Cristian Vignali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6632333/publications.pdf

Version: 2024-02-01

375 papers 19,882 citations

72 h-index 125 g-index

380 all docs 380 docs citations

times ranked

380

5799 citing authors

#	Article	IF	CITATIONS
1	X-ray spectroscopic survey of highly accreting AGN. Astronomy and Astrophysics, 2022, 657, A57.	5.1	15
2	XXL-HSC: An updated catalogue of high-redshift (<i>>z</i> a€"≥ 3.5) X-ray AGN in the XMM-XXL northern field. Astronomy and Astrophysics, 2022, 658, A175.	5.1	4
3	AGN impact on the molecular gas in galactic centres as probed by CO lines. Monthly Notices of the Royal Astronomical Society, 2022, 512, 686-711.	4.4	13
4	Detection of a radio-filled X-ray cavity within the interstellar medium of NGC 5141. Astronomy and Astrophysics, 2022, 660, A32.	5.1	1
5	The properties of the X-ray corona in the distant (<i>z</i> = 3.91) quasar APM 08279+5255. Astronomy and Astrophysics, 2022, 662, A98.	5.1	6
6	Quasars as high-redshift standard candles. Astronomy and Astrophysics, 2022, 663, L7.	5.1	15
7	Old and new major mergers in the SOSIMPLE galaxy, NGC 7135. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2296-2307.	4.4	6
8	GAMA/XXL: X-ray point sources in low-luminosity galaxies in the GAMA GO2/XXL-N field. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3101-3112.	4.4	0
9	SUPER. Astronomy and Astrophysics, 2021, 646, A96.	5.1	25
10	A possible sub-kiloparsec dual AGN buried behind the galaxy curtain. Astronomy and Astrophysics, 2021, 646, A153.	5.1	9
11	An <i>XMM–Newton</i> study of active–inactive galaxy pairs. Monthly Notices of the Royal Astronomical Society, 2021, 504, 393-405.	4.4	7
12	Unveiling the nature of 11 dusty star-forming galaxies at the peak of cosmic star formation history. Monthly Notices of the Royal Astronomical Society, 2021, 504, 928-950.	4.4	10
13	Connecting X-ray nuclear winds with galaxy-scale ionised outflows in two <i>z</i> â^¼â€" 1.5 lensed qu Astronomy and Astrophysics, 2021, 648, A99.	uasars. 5.1	15
14	<i>Chandra</i> and <i>Magellan</i> /i>/FIRE follow-up observations of PSO167–13: An X-ray weak QSO at <i>z</i> = 6.515. Astronomy and Astrophysics, 2021, 649, A133.	5.1	17
15	The connection between star formation and supermassive black hole activity in the local Universe. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2619-2637.	4.4	16
16	Simulating the infrared sky with a SPRITZ. Astronomy and Astrophysics, 2021, 651, A52.	5.1	7
17	Capturing dual AGN activity and kiloparsec-scale outflows in IRAS 20210+1121. Astronomy and Astrophysics, 2021, 654, A154.	5.1	2
18	An ALMA view of 11 dusty star-forming galaxies at the peak of cosmic star formation history. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3998-4015.	4.4	13

#	Article	IF	CITATIONS
19	SUPER. Astronomy and Astrophysics, 2021, 654, L8.	5.1	18
20	The most luminous blue quasars at 3.0 < <i>z</i> < 3.3. Astronomy and Astrophysics, 2021, 653, A158.	5.1	10
21	X-Ray Sources in the 1.75 Ms Ultra Narrow Deep Field Observed by XMM-Newton. Astrophysical Journal, 2021, 919, 18.	4.5	1
22	SUPER. Astronomy and Astrophysics, 2021, 654, A90.	5.1	10
23	The XMM-SERVS Survey: XMM-Newton Point-source Catalogs for the W-CDF-S and ELAIS-S1 Fields. Astrophysical Journal, Supplement Series, 2021, 256, 21.	7.7	16
24	Mid-IR cosmological spectrophotometric surveys from space: Measuring AGN and star formation at the cosmic noon with a SPICA-like mission. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	4
25	X-Ray Redshifts for Obscured AGN: A Case Study in the J1030 Deep Field. Astrophysical Journal, 2021, 906, 90.	4.5	12
26	The role of SPICA-like missions and the Origins Space Telescope in the quest for heavily obscured AGN and synergies with Athena. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	2
27	Multiphase Powerful Outflows Detected in High-z Quasars. Astrophysical Journal, 2021, 920, 24.	4.5	18
28	Compton-Thick AGN in the NuSTAR ERA VII. A joint NuSTAR, Chandra, and XMM-Newton Analysis of Two Nearby, Heavily Obscured Sources. Astrophysical Journal, 2021, 922, 159.	4.5	7
29	Simulating infrared spectro-photometric surveys with a Spritz. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	0
30	Compton-thick AGN in the NuSTAR Era VI: The Observed Compton-thick Fraction in the Local Universe. Astrophysical Journal, 2021, 922, 252.	4.5	19
31	Multi-Wavelength Study of a Proto-BCG at $z = 1.7$. Galaxies, 2021, 9, 115.	3.0	3
32	Exploratory X-Ray Monitoring of Luminous Radio-quiet Quasars at High Redshift: Extended Time-series Analyses and Stacked Imaging Spectroscopy. Astrophysical Journal, 2021, 923, 111.	4.5	2
33	The deep <i>Chandra</i> survey in the SDSS J1030+0524 field. Astronomy and Astrophysics, 2020, 637, A52.	5.1	10
34	Web of the giant: Spectroscopic confirmation of a large-scale structure around the $\langle i \rangle z \langle i \rangle = 6.31$ quasar SDSS J1030+0524. Astronomy and Astrophysics, 2020, 642, L1.	5.1	23
35	Universal bolometric corrections for active galactic nuclei over seven luminosity decades. Astronomy and Astrophysics, 2020, 636, A73.	5.1	134
36	Linking the small-scale relativistic winds and the large-scale molecular outflows in the $z\hat{A}$ = 1.51 lensed quasar HSÂ0810+2554. Monthly Notices of the Royal Astronomical Society, 2020, 496, 598-611.	4.4	12

#	Article	IF	CITATIONS
37	Dust and gas content of high-redshift galaxies hosting obscured AGN in the <i>Chandra</i> Deep Field-South. Astronomy and Astrophysics, 2020, 636, A37.	5.1	31
38	Radio morphology–accretion mode link in Fanaroff–Riley type II low-excitation radio galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4355-4366.	4.4	22
39	The WISSH quasars project. Astronomy and Astrophysics, 2020, 635, L5.	5.1	20
40	The WISSH quasars project. Astronomy and Astrophysics, 2020, 635, A157.	5.1	25
41	EXTraS discovery of an X-ray superflare from an L dwarf. Astronomy and Astrophysics, 2020, 634, L13.	5.1	16
42	The XXL Survey. Astronomy and Astrophysics, 2020, 638, A45.	5.1	7
43	The XMM deep survey in the CDFS. Astronomy and Astrophysics, 2020, 639, A51.	5.1	11
44	Molecular gas in the central region of NGC 7213. Astronomy and Astrophysics, 2020, 641, A151.	5.1	6
45	Revisiting dual AGN candidates with spatially resolved LBT spectroscopy. Astronomy and Astrophysics, 2020, 639, A117.	5.1	9
46	SUPER. Astronomy and Astrophysics, 2020, 642, A147.	5.1	61
47	Discovery of molecular gas fueling galaxy growth in a protocluster at $\langle i \rangle z \langle j \rangle = 1.7$. Astronomy and Astrophysics, 2020, 641, L6.	5.1	17
48	<i>Chandra</i> reveals a luminous Compton-thick QSO powering a Ly <i>$\hat{l}\pm$ blob in a <i>z</i> = 4 starbursting protocluster. Astronomy and Astrophysics, 2020, 642, A149.</i>	5.1	14
49	Quasars as standard candles. Astronomy and Astrophysics, 2020, 642, A150.	5.1	92
50	SUPER. Astronomy and Astrophysics, 2020, 644, A175.	5.1	25
51	Unveiling Sub-pc Supermassive Black Hole Binary Candidates in Active Galactic Nuclei. Astrophysical Journal, 2020, 902, 10.	4.5	12
52	Piercing through Highly Obscured and Compton-thick AGNs in the Chandra Deep Fields. II. Are Highly Obscured AGNs the Missing Link in the Merger-triggered AGN–Galaxy Coevolution Models?. Astrophysical Journal, 2020, 903, 49.	4.5	11
53	X-raying winds in distant quasars: The first high-redshift wind duty cycle. Astronomy and Astrophysics, 2020, 638, A136.	5.1	2
54	Testing the blast-wave AGN feedback scenario in MCG-03-58-007. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1927-1938.	4.4	16

