Raquel Seruca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6631061/publications.pdf Version: 2024-02-01

211 papers	14,357 citations	17440 63 h-index	24258 110 g-index
212	212	212	13773
all docs	docs citations	times ranked	citing authors

PAOLIEL SERLICA

#	Article	IF	CITATIONS
1	Integrin β1 orchestrates the abnormal cell-matrix attachment and invasive behaviour of E-cadherin dysfunctional cells. Gastric Cancer, 2022, 25, 124-137.	5.3	13
2	Proteomic Identification of a Gastric Tumor ECM Signature Associated With Cancer Progression. Frontiers in Molecular Biosciences, 2022, 9, 818552.	3.5	7
3	Differential Impacts on Tensional Homeostasis of Gastric Cancer Cells Due to Distinct Domain Variants of E-Cadherin. Cancers, 2022, 14, 2690.	3.7	2
4	Germline CDH1 G212E Missense Variant: Combining Clinical, In Vitro and In Vivo Strategies to Unravel Disease Burden. Cancers, 2021, 13, 4359.	3.7	9
5	The Porto European Cancer Research Summit 2021. Molecular Oncology, 2021, 15, 2507-2543.	4.6	7
6	A machine learning approach for single cell interphase cell cycle staging. Scientific Reports, 2021, 11, 19278.	3.3	5
7	Hereditary Gastric Cancer: A New Syndrome. Updates in Surgery Series, 2021, , 37-50.	0.1	2
8	Hereditary diffuse gastric cancer: updated clinical practice guidelines. Lancet Oncology, The, 2020, 21, e386-e397.	10.7	237
9	Hereditary Gastric and Breast Cancer Syndromes Related to CDH1 Germline Mutation: A Multidisciplinary Clinical Review. Cancers, 2020, 12, 1598.	3.7	37
10	Helicobacter Pylori Targets the EPHA2 Receptor Tyrosine Kinase in Gastric Cells Modulating Key Cellular Functions. Cells, 2020, 9, 513.	4.1	19
11	The Extracellular Matrix: An Accomplice in Gastric Cancer Development and Progression. Cells, 2020, 9, 394.	4.1	60
12	Eâ€cadherin deregulation in breast cancer. Journal of Cellular and Molecular Medicine, 2020, 24, 5930-5936.	3.6	59
13	Clinical spectrum and pleiotropic nature of <i>CDH1</i> germline mutations. Journal of Medical Genetics, 2019, 56, 199-208.	3.2	74
14	Targeting the Tumor Microenvironment: An Unexplored Strategy for Mutant KRAS Tumors. Cancers, 2019, 11, 2010.	3.7	38
15	S100P is a molecular determinant of E-cadherin function in gastric cancer. Cell Communication and Signaling, 2019, 17, 155.	6.5	16
16	SRC inhibition prevents P-cadherin mediated signaling and function in basal-like breast cancer cells. Cell Communication and Signaling, 2018, 16, 75.	6.5	14
17	Targeting the PI3K Signalling as a Therapeutic Strategy in Colorectal Cancer. Advances in Experimental Medicine and Biology, 2018, 1110, 35-53.	1.6	16
18	Clinical and functional characterization of the CDH1 germline variant c.1679C>G in three unrelated families with hereditary diffuse gastric cancer. European Journal of Human Genetics, 2018, 26, 1348-1353.	2.8	11

#	Article	IF	CITATIONS
19	Hereditary lobular breast cancer with an emphasis on E-cadherin genetic defect. Journal of Medical Genetics, 2018, 55, 431-441.	3.2	68
20	E-cadherin signal sequence disruption: a novel mechanism underlying hereditary cancer. Molecular Cancer, 2018, 17, 112.	19.2	11
21	Geometric compensation applied to image analysis of cell populations with morphological variability: a new role for a classical concept. Scientific Reports, 2018, 8, 10266.	3.3	6
22	Dependence of Tensional Homeostasis on Cell Type and on Cell–Cell Interactions. Cellular and Molecular Bioengineering, 2018, 11, 175-184.	2.1	16
23	Blue intensity matters for cell cycle profiling in fluorescence DAPI-stained images. Laboratory Investigation, 2017, 97, 615-625.	3.7	52
24	Predicting the Functional Impact of CDH1 Missense Mutations in Hereditary Diffuse Gastric Cancer. International Journal of Molecular Sciences, 2017, 18, 2687.	4.1	47
25	Capturing quantitative features of protein expression fromin situfluorescence microscopic images of cancer cell populations. , 2017, , 279-297.		0
26	Specific inhibition of p110α subunit of PI3K: putative therapeutic strategy for <i>KRAS</i> mutant colorectal cancers. Oncotarget, 2016, 7, 68546-68558.	1.8	8
27	Intricate Macrophage-Colorectal Cancer Cell Communication in Response to Radiation. PLoS ONE, 2016, 11, e0160891.	2.5	18
28	lonizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities. Scientific Reports, 2016, 6, 18765.	3.3	139
29	Quantification of topological features in cell meshes to explore E-cadherin dysfunction. Scientific Reports, 2016, 6, 25101.	3.3	16
30	CD44 alternative splicing in gastric cancer cells is regulated by culture dimensionality and matrix stiffness. Biomaterials, 2016, 98, 152-162.	11.4	34
31	<i>O</i> -mannosylation and <i>N</i> -glycosylation: two coordinated mechanisms regulating the tumour suppressor functions of E-cadherin in cancer. Oncotarget, 2016, 7, 65231-65246.	1.8	35
32	The novel colorectal cancer biomarkers <i>CDO1, ZSCAN18</i> and <i>ZNF331</i> are frequently methylated across gastrointestinal cancers. International Journal of Cancer, 2015, 136, 844-853.	5.1	76
33	Rare Variants in the Epithelial Cadherin Gene Underlying the Genetic Etiology of Nonsyndromic Cleft Lip with or without Cleft Palate. Human Mutation, 2015, 36, 1029-1033.	2.5	45
34	Familial gastric cancer: genetic susceptibility, pathology, and implications for management. Lancet Oncology, The, 2015, 16, e60-e70.	10.7	311
35	Quantification of mutant E-cadherin using bioimaging analysis of in situ fluorescence microscopy. A new approach to CDH1 missense variants. European Journal of Human Genetics, 2015, 23, 1072-1079.	2.8	28
36	Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline <i>CDH1</i> mutation carriers. Journal of Medical Genetics, 2015, 52, 361-374.	3.2	479

