Khalid Z Elwakeel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6632012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interactions of metal ions with chitosan-based sorbents: a review. Separation and Purification Technology, 2004, 38, 43-74.	3.9	1,552
2	Metal-Anion Sorption by Chitosan Beads:Â Equilibrium and Kinetic Studies. Industrial & Engineering Chemistry Research, 1998, 37, 1454-1463.	1.8	416
3	Characterization of metal ion interactions with chitosan by X-ray photoelectron spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 177, 203-214.	2.3	302
4	Palladium sorption on glutaraldehyde-crosslinked chitosan. Reactive and Functional Polymers, 2000, 45, 155-173.	2.0	259
5	Removal of an anionic dye (Acid Blue 92) by coagulation–flocculation using chitosan. Journal of Environmental Management, 2009, 90, 2979-2986.	3.8	217
6	Recovery of gold(III) and silver(I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy, 2007, 87, 197-206.	1.8	208
7	Selective separation of mercury(II) using magnetic chitosan resin modified with Schiff's base derived from thiourea and glutaraldehyde. Journal of Hazardous Materials, 2008, 151, 372-379.	6.5	203
8	Removal of Reactive Black 5 from aqueous solutions using magnetic chitosan resins. Journal of Hazardous Materials, 2009, 167, 383-392.	6.5	177
9	Functionalization of polyacrylonitrile/Na-Y-zeolite composite with amidoxime groups for the sorption of Cu(II), Cd(II) and Pb(II) metal ions. Chemical Engineering Journal, 2018, 332, 727-736.	6.6	163
10	Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy, 2005, 76, 131-147.	1.8	161
11	Removal of Cr(VI) from alkaline aqueous solutions using chemically modified magnetic chitosan resins. Desalination, 2010, 250, 105-112.	4.0	149
12	Gold sorption on chitosan derivatives. Hydrometallurgy, 2003, 71, 191-200.	1.8	146
13	Environmental Application of Chitosan Resins for the Treatment of Water and Wastewater: A Review. Journal of Dispersion Science and Technology, 2010, 31, 273-288.	1.3	138
14	Metal anion sorption on chitosan and derivative materials: a strategy for polymer modification and optimum use. Reactive and Functional Polymers, 2004, 60, 137-149.	2.0	136
15	Fast removal of uranium from aqueous solutions using tetraethylenepentamine modified magnetic chitosan resin. Bioresource Technology, 2014, 160, 107-114.	4.8	135
16	Treatment of arsenic-containing solutions using chitosan derivatives: uptake mechanism and sorption performances. Water Research, 2002, 36, 3699-3710.	5.3	131
17	Selective separation of mercury (II) using a synthetic resin containing amine and mercaptan as chelating groups. Reactive and Functional Polymers, 2005, 65, 267-275.	2.0	120
18	The removal of sulphonated azo-dyes by coagulation with chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 330, 219-226.	2.3	119

#	Article	IF	CITATIONS
19	Gold(III) recovery using synthetic chelating resins with amine, thio and amine/mercaptan functionalities. Separation and Purification Technology, 2005, 42, 111-116.	3.9	116
20	Arsenic(V) sorption using chitosan/Cu(OH) 2 and chitosan/CuO composite sorbents. Carbohydrate Polymers, 2015, 134, 190-204.	5.1	114
21	Uranium and europium sorption on amidoxime-functionalized magnetic chitosan micro-particles. Chemical Engineering Journal, 2018, 344, 124-137.	6.6	113
22	Perspectives regarding metal/mineral-incorporating materials for water purification: with special focus on Cr(<scp>vi</scp>) removal. Materials Advances, 2020, 1, 1546-1574.	2.6	112
23	Cysteine-Functionalized Chitosan Magnetic Nano-Based Particles for the Recovery of Light and Heavy Rare Earth Metals: Uptake Kinetics and Sorption Isotherms. Nanomaterials, 2015, 5, 154-179.	1.9	111
24	Uranium extraction using magnetic nano-based particles of diethylenetriamine-functionalized chitosan: Equilibrium and kinetic studies. Chemical Engineering Journal, 2015, 262, 198-209.	6.6	111
25	Synthesis of α-aminophosphonate functionalized chitosan sorbents: Effect of methyl vs phenyl group on uranium sorption. Chemical Engineering Journal, 2018, 352, 1022-1034.	6.6	109