#	Article	IF	CITATIONS
55	Discovery of the first heavily obscured QSO candidate at <i>z</i> > 6 in a close galaxy pair. Astronomy and Astrophysics, 2019, 628, L6.	5.1	31
56	Broad-band X-ray analysis of local mid-infrared-selected Compton-thick AGN candidates. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1662-1674.	4.4	10
57	Piercing through Highly Obscured and Compton-thick AGNs in the Chandra Deep Fields. I. X-Ray Spectral and Long-term Variability Analyses. Astrophysical Journal, 2019, 877, 5.	4.5	23
58	Compton-thick AGNs in the NuSTAR Era. II. A Deep NuSTAR and XMM-Newton View of the Candidate Compton-thick AGN in NGC 1358. Astrophysical Journal, 2019, 870, 60.	4.5	17
59	Compton-thick AGNs in the NuSTAR Era. III. A Systematic Study of the Torus Covering Factor. Astrophysical Journal, 2019, 872, 8.	4.5	33
60	NuSTAR Measurement of Coronal Temperature in Two Luminous, High-redshift Quasars. Astrophysical Journal Letters, 2019, 875, L20.	8.3	18
61	X-ray emission of <i>z</i> > 2.5 active galactic nuclei can be obscured by their host galaxies. Astronomy and Astrophysics, 2019, 623, A172.	5.1	43
62	Quasars as standard candles II. Astronomy and Astrophysics, 2019, 631, A120.	5.1	46
63	Obscured AGN at 1.5 < <i>z</i> < 3.0 from the zCOSMOS-deep Survey. Astronomy and Astrophysics, 2019, 626, A9.	5.1	35
64	The gentle monster PDS 456. Astronomy and Astrophysics, 2019, 628, A118.	5.1	53
65	The WISSH quasars project. Astronomy and Astrophysics, 2019, 630, A111.	5.1	18
66	Testing the paradigm: First spectroscopic evidence of a quasar–galaxy Mpc-scale association at cosmic dawn. Astronomy and Astrophysics, 2019, 631, L10.	5.1	6
67	The quest for dual and binary supermassive black holes: A multi-messenger view. New Astronomy Reviews, 2019, 86, 101525.	12.8	119
68	Discovery of a galaxy overdensity around a powerful, heavily obscured FRII radio galaxy at <i>z</i> = 1.7: star formation promoted by large-scale AGN feedback?. Astronomy and Astrophysics, 2019, 632, A26.	5.1	24
69	The most luminous blue quasars at 3.0 < <i>z</i> < 3.3. Astronomy and Astrophysics, 2019, 632, A109.	5.1	32
70	The X-ray properties of $\langle i \rangle z \langle i \rangle$ > 6 quasars: no evident evolution of accretion physics in the first Gyr of the Universe. Astronomy and Astrophysics, 2019, 630, A118.	5.1	71
71	Linking black hole growth with host galaxies: the accretion–stellar mass relation and its cosmic evolution. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1887-1911.	4.4	69
72	CO excitation in the Seyfert galaxy NGC 34: stars, shock or AGN driven?. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3640-3648.	4.4	22

#	Article	lF	Citations
73	The XMM-SERVS survey: new XMM–Newton point-source catalogue for the XMM-LSS field. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2132-2163.	4.4	59
74	Compton-thick AGNs in the NuSTAR Era. Astrophysical Journal, 2018, 854, 49.	4.5	63
75	The XXL Survey. Astronomy and Astrophysics, 2018, 620, A4.	5.1	13
76	The XXL Survey. Astronomy and Astrophysics, 2018, 620, A6.	5.1	10
77	The XXL Survey. Astronomy and Astrophysics, 2018, 620, A15.	5.1	8
78	Variability-selected Low-luminosity Active Galactic Nuclei Candidates in the 7 Ms Chandra Deep Field-South. Astrophysical Journal, 2018, 868, 88.	4.5	11
79	The XXL Survey. Astronomy and Astrophysics, 2018, 620, A20.	5.1	20
80	The role of molecular gas in the nuclear regions of IRAS 00183-7111. Astronomy and Astrophysics, 2018, 616, A127.	5.1	5
81	SUPER. Astronomy and Astrophysics, 2018, 620, A82.	5.1	36
82	<i>NuSTAR</i> reveals that the heavily obscured nucleus of NGC 2785 was the contaminant of IRAS 09104+4109 in the <i>Beppo</i> SAX/PDS hard X-rays. Astronomy and Astrophysics, 2018, 619, A16.	5.1	1
83	Yet another UFO in the X-ray spectrum of a high- <i>z</i> lensed QSO. Astronomy and Astrophysics, 2018, 610, L13.	5.1	15
84	The XXL Survey. Astronomy and Astrophysics, 2018, 620, A7.	5.1	11
85	The XXL Survey. Astronomy and Astrophysics, 2018, 620, A19.	5.1	7
86	Swift data hint at a binary supermassive black hole candidate at sub-parsec separation. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3804-3813.	4.4	14
87	Molecular outflow and feedback in the obscured quasar XID2028 revealed by ALMA. Astronomy and Astrophysics, 2018, 612, A29.	5.1	70
88	Disclosing the properties of low-redshift dual AGN through XMM-Newton and SDSS spectroscopy. Monthly Notices of the Royal Astronomical Society, 2018, 480, 1639-1655.	4.4	19
89	The WISSH quasars project. Astronomy and Astrophysics, 2018, 617, A81.	5.1	86
90	Molecular gas content in obscured AGN at <i>z</i> > 1. Astronomy and Astrophysics, 2018, 619, A90.	5.1	35

#	Article	IF	Citations
91	The Chandra COSMOS Legacy Survey: Compton thick AGN at high redshift. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2578-2592.	4.4	49
92	The XXL Survey. Astronomy and Astrophysics, 2018, 620, A12.	5.1	28
93	Faint \hat{I}^3 -ray sources at low redshift: the radio galaxy IC 1531. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5236-5246.	4.4	6
94	ALMA view of a massive spheroid progenitor: a compact rotating core of molecular gas in an AGN host at z = 2.226. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3956-3963.	4.4	50
95	Restframe UV-to-optical spectroscopy of APM 08279+5255. Astronomy and Astrophysics, 2018, 617, A118.	5.1	9
96	No evidence for an Eddington-ratio dependence of X-ray weakness in BALQSOs. Monthly Notices of the Royal Astronomical Society, 2018, 479, 5335-5342.	4.4	7
97	Probing black hole accretion in quasar pairs at high redshift. Monthly Notices of the Royal Astronomical Society, 2018, 477, 780-790.	4.4	9
98	<i>Chandra</i> and ALMA observations of the nuclear activity in two strongly lensed star-forming galaxies. Astronomy and Astrophysics, 2018, 610, A53.	5.1	20
99	High-redshift AGN in the Chandra Deep Fields: the obscured fraction and space density of the sub-L* population. Monthly Notices of the Royal Astronomical Society, 2018, 473, 2378-2406.	4.4	110
100	The 500Âks <i>Chandra</i> observation of the <i>z</i> Â=Â6.31 QSO SDSS J1030Â+Â0524. Astronomy and Astrophysics, 2018, 614, A121.	5.1	33
101	The hyperluminous Compton-thick <i>z</i> â ¹ /4 2 quasar nucleus of the hot DOG W1835+4355 observed by <i>NuSTAR</i> . Astronomy and Astrophysics, 2018, 618, A28.	5.1	18
102	THE CHANDRA DEEP FIELD-SOUTH SURVEY: 7 MS SOURCE CATALOGS. Astrophysical Journal, Supplement Series, 2017, 228, 2.	7.7	337
103	Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate. Astrophysical Journal, 2017, 842, 72.	4.5	7 3
104	A new, faint population of X-ray transients. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4841-4857.	4.4	46
105	Type 2 AGN Host Galaxies in the Chandra-COSMOS Legacy Survey: No Evidence of AGN-driven Quenching. Astrophysical Journal, 2017, 841, 102.	4.5	32
106	Magnifying the Early Episodes of Star Formation: Super Star Clusters at Cosmological Distances*. Astrophysical Journal, 2017, 842, 47.	4.5	68
107	The <scp>XXL</scp> survey: First results and future. Astronomische Nachrichten, 2017, 338, 334-341.	1.2	9
108	The X-ray properties of <i>z</i> ~ 6 luminous quasars. Astronomy and Astrophysics, 2017, 603, A128.	5.1	71

