secretion by teleost opercular membrane. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1982, 146, 27-34.	0.7	42
134	HORMONAL CONTROL OF CHLORIDE SECRETION BY TELEOST OPERCULAR MEMBRANE. Annals of the New York Academy of Sciences, 1981, 372, 643-643.	1.8	17
135	Differentiation of the Chloride Extrusion Mechanism During Seawater Adaptation of A Teleost Fish, the Cichlid <i>Sarotherodon Mossambicus</i> . Journal of Experimental Biology, 1981, 93, 209-224.	0.8	180