26	Arsenic(V) sorption on molybdate-impregnated chitosan beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 170, 19-31.	2.3	108
27	Extraction and separation studies of silver(I) and copper(II) from their aqueous solution using chemically modified melamine resins. Hydrometallurgy, 2009, 96, 27-34.	1.8	108
28	Fabrication of bentonite/thiourea-formaldehyde composite material for Pb(II), Mn(VII) and Cr(VI) sorption: A combined basic study and industrial application. Journal of Cleaner Production, 2016, 137, 40-50.	4.6	106
29	Synthesis and adsorption characteristics of grafted hydrazinyl amine magnetite-chitosan for Ni(II) and Pb(II) recovery. Chemical Engineering Journal, 2019, 362, 310-324.	6.6	97
30	Preparation of Chitosan Gel Beads by Ionotropic Molybdate Gelation. Biomacromolecules, 2001, 2, 1198-1205.	2.6	96
31	Metal ion biosorption on chitosan for the synthesis of advanced materials. Journal of Materials Science, 2014, 49, 5505-5518.	1.7	93
32	Uptake of U(VI) from aqueous media by magnetic Schiff's base chitosan composite. Journal of Cleaner Production, 2014, 70, 292-302.	4.6	88
33	Microwave-accelerated sorption of cationic dyes onto green marine algal biomass. Environmental Science and Pollution Research, 2019, 26, 22704-22722.	2.7	87
34	Adsorption behaviour of non-transition metal ions on a synthetic chelating resin bearing iminoacetate functions. Separation and Purification Technology, 2005, 43, 43-48.	3.9	84
35	Acidic dye biosorption onto marine brown macroalgae: Isotherms, kinetic and thermodynamic studies. Chemical Engineering Journal, 2012, 204-206, 225-234.	6.6	82
36	Selective removal of Hg(II) from aqueous solution by functionalized magnetic-macromolecular hybrid material. Chemical Engineering Journal, 2015, 281, 345-359.	6.6	80

#	Article	IF	CITATIONS
37	Influence of Chitosan Preprotonation on Reactive Black 5 Sorption Isotherms and Kinetics. Industrial & Engineering Chemistry Research, 2004, 43, 1-11.	1.8	77
38	Diethylenetriamine-functionalized chitosan magnetic nano-based particles for the sorption of rare earth metal ions [Nd(III), Dy(III) and Yb(III)]. Cellulose, 2015, 22, 2589-2605.	2.4	76
39	Adsorption of silver(I) on synthetic chelating polymer derived from 3-amino-1,2,4-triazole-5-thiol and glutaraldehyde. Chemical Engineering Journal, 2009, 151, 30-38.	6.6	75
40	Recovery of Metal Ions by Chitosan: Sorption Mechanisms and Influence of Metal Speciation. Macromolecular Bioscience, 2003, 3, 552-561.	2.1	73
41	Fast and selective removal of silver(I) from aqueous media by modified chitosan resins. International Journal of Mineral Processing, 2013, 120, 26-34.	2.6	72
42	Synthesis of new ammonium chitosan derivatives and their application for dye removal from aqueous media. Chemical Engineering Journal, 2012, 203, 458-468.	6.6	71
43	Sorption of Acid Green 25 on chitosan: Influence of experimental parameters on uptake kinetics and sorption isotherms. Journal of Applied Polymer Science, 2003, 90, 1073-1080.	1.3	70
44	Amino Acid Functionalized Chitosan Magnetic Nanobased Particles for Uranyl Sorption. Industrial & Engineering Chemistry Research, 2015, 54, 12374-12385.	1.8	69
45	Use of beach bivalve shells located at Port Said coast (Egypt) as a green approach for methylene blue removal. Journal of Environmental Chemical Engineering, 2017, 5, 578-587.	3.3	69
46	Phosphorylation of Guar Gum/Magnetite/Chitosan Nanocomposites for Uranium (VI) Sorption and Antibacterial Applications. Molecules, 2021, 26, 1920.	1.7	68
47	Magnetic metal oxide-organic framework material for ultrasonic-assisted sorption of titan yellow and rose bengal from aqueous solutions. Chemical Engineering Journal, 2020, 392, 123635.	6.6	67
48	Investigation of novel nanomaterial for the removal of toxic substances from contaminated water. RSC Advances, 2019, 9, 14167-14175.	1.7	66
49	Removal of Mo(VI) as oxoanions from aqueous solutions using chemically modified magnetic chitosan resins. Hydrometallurgy, 2009, 97, 21-28.	1.8	65