#	Article	IF	CITATIONS
109	Exploratory X-Ray Monitoring of Luminous Radio-quiet Quasars at High Redshift: No Evidence for Evolution in X-Ray Variability. Astrophysical Journal, 2017, 848, 46.	4.5	10
110	The <scp>XMM</scp> deep survey in the Chandra Deep Field South. Astronomische Nachrichten, 2017, 338, 311-315.	1.2	0
111	Unveiling multiple <scp>AGN</scp> activity in galaxy mergers. Astronomische Nachrichten, 2017, 338, 262-268.	1.2	1
112	CO excitation in the Seyfert galaxy NGC 7130. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 470, L64-L68.	3.3	20
113	Deepest View of AGN X-Ray Variability with the 7 Ms Chandra Deep Field-South Survey. Astrophysical Journal, 2017, 849, 127.	4.5	25
114	Unbiased Large Spectroscopic Surveys of Galaxies Selected by SPICA Using Dust Bands. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	12
115	Tracing the Evolution of Dust Obscured Star Formation and Accretion Back to the Reionisation Epoch with <i>SPICA </i> 10	3.4	15
116	Galaxy Evolution Studies with the <i>SPace IR Telescope for Cosmology and Astrophysics</i> (<i>SPICA</i>): The Power of IR Spectroscopy. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	32
117	Feedback and Feeding in the Context of Galaxy Evolution with <i>SPICA </i> Molecular Outflows and Inflows. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	13
118	Active galactic nuclei vs. host galaxy properties in the COSMOS field. Astronomy and Astrophysics, 2017, 602, A123.	5.1	75
119	Detection of faint broad emission lines in type 2 AGN – I. Near-infrared observations and spectral fitting. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1783-1832.	4.4	21
120	XMM–Newton and NuSTAR joint observations of Mrk 915: a deep look into the X-ray propertiesâ~ Monthly Notices of the Royal Astronomical Society, 2017, 470, 3924-3936.	4.4	4
121	X-ray spectroscopy of the zÂ=Â6.4 quasar SDSS J1148+5251. Monthly Notices of the Royal Astronomical Society, 2017, 467, 3590-3597.	4.4	21
122	Detection of faint broad emission lines in type 2 AGNs â€" III. On the <i>M</i> BH-Ïfâ<† relation of type 2 AGNs. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 471, L41-L46.	3.3	14
123	X-Ray Spectral Analyses of AGNs from the 7Ms Chandra Deep Field-South Survey: The Distribution, Variability, and Evolutions of AGN Obscuration. Astrophysical Journal, Supplement Series, 2017, 232, 8.	7.7	52
124	Detection of faint broad emission lines in type 2 AGN $\hat{a}\in$ II. On the measurement of the black hole mass of type 2 AGN and the unified model. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 468, L97-L102.	3.3	36
125	Tracing the accretion history of supermassive black holes through X-ray variability: results from the ChandraDeep Field-South. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4398-4411.	4.4	42
126	The XMM deep survey in the CDF-S. Astronomy and Astrophysics, 2017, 608, A32.	5.1	6

#	Article	IF	CITATIONS
127	On the discovery of fast molecular gas in the UFO/BAL quasar APM 08279+5255 at <i>z</i> z <	5.1	53
128	Primordial environment of supermassive black holes. Astronomy and Astrophysics, 2017, 606, A23.	5.1	29
129	The active nucleus of the ULIRG IRAS F00183–7111 viewed by <i>NuSTAR</i> . Astronomy and Astrophysics, 2017, 606, A117.	5.1	4
130	The WISSH quasars project. Astronomy and Astrophysics, 2017, 604, A67.	5.1	58
131	The WISSH quasars project. Astronomy and Astrophysics, 2017, 608, A51.	5.1	66
132	The WISSH quasars project. Astronomy and Astrophysics, 2017, 598, A122.	5.1	133
133	THE CHANDRA COSMOS LEGACY SURVEY: CLUSTERING OF X-RAY-SELECTED AGNs AT 2.9Ââ‰ÂzÂâ‰Â5.5 USIN PHOTOMETRIC REDSHIFT PROBABILITY DISTRIBUTION FUNCTIONS. Astrophysical Journal, 2016, 832, 70.	G _{4.5}	20
134	X-ray observations of dust obscured galaxies in the <i>Chandra</i> deep field south. Astronomy and Astrophysics, 2016, 592, A109.	5.1	13
135	An extreme [O III] emitter at <i>z</i> = 3.2: a low metallicity Lyman continuum source. Astronomy and Astrophysics, 2016, 585, A51.	5.1	147
136	LONG-TERM X-RAY VARIABILITY OF TYPICAL ACTIVE GALACTIC NUCLEI IN THE DISTANT UNIVERSE. Astrophysical Journal, 2016, 831, 145.	4.5	56
137	The XXL Survey. Astronomy and Astrophysics, 2016, 592, A10.	5.1	11
138	HUBBLE IMAGING OF THE IONIZING RADIATION FROM A STAR-FORMING GALAXY AT $Z=3.2$ WITH *. Astrophysical Journal, 2016, 825, 41.	4.5	151
139	HIGH-RESOLUTION SPECTROSCOPY OF A YOUNG, LOW-METALLICITY OPTICALLY THIN L = $0.02L^*$ STAR-FORMING GALAXY AT $z=3.12^*$. Astrophysical Journal Letters, 2016, 821, L27.	8.3	91
140	Detection of Faint BLR Components in the Starburst/Seyfert Galaxy NGC 6221 and Measure of the Central BH Mass. Frontiers in Astronomy and Space Sciences, 2016, 3, .	2.8	4
141	<i>NuSTAR</i> reveals the extreme properties of the super-Eddington accreting supermassive black hole in PG 1247+267. Astronomy and Astrophysics, 2016, 590, A77.	5.1	26
142	THE EVOLUTION OF NORMAL GALAXY X-RAY EMISSION THROUGH COSMIC HISTORY: CONSTRAINTS FROM THE 6 MS CHANDRA DEEP FIELD-SOUTH. Astrophysical Journal, 2016, 825, 7.	4.5	160
143	The XXL Survey. Astronomy and Astrophysics, 2016, 592, A1.	5.1	199
144	The 2–10 keV unabsorbed luminosity function of AGN from the LSS, CDFS, and COSMOS surveys. Astronomy and Astrophysics, 2016, 590, A80.	5.1	21

#	Article	IF	Citations
145	THE CHANDRA COSMOS-LEGACY SURVEY: SOURCE X-RAY SPECTRAL PROPERTIES. Astrophysical Journal, 2016, 830, 100.	4.5	93
146	<i>XMM-Newton</i> reveals a Seyfert-like X-ray spectrum in the <i>z</i> = 3.6 QSO B1422+231. Astronomy and Astrophysics, 2016, 592, A104.	5.1	9
147	Tracing black hole accretion with SED decomposition and IR lines: from local galaxies to the high- <i>z</i> Universe. Monthly Notices of the Royal Astronomical Society, 2016, 458, 4297-4320.	4.4	56
148	THE CHANDRA COSMOS LEGACY SURVEY: OPTICAL/IR IDENTIFICATIONS. Astrophysical Journal, 2016, 817, 34.	4.5	242
149	THE CHANDRA COSMOS-LEGACY SURVEY: THE zÂ>Â3 SAMPLE. Astrophysical Journal, 2016, 827, 150.	4.5	35
150	The deepest X-ray view of high-redshift galaxies: constraints on low-rate black hole accretion. Monthly Notices of the Royal Astronomical Society, 2016, 463, 348-374.	4.4	64
151	A GIANT LYα NEBULA IN THE CORE OF AN X-RAY CLUSTER AT ZÂ=Â1.99: IMPLICATIONS FOR EARLY ENERGY INJECTION. Astrophysical Journal, 2016, 829, 53.	4.5	27
152	THE CHANDRA COSMOS LEGACY SURVEY: OVERVIEW AND POINT SOURCE CATALOG. Astrophysical Journal, 2016, 819, 62.	4.5	348
153	The XXL Survey. Astronomy and Astrophysics, 2016, 592, A5.	5.1	33
154	<i>NuSTAR</i> REVEALS EXTREME ABSORPTION IN <i>z</i> < 0.5 TYPE 2 QUASARS. Astrophysical Journal, 2015, 809, 115.	4.5	62
155	The structure of the X-ray absorber in Mrk 915 revealed by <i>Swift < /i> Monthly Notices of the Royal Astronomical Society, 2015, 453, 3612-3619.</i>	4.4	3
156	Extending virial black hole mass estimates to low-luminosity or obscured AGN: the cases of NGC 4395 and MCG -01-24-012. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1526-1535.	4.4	23
157	The first ultraviolet quasar-stacked spectrum at z \hat{a} % f 2.4 from WFC3. Monthly Notices of the Royal Astronomical Society, 2015, 449, 4204-4220.	4.4	197
158	The hidden quasar nucleus of a WISE-selected, hyperluminous, dust-obscured galaxy at <i>z</i> ~ 2.3. Astronomy and Astrophysics, 2015, 574, L9.	5.1	39
159	The most obscured AGN in the COSMOS field. Astronomy and Astrophysics, 2015, 578, A120.	5.1	26
160	The XMM deep survey in the CDF-S. Astronomy and Astrophysics, 2015, 583, A141.	5.1	25
161	AGN feedback in action: a new powerful wind in 1SXPS J050819.8+172149?. Astronomy and Astrophysics, 2015, 581, A87.	5.1	5
162	The <i>XMM-Newton </i> survey in the H-ATLAS field. Astronomy and Astrophysics, 2015, 577, A121.	5.1	17

#	Article	IF	Citations
163	The XMM Deep Survey in the CDF-S. Astronomy and Astrophysics, 2015, 574, A49.	5.1	7
164	Compton thick AGN in the XMM-COSMOS survey. Astronomy and Astrophysics, 2015, 573, A137.	5.1	77
165	Multiple AGN in the crowded field of the compact group SDSS J0959+1259. Monthly Notices of the Royal Astronomical Society, 2015, 453, 214-221.	4.4	8
166	Mapping the average AGN accretion rate in the SFR–M* plane for Herschelâ~selected galaxies at OÂ<ÂzÂâ‰Â2.5. Monthly Notices of the Royal Astronomical Society, 2015, 449, 373-389.	4.4	73
167	An extremely young massive clump forming by gravitational collapse in a primordial galaxy. Nature, 2015, 521, 54-56.	27.8	53
168	DETAILED SHAPE AND EVOLUTIONARY BEHAVIOR OF THE X-RAY LUMINOSITY FUNCTION OF ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2015, 804, 104.	4.5	86
169	Deep X-ray spectroscopy and imaging of the Seyfert 2 galaxy, ESO 138-G001. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2155-2162.	4.4	8
170	X-shooter reveals powerful outflows in z $\hat{a}^{1/4}$ 1.5 X-ray selected obscured quasi-stellar objects. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2394-2417.	4.4	128
171	CO luminosity function from <i>Herschel</i> -selected galaxies and the contribution of AGN. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 456, L40-L44.	3.3	27
172	The XMM deep survey in the CDF-S. Astronomy and Astrophysics, 2015, 574, A144.	5.1	7
173	Peering through the holes: the far-UV color of star-forming galaxies at <i>z </i> ~ 3â°4 and the escaping fraction of ionizing radiation. Astronomy and Astrophysics, 2015, 576, All6.	5.1	70
174	X-ray observation of ULAS J1120+0641, the most distant quasar at $\langle i \rangle z \langle i \rangle = 7.08$. Astronomy and Astrophysics, 2014, 563, A46.	5.1	21
175	The space density of Compton-thick AGN at <i>z</i> â%^0.8 in the zCOSMOS-Bright Survey. Astronomy and Astrophysics, 2014, 571, A34.	5.1	18
176	Primordial environment of super massive black holes: large-scale galaxy overdensities around < i>zÅ~ 6 quasars with LBT. Astronomy and Astrophysics, 2014, 568, A1.	5.1	57
177	The hard X-ray luminosity function of high-redshift (3Â<ÂzÂ≲Â5) active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3557-3574.	4.4	77
178	Black hole accretion preferentially occurs in gas-rich galaxies*. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1059-1065.	4.4	49
179	The MBH-M* relation for X-ray-obscured, red QSOs at 1.2Â<ÂzÂ<Â2.6. Monthly Notices of the Royal Astronomical Society, 2014, 443, 2077-2091.	4.4	68
180	Tracing the cosmic growth of supermassive black holes to zÂâ^1/4Â3 with Herschelâ~ Monthly Notices of the Royal Astronomical Society, 2014, 439, 2736-2754.	4.4	150

#	Article	IF	Citations
181	<i>XMM-NEWTON</i> OBSERVATIONS OF THREE INTERACTING LUMINOUS INFRARED GALAXIES. Astrophysical Journal, 2014, 787, 40.	4.5	3
182	ACTIVE GALACTIC NUCLEUS X-RAY VARIABILITY IN THE <i>XMM</i> -COSMOS SURVEY. Astrophysical Journal, 2014, 781, 105.	4.5	51
183	NuSTAR J033202–2746.8: DIRECT CONSTRAINTS ON THE COMPTON REFLECTION IN A HEAVILY OBSCURED QUASAR AT z â‰^2. Astrophysical Journal, 2014, 786, 16.	4.5	29
184	CONSTRAINING THE TRUE NATURE OF AN EXOTIC BINARY IN THE CORE OF NGC 6624. Astrophysical Journal Letters, 2014, 784, L29.	8.3	15
185	The dust content of QSO hosts at high redshift. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2765-2783.	4.4	52
186	The incidence of obscuration in active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3550-3567.	4.4	245
187	The XMM–Newton Bright Survey sample of absorbed quasars: X-ray and accretion properties. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2580-2598.	4.4	7
188	EXPLORATORY X-RAY MONITORING OF LUMINOUS RADIO-QUIET QUASARS AT HIGH REDSHIFT: INITIAL RESULTS. Astrophysical Journal, 2014, 783, 116.	4.5	27
189	ALMA reveals a warm and compact starburst around a heavily obscured supermassive black hole at <i>z</i> = 4.75. Astronomy and Astrophysics, 2014, 562, A67.	5.1	63
190	Gas reservoir of a hyper-luminous quasar at <i>z</i> = 2.6. Astronomy and Astrophysics, 2014, 565, A91.	5.1	18
191	A 52 hours VLT/FORS2 spectrum of a bright <i>z < /i> ~ 7 HUDF galaxy: no Ly-<i>\hat{l} ± < /i> emission. Astronomy and Astrophysics, 2014, 569, A78.</i></i>	5.1	25
192	Spectral energy distributions of type 1 AGN in XMM-COSMOS $\hat{a} \in \mathbb{C}$ II. Shape evolution. Monthly Notices of the Royal Astronomical Society, 2013, 438, 1288-1304.	4.4	29
193	A quasar–galaxy mixing diagram: quasar spectral energy distribution shapes in the optical to near-infrared. Monthly Notices of the Royal Astronomical Society, 2013, 434, 3104-3121.	4.4	23
194	The Chandra-COSMOS survey – IV. X-ray spectra of the bright sample. Monthly Notices of the Royal Astronomical Society, 2013, 431, 978-996.	4.4	55
195	THE <i>XMM-NEWTON</i> SPECTRUM OF A CANDIDATE RECOILING SUPERMASSIVE BLACK HOLE: AN ELUSIVE INVERTED P-CYGNI PROFILE. Astrophysical Journal, 2013, 778, 62.	4.5	8
196	THE OBSCURED FRACTION OF ACTIVE GALACTIC NUCLEI IN THE <i>XMM </i> -COSMOS SURVEY: A SPECTRAL ENERGY DISTRIBUTION PERSPECTIVE. Astrophysical Journal, 2013, 777, 86.	4.5	118
197	The high-redshift (z > 3) active galactic nucleus population in the 4-Ms Chandra Deep Field-South. Monthly Notices of the Royal Astronomical Society, 2013, 428, 354-369.	4.4	37
198	The XMM deep survey in the CDF-S. Astronomy and Astrophysics, 2013, 555, A42.	5.1	54