50	Thermochemical conversion strategies of biomass to biofuels, techno-economic and bibliometric analysis: A conceptual review. Journal of Environmental Chemical Engineering, 2021, 9, 106503.	3.3	65
51	Magnetic alginate beads with high basic dye removal potential and excellent regeneration ability. Canadian Journal of Chemistry, 2017, 95, 807-815.	0.6	63
52	Sulfonic-functionalized algal/PEI beads for scandium, cerium and holmium sorption from aqueous solutions (synthetic and industrial samples). Chemical Engineering Journal, 2021, 403, 126399.	6.6	63
53	Retention of copper, cadmium and lead from water by Na-Y-Zeolite confined in methyl methacrylate shell. Journal of Environmental Chemical Engineering, 2017, 5, 3698-3710.	3.3	61
54	Microplastics prevalence, interactions, and remediation in the aquatic environment: A critical review. Journal of Environmental Chemical Engineering, 2021, 9, 106224.	3.3	60

#	Article	IF	CITATIONS
55	Functionalization of magnetic chitosan microparticles for high-performance removal of chromate from aqueous solutions and tannery effluent. Chemical Engineering Journal, 2022, 428, 131775.	6.6	60
56	Influence of Hydrolysis Mechanisms on Molybdate Sorption Isotherms Using Chitosan. Separation Science and Technology, 2000, 35, 1021-1038.	1.3	59
57	Efficient removal of Reactive Black 5 from aqueous media using glycidyl methacrylate resin modified with tetraethelenepentamine. Journal of Hazardous Materials, 2011, 188, 10-18.	6.5	59
58	Cellulose and chitosan derivatives for enhanced sorption of erbium(III). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 580-593.	2.3	59
59	Microwave assist sorption of crystal violet and Congo red dyes onto amphoteric sorbent based on upcycled Sepia shells. Journal of Environmental Health Science & Engineering, 2020, 18, 35-50.	1.4	59
60	Recent advances in greenly synthesized nanoengineered materials for water/wastewater remediation: an overview. Nanotechnology for Environmental Engineering, 2021, 6, 1.	2.0	57
61	Sorptive removal of Remazol Brilliant Blue R from aqueous solution by diethylenetriamine functionalized magnetic macro-reticular hybrid material. RSC Advances, 2016, 6, 22395-22410.	1.7	56
62	The synergistic effect of ultrasound power and magnetite incorporation on the sorption/desorption behavior of Cr(VI) and As(V) oxoanions in an aqueous system. Journal of Colloid and Interface Science, 2020, 569, 76-88.	5.0	56
63	2-Mercaptobenzimidazole derivative of chitosan for silver sorption – Contribution of magnetite incorporation and sonication effects on enhanced metal recovery. Chemical Engineering Journal, 2021, 403, 126265.	6.6	55
64	Palladium and platinum binding on an imidazol containing resin. Hydrometallurgy, 2008, 92, 1-10.	1.8	53
65	Effect of agitation mode (mechanical, ultrasound and microwave) on uranium sorption using amine- and dithizone-functionalized magnetic chitosan hybrid materials. Chemical Engineering Journal, 2021, 411, 128553.	6.6	53
66	Adsorption of toxic acidic dye from aqueous solution onto diethylenetriamine functionalized magnetic glycidyl methacrylate-N,N′-methylenebisacrylamide. RSC Advances, 2016, 6, 3350-3361.	1.7	52
67	Influence of Mo(VI) immobilization and temperature on As(V) sorption onto magnetic separable poly p-phenylenediamine-thiourea-formaldehyde polymer. Journal of Hazardous Materials, 2018, 342, 335-346.	6.5	51
68	Removal of divalent manganese from aqueous solution using glycine modified chitosan resin. Journal of Environmental Chemical Engineering, 2015, 3, 179-186.	3.3	50
69	Recovery of Chromium(VI) Oxyanions from Aqueous Solution Using Cu(OH)2 and CuO Embedded Chitosan Adsorbents. Journal of Polymers and the Environment, 2020, 28, 47-60.	2.4	49
70	Efficient removal of uranium, cadmium and mercury from aqueous solutions using grafted hydrazide-micro-magnetite chitosan derivative. Journal of Materials Science, 2020, 55, 4193-4212.	1.7	49
71	Preparation of a new chitosan-based material and its application for mercury sorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 446, 224-232.	2.3	48