#	Article	IF	CITATIONS
199	AN X-RAY AND MULTIWAVELENGTH SURVEY OF HIGHLY RADIO-LOUD QUASARS AT <i>>z</i> > 4: JET-LINKED EMISSION IN THE BRIGHTEST RADIO BEACONS OF THE EARLY UNIVERSE. Astrophysical Journal, 2013, 763, 109.	4.5	33
200	Obscured AGN at <i>>z</i> ~ 1 from the zCOSMOS-Bright Survey. Astronomy and Astrophysics, 2013, 55 A29.	56 5.1	44
201	Obscured accretion from AGN surveys. Proceedings of the International Astronomical Union, 2013, 9, 132-138.	0.0	1
202	The XMM deep survey in the CDF-S. Astronomy and Astrophysics, 2013, 555, A43.	5.1	56
203	The XMM deep survey in the CDF-S. Astronomy and Astrophysics, 2013, 556, A114.	5.1	12
204	The XMM Deep survey in the CDF-S. Astronomy and Astrophysics, 2013, 555, A79.	5.1	15
205	THE <i>CHANDRA</i> COSMOS SURVEY. III. OPTICAL AND INFRARED IDENTIFICATION OF X-RAY POINT SOURCES. Astrophysical Journal, Supplement Series, 2012, 201, 30.	7.7	200
206	VARIABILITY-SELECTED LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI IN THE 4 Ms CHANDRA DEEP FIELD-SOUTH. Astrophysical Journal, 2012, 748, 124.	4.5	56
207	TRACKING DOWN THE SOURCE POPULATION RESPONSIBLE FOR THE UNRESOLVED COSMIC 6–8ÂkeV BACKGROUND. Astrophysical Journal, 2012, 758, 129.	4.5	49
208	GOODS- <i>Herschel</i> : ultra-deep <i>XMM-Newton</i> observations reveal AGN/star-formation connection. Astronomy and Astrophysics, 2012, 546, A58.	5.1	94
209	The XMM deep survey in the CDF-S. Astronomy and Astrophysics, 2012, 546, A84.	5.1	45
210	<i>CHANDRA</i> HIGH-RESOLUTION OBSERVATIONS OF CID-42, A CANDIDATE RECOILING SUPERMASSIVE BLACK HOLE. Astrophysical Journal, 2012, 752, 49.	4.5	53
211	THE 4 Ms <i>CHANDRA</i> DEEP FIELD-SOUTH NUMBER COUNTS APPORTIONED BY SOURCE CLASS: PERVASIVE ACTIVE GALACTIC NUCLEI AND THE ASCENT OF NORMAL GALAXIES. Astrophysical Journal, 2012, 752, 46.	4.5	173
212	SPECTRAL ENERGY DISTRIBUTIONS OF TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY. I. THE <i>XMM</i> COSMOS SAMPLE. Astrophysical Journal, 2012, 759, 6.	4.5	67
213	The nature of the unresolved extragalactic cosmic soft X-ray background. Monthly Notices of the Royal Astronomical Society, 2012, 427, 651-663.	4.4	44
214	Accreting supermassive black holes in the COSMOS field and the connection to their host galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 427, 3103-3133.	4.4	202
215	X-ray properties of radio-selected star forming galaxies in the <i>Chandra </i> -COSMOS survey. Astronomy and Astrophysics, 2012, 542, A16.	5.1	11
216	FeÂK emission from active galaxies in the COSMOS field. Astronomy and Astrophysics, 2012, 537, A86.	5.1	35

#	Article	IF	CITATIONS
217	HSÂ1700+6416: the first high-redshift unlensed narrow absorption line-QSO showing variable high-velocity outflows. Astronomy and Astrophysics, 2012, 544, A2.	5.1	31
218	The AGN content in luminous infrared galaxies at $z\hat{a}^{1}/4$ 2 from a global SED analysis including Herschel data. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1909-1920.	4.4	30
219	Bolometric luminosities and Eddington ratios of X-ray selected active galactic nuclei in the <i>XMM</i> -COSMOS survey. Monthly Notices of the Royal Astronomical Society, 2012, 425, 623-640.	4.4	315
220	The bolometric output and host-galaxy properties of obscured AGN in the XMM-COSMOS survey. Astronomy and Astrophysics, 2011, 534, A110.	5.1	54
221	A COMPTON-THICK ACTIVE GALACTIC NUCLEUS AT $\langle i \rangle z \langle i \rangle$ â^1/4 5 IN THE 4 Ms CHANDRA DEEP FIELD SOUTH. Astrophysical Journal Letters, 2011, 730, L28.	8.3	52
222	Variable X-ray absorption in the mini-BAL QSO PGÂ1126-041. Astronomy and Astrophysics, 2011, 536, A49.	5.1	44
223	REVEALING A POPULATION OF HEAVILY OBSCURED ACTIVE GALACTIC NUCLEI AT <i>>z</i>)â%^0.5-1 IN THE CHANDRA DEEP FIELD-SOUTH. Astrophysical Journal, 2011, 740, 37.	4.5	36
224	X-ray spectroscopy of the Compton-thick Seyfert 2 ESO 138Ââ^'ÂG1. Astronomy and Astrophysics, 2011, 534, A126.	5.1	15
225	Black hole accretion and host galaxies of obscured quasars in XMM-COSMOS. Astronomy and Astrophysics, 2011, 535, A80.	5.1	76
226	On the <i>L</i> _x â€" <i>L</i> _{6â€%<i>μ</i>m} ratio as a diagnostic for Compton-thick AGN. Astronomy and Astrophysics, 2011, 534, A23.	5.1	29
227	THE IMPACT OF GALAXY INTERACTIONS ON ACTIVE GALACTIC NUCLEUS ACTIVITY IN zCOSMOS. Astrophysical Journal, 2011, 743, 2.	4.5	148
228	THE POPULATION OF HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI IN THE <i>CHANDRA </i> -COSMOS SURVEY. Astrophysical Journal, 2011, 741, 91.	4.5	76
229	THE X-RAY PROPERTIES OF TYPICAL HIGH-REDSHIFT RADIO-LOUD QUASARS. Astrophysical Journal, 2011, 738, 53.	4.5	14
230	DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING <i>XMM </i> AND <i>CHANDRA </i> FOR ACTIVE GALACTIC NUCLEUS USING <i>XMM </i> AND <i>AND <i>AND < i>AND < i>AND < i>AND < i>AND < i < AND < i <</i></i>	4.5	205
231	X-RAY SPECTRAL CONSTRAINTS FOR <i>z</i> â%^2 MASSIVE GALAXIES: THE IDENTIFICATION OF REFLECTION-DOMINATED ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2011, 738, 44.	4.5	53
232	The <i>XMM</i> Deep survey in the CDF-S. Astronomy and Astrophysics, 2011, 526, L9.	5.1	119
233	XMM-Newton first X-ray detection of the low-ionization broad absorption line quasar PG 1700+518. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2600-2606.	4.4	12
234	Modelling galaxy and AGN evolution in the infrared: black hole accretion versus star formation activity. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	4.4	14

#	Article	IF	CITATIONS
235	On the nature of the absorber in IRAS 09104+4109: the X-ray and mid-infrared view. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2068-2077.	4.4	24
236	THE CHANDRA DEEP FIELD-SOUTH SURVEY: 4 Ms SOURCE CATALOGS. Astrophysical Journal, Supplement Series, 2011, 195, 10.	7.7	488
237	Suzaku and SWIFT-BAT observations of a newly discovered Compton-thick AGN. Astronomy and Astrophysics, 2011, 525, A38.	5.1	18
238	ON THE COSMIC EVOLUTION OF THE SCALING RELATIONS BETWEEN BLACK HOLES AND THEIR HOST GALAXIES: BROAD-LINE ACTIVE GALACTIC NUCLEI IN THE zCOSMOS SURVEY. Astrophysical Journal, 2010, 708, 137-157.	4.5	276
239	The X-ray to optical-UV luminosity ratio of X-ray selected type 1 AGN in XMM-COSMOS. Astronomy and Astrophysics, 2010, 512, A34.	5.1	306
240	THE <i>XMM-NEWTON</i> WIDE-FIELD SURVEY IN THE COSMOS FIELD (XMM-COSMOS): DEMOGRAPHY AND MULTIWAVELENGTH PROPERTIES OF OBSCURED AND UNOBSCURED LUMINOUS ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2010, 716, 348-369.	4.5	266
241	A RUNAWAY BLACK HOLE IN COSMOS: GRAVITATIONAL WAVE OR SLINGSHOT RECOIL?. Astrophysical Journal, 2010, 717, 209-222.	4.5	101
242	K+a galaxies in the zCOSMOS survey. Astronomy and Astrophysics, 2010, 509, A42.	5.1	54
243	HOT-DUST-POOR TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY. Astrophysical Journal Letters, 2010, 724, L59-L63.	8.3	55
244	WITNESSING THE KEY EARLY PHASE OF QUASAR EVOLUTION: AN OBSCURED ACTIVE GALACTIC NUCLEUS PAIR IN THE INTERACTING GALAXY IRAS 20210+1121. Astrophysical Journal Letters, 2010, 722, L147-L151.	8.3	41
245	<i>SUZAKU</i> OBSERVATIONS OF HARD X-RAY-SELECTED SEYFERT 2 GALAXIES. Astrophysical Journal, 2010, 717, 787-794.	4.5	42
246	INVESTIGATING THE COMPLEX X-RAY SPECTRUM OF A BROAD-LINE 2MASS RED QUASAR: <i>XMM-NEWTON</i> OBSERVATION OF FTM 0830+3759. Astrophysical Journal, 2010, 710, 992-1002.	4.5	6
247	The gravitationally lensed, luminous infrared galaxy IRAS F10214+4724 observed with XMM-Newton. New Astronomy, 2010, 15, 58-60.	1.8	2
248	Does the X-ray emission of the luminous quasar RBS 1124 originate in a mildly relativistic outflowing corona?. Monthly Notices of the Royal Astronomical Society, 2010, 401, 1315-1324.	4.4	17
249	Discovery of Compton-thick quasars in the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	16
250	The <i>M</i> _{BH} $\hat{A}\hat{a}^{\hat{A}}\hat{A}$ <i>M</i> _{star} relation of obscured AGNs at high redshift. Astronomy and Astrophysics, 2010, 522, L3.	5.1	22
251	The X-ray to [Ne V]3426 flux ratio: discovering heavily obscured AGN in the distant Universe. Astronomy and Astrophysics, 2010, 519, A92.	5.1	71
252	Ultraluminous X-ray sources out to $<$ i> $>$ z $<$ /i> $>$ 0.3 in the COSMOS field. Astronomy and Astrophysics, 2010, 514, A85.	5.1	15

#	Article	IF	CITATIONS
253	THE EXTENDED <i>CHANDRA</i> DEEP FIELD-SOUTH SURVEY: OPTICAL SPECTROSCOPY OF FAINT X-RAY SOURCES WITH THE VLT AND KECK. Astrophysical Journal, Supplement Series, 2010, 191, 124-142.	7.7	123
254	IDENTIFICATIONS AND PHOTOMETRIC REDSHIFTS OF THE 2 Ms CHANDRA DEEP FIELD-SOUTH SOURCES. Astrophysical Journal, Supplement Series, 2010, 187, 560-580.	7.7	133
255	A deep look at the inner regions of the mini-BAL QSO PG 1126-041 with XMM-Newton. , 2010, , .		O
256	X-ray spectral analysis of C-COSMOS sources. , 2010, , .		0
257	Type 2 Quasars at the heart of dust-obscured galaxies (DOGs) at high z., 2010,,.		o
258	Heavily obscured AGN in the local Universe. , 2010, , .		0
259	Resolved mid-infrared imaging of AGN: an isotropic measure of intrinsic power. , 2010, , .		О
260	The evolution of obscured accretion., 2010,,.		2
261	The HELLAS2XMM survey. Astronomy and Astrophysics, 2010, 517, A11.	5.1	26
262	X-ray imaging of the ionisation cones in NGCÂ5252. Astronomy and Astrophysics, 2010, 516, A9.	5.1	28
263	HIGH-REDSHIFT QUASARS IN THE COSMOS SURVEY: THE SPACE DENSITY OF <i>z</i> > 3 X-RAY SELECTED QSOs. Astrophysical Journal, 2009, 693, 8-22.	4.5	88
264	THE ENVIRONMENTS OF ACTIVE GALACTIC NUCLEI WITHIN THE zCOSMOS DENSITY FIELD. Astrophysical Journal, 2009, 695, 171-182.	4.5	89
265	ONGOING AND CO-EVOLVING STAR FORMATION IN zCOSMOS GALAXIES HOSTING ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2009, 696, 396-410.	4. 5	197
266	SPECTROSCOPIC IDENTIFICATIONS OF <i> SPITZER </i> SOURCES IN THE SWIRE/ <i> XMM-NEWTON </i> / ELAIS-S1 FIELD: A LARGE FRACTION OF ACTIVE GALACTIC NUCLEI WITH HIGH <i> F </i> (24 Î $\frac{1}{4}$ m)/ <i> F </i> (<i> R </i>) RATIO. Astrophysical Journal, 2009, 703, 1778-1790.	4.5	19
267	Revealing X-ray obscured quasars in SWIRE sources with extreme mid-IR/optical flux ratios. Astronomy and Astrophysics, 2009, 498, 67-81.	5.1	61
268	On the nature of red galaxies: the Chandra perspective. Astronomy and Astrophysics, 2009, 501, 485-494.	5.1	6
269	DISCOVERY OF THE MOST DISTANT DOUBLE-PEAKED EMITTER AT <i>z</i> = 1.369. Astrophysical Journal, 2009, 695, 1227-1232.	4. 5	10
270	The XMM- <i>Newton</i> Âwide-field survey in the COSMOS field. Astronomy and Astrophysics, 2009, 497, 635-648.	5.1	230

#	Article	IF	Citations
271	Simbol-X Core Science in a Context., 2009,,.		O
272	The Infrared View of Luminous X-ray Selected Type 2 Quasars, and Coeval Nuclear Activity and Star Formation at z = 2. , 2009, , .		0
273	The IR to X-rays SED of the Heavily Obscured Quasar IRAS 09104+4109., 2009,,.		0
274	The Simbol-X Perspective on the Physics of Quasar Outflows. , 2009, , .		0
275	XEUS: the physics of the hot evolving universe. Experimental Astronomy, 2009, 23, 139-168.	3.7	8
276	XMM-NewtonandSuzakuanalysis of the FeKcomplex in the type 1 Seyfert galaxy Mrk 509. Monthly Notices of the Royal Astronomical Society, 2009, 394, 1487-1495.	4.4	24
277	The HELLAS2XMM survey - XII. The infrared/submillimetre view of an X-ray selected type 2 quasar at <i>z</i> â‰^ 2. Monthly Notices of the Royal Astronomical Society, 2009, 395, 2189-2195.	4.4	23
278	THE <i>CHANDRA</i> SURVEY OF THE COSMOS FIELD. II. SOURCE DETECTION AND PHOTOMETRY. Astrophysical Journal, Supplement Series, 2009, 185, 586-601.	7.7	62
279	CHASING HIGHLY OBSCURED QSOs IN THE COSMOS FIELD. Astrophysical Journal, 2009, 693, 447-462.	4.5	191
280	Resolved Mid-Infrared Imaging of AGN: An Isotropic Measure of Intrinsic Power. Proceedings of the International Astronomical Union, 2009, 5, 108-108.	0.0	0
281	Complex X-Ray Spectral Variability in Mini-BAL QSOs. Proceedings of the International Astronomical Union, 2009, 5, 397-397.	0.0	1
282	THE <i>CHANDRA</i> COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG. Astrophysical Journal, Supplement Series, 2009, 184, 158-171.	7.7	361
283	Resolving the mid-infrared cores of local Seyferts. Astronomy and Astrophysics, 2009, 502, 457-472.	5.1	322
284	X-ray evidence for a mildly relativistic and variable outflow in the luminous Seyfert 1 galaxy MrkÂ509. Astronomy and Astrophysics, 2009, 504, 401-407.	5.1	59
285	The spatial clustering of X-ray selected AGN in the XMM-COSMOS field. Astronomy and Astrophysics, 2009, 494, 33-48.	5.1	90
286	Searching for Heavily Obscured AGN at High Redshift with the SAFARI-SPICA Spectro-Photometer. , 2009, , .		0
287	On the peculiar properties of the narrow-line quasar PG 1543+489. Monthly Notices of the Royal Astronomical Society, 2008, 388, 761-769.	4.4	8
288	Unveiling Obscured Accretion in the Chandra Deep Field–South. Astrophysical Journal, 2008, 672, 94-101.	4.5	210