72	Removal of ferrous and manganous from water by activated carbon obtained from sugarcane bagasse. Desalination and Water Treatment, 2015, 55, 471-483.	1.0	47

#	Article	IF	CITATIONS
73	Comparison between the removal of Reactive Black 5 from aqueous solutions by 3-amino-1,2,4 triazole,5-thiol and melamine grafted chitosan prepared through four different routes. Journal of Environmental Chemical Engineering, 2016, 4, 733-745.	3.3	47
74	Development of phosphoryl-functionalized algal-PEI beads for the sorption of Nd(III) and Mo(VI) from aqueous solutions – Application for rare earth recovery from acid leachates. Chemical Engineering Journal, 2021, 412, 127399.	6.6	47
75	Dy(III) recovery from dilute solutions using magnetic-chitosan nano-based particles grafted with amino acids. Journal of Materials Science, 2015, 50, 2832-2848.	1.7	46
76	Synthesis of polyaminophosphonic acid-functionalized poly(glycidyl methacrylate) for the efficient sorption of La(III) and Y(III). Chemical Engineering Journal, 2019, 375, 121932.	6.6	46
77	Multifunctional eco-friendly sorbent based on marine brown algae and bivalve shells for subsequent uptake of Congo red dye and copper(II) ions. Journal of Environmental Chemical Engineering, 2020, 8, 103915.	3.3	46
78	Functionalization of Magnetic Chitosan Particles for the Sorption of U(VI), Cu(II) and Zn(II)—Hydrazide Derivative of Glycine-Grafted Chitosan. Materials, 2017, 10, 539.	1.3	45
79	Synthesis of Chitosan@activated Carbon Beads with Abundant Amino Groups for Capture of Cu(II) and Cd(II) from Aqueous Solutions. Journal of Polymers and the Environment, 2018, 26, 3590-3602.	2.4	45
80	Untapped Sepia Shell–Based Composite for the Sorption of Cationic and Anionic Dyes. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	45
81	As(V) sorption from aqueous solutions using quaternized algal/polyethyleneimine composite beads. Science of the Total Environment, 2020, 719, 137396.	3.9	44
82	Selective Separation of Fe(III), Cd(II), and Ni(II) from Dilute Solutions Using Solvent-Impregnated Resins. Industrial & Engineering Chemistry Research, 2001, 40, 6004-6013.	1.8	43
83	Removal of arsenate from aqueous media by magnetic chitosan resin immobilized with molybdate oxoanions. International Journal of Environmental Science and Technology, 2014, 11, 1051-1062.	1.8	43
84	Recovery of Heavy Metal Ions Using Magnetic Glycine-Modified Chitosan—Application to Aqueous Solutions and Tailing Leachate. Applied Sciences (Switzerland), 2021, 11, 8377.	1.3	41
85	Palladium sorption on glutaraldehyde-crosslinked chitosan in fixed-bed systems. Journal of Applied Polymer Science, 2001, 81, 153-165.	1.3	40
86	Efficient Retention of Chromate from Industrial Wastewater onto a Green Magnetic Polymer Based on Shrimp Peels. Journal of Polymers and the Environment, 2018, 26, 2018-2029.	2.4	40
87	Amidoxime Functionalization of Algal/Polyethyleneimine Beads for the Sorption of Sr(II) from Aqueous Solutions. Molecules, 2019, 24, 3893.	1.7	40
88	A new route for manufacturing poly(aminophosphonic)-functionalized poly(glycidyl) Tj ETQq0 0 0 rgBT /Overloch Environmental Pollution, 2020, 264, 114797.	≥ 10 Tf 50 3.7	147 Td (meth 40
89	2-Mercaptobenzimidazole-functionalized chitosan for enhanced removal of methylene blue: Batch and column studies. Journal of Environmental Chemical Engineering, 2021, 9, 105609.	3.3	40
90	Quaternization of algal/PEI beads (a new sorbent): Characterization and application to scandium sorption from aqueous solutions. Chemical Engineering Journal, 2020, 383, 123210.	6.6	38

#	Article	IF	CITATIONS
91	Competitive adsorption of Cu(II) and Cd(II) ions on spray-dried chitosan loaded with Reactive Orange 16. Materials Science and Engineering C, 2009, 29, 613-618.	3.8	37
92	Adsorption of malathion on thermally treated egg shell material. Water Science and Technology, 2010, 61, 1035-1041.	1.2	37
93	U(VI) and Th(IV) recovery using silica beads functionalized with urea- or thiourea-based polymers – Application to ore leachate. Science of the Total Environment, 2022, 821, 153184.	3.9	37
94	Uranium and neodymium biosorption using novel chelating polysaccharide. International Journal of Biological Macromolecules, 2017, 104, 963-968.	3.6	36
95	Sodium and acidic alginate foams with hierarchical porosity: Preparation, characterization and efficiency as a dye adsorbent. Carbohydrate Polymers, 2017, 178, 78-85.	5.1	35
96	Magnetic chitosan grafted with polymerized thiourea for remazol brilliant blue R recovery: Effects of uptake conditions. Journal of Dispersion Science and Technology, 2017, 38, 943-952.	1.3	35
97	Uranium(VI) and zirconium(IV) sorption on magnetic chitosan derivatives–Âeffect of different functional groups on separation properties. Journal of Chemical Technology and Biotechnology, 2019, 94, 3866-3882.	1.6	35
98	NON-DISPERSIVE LIQUID EXTRACTION OF Cr(VI) BY TBP/ALIQUAT 336 USING CHITOSAN-MADE HOLLOW FIBER. Solvent Extraction and Ion Exchange, 2000, 18, 1241-1260.	0.8	33
99	Comparison study of Ag(I) and Au(III) loaded on magnetic thiourea-formaldehyde as disinfectants for water pathogenic microorganism's deactivation. Journal of Environmental Chemical Engineering, 2018, 6, 4380-4390.	3.3	33
100	Environmental remediation of thorium(IV) from aqueous medium onto <i>Cellulosimicrobium cellulans</i> isolated from radioactive wastewater. Desalination and Water Treatment, 2012, 46, 1-9.	1.0	32
101	Aspartic acid grafting on cellulose and chitosan for enhanced Nd(III) sorption. Reactive and Functional Polymers, 2017, 113, 13-22.	2.0	32
102	Facile synthesis of magnetic disinfectant immobilized with silver ions for water pathogenic microorganism's deactivation. Environmental Science and Pollution Research, 2018, 25, 22797-22809.	2.7	32
103	Biosorption of lanthanum from aqueous solutions using magnetic alginate beads. Journal of Dispersion Science and Technology, 2017, 38, 145-151.	1.3	31
104	Integrated treatment of tailing material for the selective recovery of uranium, rare earth elements and heavy metals. Minerals Engineering, 2019, 133, 138-148.	1.8	31
105	Enhanced Remediation of Reactive Black 5 from Aqueous Media Using New Chitosan Ion Exchangers. Journal of Dispersion Science and Technology, 2013, 34, 1008-1019.	1.3	30
106	Quaternization of Composite Algal/PEI Beads for Enhanced Uranium Sorption—Application to Ore Acidic Leachate. Gels, 2020, 6, 12.	2.1	30
107	Chemical modifications of chitosan nano-based magnetic particles for enhanced uranyl sorption. Hydrometallurgy, 2017, 168, 127-134.	1.8	29
108	New highly-percolating alginate-PEI membranes for efficient recovery of chromium from aqueous solutions. Carbohydrate Polymers, 2019, 225, 115177.	5.1	29

#	Article	IF	CITATIONS
109	Modeling competitive sorption of lead and copper ions onto alginate and greenly prepared algal-based beads. Bioresource Technology, 2017, 231, 26-35.	4.8	28
110	Synthesis of α-aminophosphonate based sorbents – Influence of inserted groups (carboxylic vs. amine) on uranyl sorption. Chemical Engineering Journal, 2021, 421, 127830.	6.6	28
111	Efficient removal of ferric ions from aqueous medium by amine modified chitosan resins. Journal of Environmental Chemical Engineering, 2013, 1, 566-573.	3.3	27
112	A biogenic tunable sorbent produced from upcycling of aquatic biota-based materials functionalized with methylene blue dye for the removal of chromium(VI) ions. Journal of Environmental Chemical Engineering, 2021, 9, 104767.	3.3	26
113	Efficient Recovery of Rare Earth Elements (Pr(III) and Tm(III)) From Mining Residues Using a New Phosphorylated Hydrogel (Algal Biomass/PEI). Metals, 2021, 11, 294.	1.0	26
114	Potential use of magnetic glycidyl methacrylate resin as a mercury sorbent: From basic study to the application to wastewater treatment. Journal of Environmental Chemical Engineering, 2016, 4, 3632-3645.	3.3	25
115	Lauryl sulfate@magnetic graphene oxide nanosorbent for fast methylene blue recovery from aqueous solutions. Journal of Dispersion Science and Technology, 2019, 40, 707-715.	1.3	25
116	Magnetic Schiff's base sorbent based on shrimp peels wastes for consummate sorption of chromate. Water Science and Technology, 2017, 76, 35-48.	1.2	24