#	Article	IF	Citations
289	The Evolution of AGN Host Galaxies: From Blue to Red and the Influence of Largeâ€Scale Structures. Astrophysical Journal, 2008, 675, 1025-1040.	4.5	136
290	The <i>Chandra</i> Deep Field–South Survey: 2 Ms Source Catalogs. Astrophysical Journal, Supplement Series, 2008, 179, 19-36.	7.7	250
291	The Contribution of AGNs and Starâ€forming Galaxies to the Midâ€Infrared as Revealed by Their Spectral Energy Distributions. Astrophysical Journal, 2008, 684, 136-152.	4.5	21
292	X-ray spectral variability in PG 1535+547: the changing look of a "soft X-ray weak―AGN. Astronomy and Astrophysics, 2008, 483, 137-149.	5.1	28
293	On the absorption of X-ray bright broad absorption line quasars. Astronomy and Astrophysics, 2008, 491, 425-434.	5.1	35
294	The <i>XMM-Newton</i> survey of the ELAIS-S1 field. Astronomy and Astrophysics, 2008, 488, 417-428.	5.1	19
295	Q2237+0305 in X-rays: spectra and variability with XMM-Newton. Astronomy and Astrophysics, 2008, 490, 989-994.	5.1	7
296	The obscured Xâ€ray source population in the HELLAS2XMM survey: the Spitzer view. , 2007, , .		0
297	Compton Thick AGN in the <i>Suzaku</i> Era. Progress of Theoretical Physics Supplement, 2007, 169, 274-277.	0.1	12
298	The <i>XMMâ€Newton</i> Wideâ€Field Survey in the COSMOS Field. IV. Xâ€Ray Spectral Properties of Active Galactic Nuclei. Astrophysical Journal, Supplement Series, 2007, 172, 368-382.	7.7	89
299	The HELLAS2XMM survey. Astronomy and Astrophysics, 2007, 476, 1223-1233.	5.1	43
300	Hidden activity in high-redshift spheroidal galaxies from mid-infrared and X-ray observations in the GOODS-North field. Monthly Notices of the Royal Astronomical Society, 2007, 376, 416-434.	4.4	15
301	The HELLAS2XMM survey. Astronomy and Astrophysics, 2007, 466, 31-40.	5.1	39
302	The HELLAS2XMM survey. Astronomy and Astrophysics, 2007, 468, 603-612.	5.1	40
303	The <i>XMM</i> ― <i>Newton</i> Wideâ€Field Survey in the COSMOS Field. III. Optical Identification and Multiwavelength Properties of a Large Sample of Xâ€Ray–Selected Sources. Astrophysical Journal, Supplement Series, 2007, 172, 353-367.	7.7	147
304	X-Ray Survey Results on Active Galaxy Physics and Evolution. , 2006, , 185-209.		3
305	The XMM-Newton survey of the ELAIS-S1 field. Astronomy and Astrophysics, 2006, 457, 501-515.	5.1	61
306	AChandraSnapshot Survey of Representative High-Redshift Radio-Loud Quasars from the Parkes-MIT-NRAO Sample. Astronomical Journal, 2006, 131, 1914-1922.	4.7	15

#	Article	IF	Citations
307	The X-Ray-to-Optical Properties of Optically Selected Active Galaxies over Wide Luminosity and Redshift Ranges. Astronomical Journal, 2006, 131, 2826-2842.	4.7	408
308	The quest for Type 2 quasars: Chandra observations of luminous obscured quasars in the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 2006, 373, 321-329.	4.4	36
309	On the exotic hard X-ray source populations in the Hellas2XMM survey. Advances in Space Research, 2006, 38, 1417-1420.	2.6	0
310	The HELLAS2XMM survey. Astronomy and Astrophysics, 2006, 445, 457-463.	5.1	19
311	X-Ray Lighthouses of the High-Redshift Universe. II. Further Snapshot Observations of the Most Luminousz≳4 Quasars withChandra. Astronomical Journal, 2005, 129, 2519-2530.	4.7	75
312	XMM-NewtonSpectroscopy of the Highly Polarized and Luminous Broad Absorption Line Quasar CSO 755. Astronomical Journal, 2005, 130, 2522-2528.	4.7	16
313	Soft X-Ray and Ultraviolet Emission Relations in Optically Selected AGN Samples. Astronomical Journal, 2005, 130, 387-405.	4.7	222
314	The Xâ€Ray Spectral Properties and Variability of Luminous Highâ€Redshift Active Galactic Nuclei. Astrophysical Journal, 2005, 630, 729-739.	4.5	64
315	The Extended Chandra Deep Field–South Survey: Chandra Pointâ€Source Catalogs. Astrophysical Journal, Supplement Series, 2005, 161, 21-40.	7.7	244
316	The HELLAS2XMM Survey. VII. The Hard Xâ€Ray Luminosity Function of AGNs up toz= 4: More Absorbed AGNs at Low Luminosities and High Redshifts. Astrophysical Journal, 2005, 635, 864-879.	4.5	342
317	On the X-ray properties of OH megamaser sources: Chandra snapshot observations. Monthly Notices of the Royal Astronomical Society, 2005, 364, 99-106.	4.4	11
318	A Chandra observation of the $z=2.285$ galaxy FSC 10214+4724: evidence for a Compton-thick quasar?. Monthly Notices of the Royal Astronomical Society: Letters, 2005, 357, L16-L20.	3.3	24
319	XMM-Newtonobservations of Extremely Red Objects and the link with luminous, X-ray obscured quasars. Astronomy and Astrophysics, 2005, 432, 69-81.	5.1	77
320	Arakelian 564: an XMM-Newton view. Monthly Notices of the Royal Astronomical Society, 2004, 347, 854-860.	4.4	30
321	Evidence for X-ray obscuration in Type II quasar candidates from the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 2004, 354, 720-726.	4.4	18
322	Restless quasar activity: from BeppoSAX to Chandra and XMM-Newton. Nuclear Physics, Section B, Proceedings Supplements, 2004, 132, 248-251.	0.4	0
323	X-ray spectroscopy and variability of AGN detected in the 2 Ms Chandra Deep Field-North Survey. Advances in Space Research, 2004, 34, 2555-2560.	2.6	9
324	X-rays from the first massive black holes. Advances in Space Research, 2004, 34, 2478-2485.	2.6	6

#	Article	IF	CITATIONS
325	ChandraObservations of Radio-Loud Quasars atz > 4: X-Rays from the Radio Beacons of the Early Universe. Astronomical Journal, 2004, 128, 523-533.	4.7	35
326	The HELLAS2XMM survey. Astronomy and Astrophysics, 2004, 418, 827-840.	5.1	58
327	The HELLAS2XMM survey. Astronomy and Astrophysics, 2004, 421, 491-501.	5.1	90
328	THE Z > 4 QUASAR POPULATION OBSERVED BY CHANDRA AND XMM-NEWTON., 2004, , .		1
329	Resolving the source populations that contribute to the X-ray background: The 2 Ms Chandra Deep Field-North Survey. Astronomische Nachrichten, 2003, 324, 8-11.	1.2	3
330	The weak outnumbering the mighty: normal galaxies in deep Chandra surveys. Astronomische Nachrichten, 2003, 324, 12-15.	1.2	2
331	X-rays from the high-redshift universe: The Chandra view. Astronomische Nachrichten, 2003, 324, 163-163.	1.2	3
332	The AGN source population in the Chandra Deep Field-North Survey: constraints from X-ray spectroscopy and variability. Astronomische Nachrichten, 2003, 324, 175-175.	1.2	6
333	The BeppoSAX High Energy Large Area Survey (HELLAS) VI. The radio properties. Monthly Notices of the Royal Astronomical Society, 2003, 342, 575-586.	4.4	13
334	ChandraandXMM-NewtonObservations of the First Quasars: X-Rays from the Age of Cosmic Enlightenment. Astronomical Journal, 2003, 125, 2876-2890.	4.7	65
335	Probing the Complex and Variable X-Ray Absorption of Markarian 6 withXMM-Newton. Astronomical Journal, 2003, 126, 153-157.	4.7	25
336	The Chandra Deep Field North Survey. XIII. 2 Ms Point-Source Catalogs. Astronomical Journal, 2003, 126, 539-574.	4.7	664
337	The HELLAS2XMM survey. Astronomy and Astrophysics, 2003, 409, 79-90.	5.1	207
338	The HELLAS2XMM survey. Astronomy and Astrophysics, 2003, 409, 65-78.	5.1	51
339	X-Ray Lighthouses of the High-Redshift Universe: Probing the Most Luminous [CLC][ITAL]z[/ITAL][/CLC] ] 4 Palomar Digital Sky Survey Quasars with [ITAL]Chandra[/ITAL]. Astronomio Journal, 2003, 125, 418-432.	ca l. 7	42
340	X-Ray Emission from Radio-quiet Quasars in the Sloan Digital Sky Survey Early Data Release: The $\hat{l}\pm[TINF][CLC]$ ox [/CLC][/TINF] Dependence upon Ultraviolet Luminosity. Astronomical Journal, 2003, 125, 433-443.	4.7	205
341	The Chandra Deep Field North Survey. XIV. X-Ray–Detected Obscured AGN[CLC]s[/CLC] and Starburst Galaxies in the Bright Submillimeter Source Population. Astronomical Journal, 2003, 125, 383-397.	4.7	156
342	The Nuclear Accretion in the FR I Radio Galaxy IC 4296 from Chandra and Very Long Baseline Array Observations. Astrophysical Journal, 2003, 585, 677-686.	4.5	46

#	Article	IF	Citations
343	The Chandra Deep Field North Survey. XII. The Link between Faint X-Ray and Radio Source Populations. Astronomical Journal, 2002, 124, 2351-2363.	4.7	103
344	TheBeppoSAXHighâ€Energy Largeâ€Area Survey. V. The Nature of the Hard Xâ€Ray Source Population and Its Evolution. Astrophysical Journal, 2002, 570, 100-113.	4.5	52
345	Disclosing the true nature of the SyÂ2 galaxy NGCÂ3281: One more Compton-thick source. Astronomy and Astrophysics, 2002, 381, 834-840.	5.1	31
346	The AGN Content of Hard X-ray Surveys. International Astronomical Union Colloquium, 2002, 184, 235-244.	0.1	2
347	BeppoSAX/PDS identification of the true counterpart of the Piccinotti source H0917-074. Astronomy and Astrophysics, 2002, 394, 801-805.	5.1	10
348	The HELLAS2XMM Survey. I. The Xâ€Ray Data and the log N–log SRelation. Astrophysical Journal, 2002 190-195.	2, ₄ 564,	113
349	The Chandra Deep Field North Survey. X. X-Ray Emission from Very Red Objects. Astronomical Journal, 2002, 123, 1149-1162.	4.7	59
350	The HELLAS2XMMSurvey. II. Multiwavelength Observations of P3: An Xâ€Ray–bright, Optically Inactive Galaxy. Astrophysical Journal, 2002, 571, 771-778.	4.5	134
351	The Chandra Deep Field–North Survey. XI. X-Ray Emission from Luminous Infrared Starburst Galaxies. Astrophysical Journal, 2002, 568, L85-L88.	4.5	67
352	The Chandra Deep Field–North Survey. XVI. The X-Ray Properties of Moderate-Luminosity Active Galaxies at [CLC] [ITAL]z[/ITAL] [/CLC]] 4. Astrophysical Journal, 2002, 580, L105-L109.	4.5	25
353	The BeppoSAX hellas survey: On the nature of faint hard X-ray selected sources. AIP Conference Proceedings, 2001, , .	0.4	1
354	ASCA view on high-redshift radio-quiet quasars. AIP Conference Proceedings, 2001, , .	0.4	0
355	Exploratory [ITAL]CHANDRA[/ITAL][ITAL]Chandra[/ITAL] Observations of the Highest-Redshift Quasars: X-Rays from the Dawn of the Modern Universe. Astronomical Journal, 2001, 122, 2143-2155.	4.7	47
356	The BeppoSAX High Energy Large Area Survey (HELLAS) – II. Number counts and X-ray spectral properties. Monthly Notices of the Royal Astronomical Society, 2001, 327, 771-780.	4.4	45
357	The BeppoSAX High Energy Large Area Survey (HELLAS) – III. Testing synthesis models for the X-ray background. Monthly Notices of the Royal Astronomical Society, 2001, 327, 781-787.	4.4	69
358	BeppoSAX observations of Narrow-Line Seyfert 1 galaxies. Astronomy and Astrophysics, 2001, 365, 400-408.	5.1	30
359	The BeppoSAX High Energy Large Area Survey. Astronomy and Astrophysics, 2001, 370, 900-908.	5.1	15
360	The [ITAL]Chandra[/ITAL] Deep Field–North Survey. VII. X-Ray Emission from Lyman Break Galaxies. Astrophysical Journal, 2001, 558, L5-L9.	4.5	73

#	Article	IF	CITATIONS
361	Optical, near-infrared and hard X-ray observations of SAX J1353.9+1820: a red quasar. Monthly Notices of the Royal Astronomical Society, 2000, 314, L11-L15.	4.4	11
362	New ASCA perspectives on high-redshift quasars. Advances in Space Research, 2000, 25, 861-866.	2.6	0
363	Spectroscopic identification of ten faint hard X-ray sources discovered by Chandra. New Astronomy, 2000, 5, 143-153.	1.8	75
364	The Complex Xâ€Ray Absorbers of NGC 3516 Observed byBEPPOSAX. Astrophysical Journal, 2000, 544, 283-292.	4.5	20
365	X-ray observations of high-z radio loud/quiet quasars. Advances in Space Research, 1999, 23, 1151-1154.	2.6	0
366	Probing the Hard Xâ€Ray Properties of Highâ€Redshift Radioâ€Quiet Quasars withASCA. Astrophysical Journal, 1999, 516, 582-590.	4.5	35
367	On the nature of the X-ray absorption in the Seyfert 2 galaxy NGC 4507. Monthly Notices of the Royal Astronomical Society, 1998, 295, 443-450.	4.4	16
368	X-Ray Properties of High-Z Radio-Quiet Quasars: <i>ASCA</i> Observations. Symposium - International Astronomical Union, 1998, 188, 426-427.	0.1	0
369	X-Ray Properties of High-Z Radio-Quiet Quasars: ASCA Observations. , 1998, , 426-427.		0
370	ASCAandROSATXâ€Ray Spectra of Highâ€Redshift Radioâ€loud Quasars. Astrophysical Journal, 1997, 478, 492-510.	4.5	97
371	High-Energy Large-Area Surveys: From BeppaSAX to Chandra and XMM. , 0, , 271-276.		2
372	The Masses of X-ray Emitting EROs. , 0, , 126-127.		0
373	X-rays from the First Massive Black Holes. , 0, , 90-101.		0
374	Obscured Accreting Black Holes at High Redshift. , 0, , 441-446.		0
375	NGC 1275: An Outlier of the Black Hole-Host Scaling Relations. Frontiers in Astronomy and Space Sciences, 0, 5, .	2.8	10