117	Arsenic Sorption on Chitosan-Based Sorbents: Comparison of the Effect of Molybdate and Tungstate Loading on As(V) Sorption Properties. Journal of Polymers and the Environment, 2020, 28, 934-947.	2.4	24
118	Selective lead (II) sorption using aminophosphonate-based sorbents: Effect of amine linker, characterization and sorption performance. Chemical Engineering Journal, 2022, 442, 136300.	6.6	22
119	A new method for incorporating polyethyleneimine (PEI) in algal beads: High stability as sorbent for palladium recovery and supported catalyst for nitrophenol hydrogenation. Materials Chemistry and Physics, 2019, 221, 144-155.	2.0	21
120	Praseodymium sorption on Laminaria digitata algal beads and foams. Journal of Colloid and Interface Science, 2017, 504, 780-789.	5.0	20
121	Eco-friendly Chitosan Condensation Adduct Resins for Removal of Toxic Silver Ions from Aqueous Medium. Journal of Industrial and Engineering Chemistry, 2021, 100, 410-421.	2.9	20
122	Synthesis of microporous nano-composite (hollow spheres) for fast detection and removal of As(V) from contaminated water. Chemical Engineering Journal, 2020, 390, 124439.	6.6	19
123	Evaluation of adsorption behavior for U(VI) and Nd(III) ions onto fumarated polystyrene microspheres. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314, 429-437.	0.7	18
124	Mercury(II) Biosorption Using Lessonia sp. Kelp. Applied Biochemistry and Biotechnology, 2010, 162, 805-822.	1.4	15
125	Boosted Cr(VI) sorption coupled reduction from aqueous solution using quaternized algal/alginate@PEI beads. Chemosphere, 2021, 281, 130844.	4.2	15
126	Functionalization of magnetic chitosan microparticles – Comparison of trione and trithione grafting for enhanced silver sorption and application to metal recovery from waste X-ray photographic films. Journal of Environmental Chemical Engineering, 2022, 10, 107939.	3.3	15

#	Article	IF	CITATIONS
127	Role of identified bacterial consortium in treatment of Quhafa Wastewater Treatment Plant influent in Fayuom, Egypt. Environmental Monitoring and Assessment, 2020, 192, 161.	1.3	14
128	Influences of greenly synthesized iron oxide nanoparticles on the bioremediation of dairy effluent using selected microbial isolates. International Journal of Environmental Science and Technology, 2022, 19, 7019-7030.	1.8	13
129	Novel phosphonate-functionalized composite sorbent for the recovery of lanthanum(III) and terbium(III) from synthetic solutions and ore leachate. Chemical Engineering Journal, 2021, 424, 130500.	6.6	13
130	Groundwater Purification in a Polymetallic Mining Area (SW Sinai, Egypt) Using Functionalized Magnetic Chitosan Particles. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	12
131	Investigation of mercury(II) and copper(II) sorption in single and binary systems by alginate/polyethylenimine membranes. Carbohydrate Polymers, 2021, 257, 117588.	5.1	12
132	Removal of As(V) from aqueous solution using glycidyl methacrylate resin immobilized with Cu(II)-tetraethylenepentamine complex. Water Science and Technology: Water Supply, 2009, 9, 181-190.	1.0	11
133	Adsorption of Fe(III) from Aqueous Medium onto Glycine-Modified Chitosan Resin: Equilibrium and Kinetic Studies. Journal of Dispersion Science and Technology, 2014, 35, 1691-1698.	1.3	11
134	COVID-19 from mysterious enemy to an environmental detection process: a critical review. Innovative Infrastructure Solutions, 2020, 5, 1.	1.1	10
135	Response surface methodological optimization of batch Cu(II) sorption onto succinic acid functionalized SiO2 nanoparticles. Canadian Journal of Chemistry, 2019, 97, 277-286.	0.6	9
136	Magnetically separable solid phase extractor for static anionic dyes adsorption from aqueous solutions. Surfaces and Interfaces, 2022, 30, 101962.	1.5	8
137	Mercury recovery from aqueous solutions by polymer-enhanced ultrafiltration using a sulfate derivative of chitosan. Membrane Water Treatment, 2010, 1, 231-251.	0.5	7
138	Interaction of Chitosan with Metal Ions: From Environmental Applications to the Elaboration of New Materials. Advanced Materials Research, 2009, 71-73, 519-526.	0.3	5