#	Article	IF	CITATIONS
37	E-cadherin-defective gastric cancer cells depend on Laminin to survive and invade. Human Molecular Genetics, 2015, 24, 5891-5900.	2.9	28
38	Target gene mutational pattern in Lynch syndrome colorectal carcinomas according to tumour location and germline mutation. British Journal of Cancer, 2015, 113, 686-692.	6.4	30
39	Matrix metalloproteases as maestros for the dual role of LPS- and IL-10-stimulated macrophages in cancer cell behaviour. BMC Cancer, 2015, 15, 456.	2.6	22
40	Colorectal cancer-related mutant <i>KRAS</i> alleles function as positive regulators of autophagy. Oncotarget, 2015, 6, 30787-30802.	1.8	39
41	The germline CDH1 c.48 G > C substitution contributes to cancer predisposition through generation of a pro-invasive mutation. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2014, 770, 106-111.	1.0	11
42	New Target Genes in Endometrial Tumors Show a Role for the Estrogen-Receptor Pathway in Microsatellite-Unstable Cancers. Human Mutation, 2014, 35, 1514-1523.	2.5	10
43	Dissecting the signaling pathways associated with the oncogenic activity of MLK3 P252H mutation. BMC Cancer, 2014, 14, 182.	2.6	12
44	Causes and consequences of microsatellite instability in gastric carcinogenesis. World Journal of Gastroenterology, 2014, 20, 16433.	3.3	67
45	Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid. International Journal of Medical Microbiology, 2014, 304, 314-320.	3.6	24
46	High-throughput molecular profiling of a P-cadherin overexpressing breast cancer model reveals new targets for the anti-cancer bacterial protein azurin. International Journal of Biochemistry and Cell Biology, 2014, 50, 1-9.	2.8	22
47	Biomarkers for gastric cancer: prognostic, predictive or targets of therapy?. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2014, 464, 367-378.	2.8	148
48	DNAJB4 molecular chaperone distinguishes WT from mutant E-cadherin, determining their fate in vitro and in vivo. Human Molecular Genetics, 2014, 23, 2094-2105.	2.9	20
49	Hereditary diffuse gastric cancer – Pathophysiology and clinical management. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2014, 28, 1055-1068.	2.4	40
50	E-cadherin germline mutation carriers: clinical management and genetic implications. Cancer and Metastasis Reviews, 2014, 33, 1081-1094.	5.9	48
51	Familial gastric carcinoma. Diagnostic Histopathology, 2014, 20, 239-246.	0.4	6
52	Colorectal cancer and RASSF family—A special emphasis on RASSF1A. International Journal of Cancer, 2013, 132, 251-258.	5.1	54
53	Gastric cancer: adding glycosylation to the equation. Trends in Molecular Medicine, 2013, 19, 664-676.	6.7	95
54	Therapeutic targets associated to E-cadherin dysfunction in gastric cancer. Expert Opinion on Therapeutic Targets, 2013, 17, 1187-1201.	3.4	21

#	Article	IF	CITATIONS
55	Adherens junctions as targets of microorganisms: A focus on <i>Helicobacter pylori</i> . FEBS Letters, 2013, 587, 259-265.	2.8	30
56	Clinical utility gene card for: Hereditary diffuse gastric cancer (HDGC). European Journal of Human Genetics, 2013, 21, 891-891.	2.8	22
57	Helicobacter pylori infection affects mitochondrial function and DNA repair, thus, mediating genetic instability in gastric cells. Mechanisms of Ageing and Development, 2013, 134, 460-466.	4.6	43
58	A novel CDH1 germline missense mutation in a sporadic gastric cancer patient in north-east of Italy. Clinical and Experimental Medicine, 2013, 13, 149-157.	3.6	14
59	Pâ€cadherin functional role is dependent on Eâ€cadherin cellular context: a proof of concept using the breast cancer model. Journal of Pathology, 2013, 229, 705-718.	4.5	68
60	The importance of E-cadherin binding partners to evaluate the pathogenicity of E-cadherin missense mutations associated to HDGC. European Journal of Human Genetics, 2013, 21, 301-309.	2.8	72
61	Identification of germline mutations in the cancer predisposing gene CDH1 in patients with orofacial clefts. Human Molecular Genetics, 2013, 22, 919-926.	2.9	55
62	Hereditary Diffuse Gastric Cancer and Other Gastric Cancers Associated with Hereditary Predisposition Syndromes. Molecular Pathology Library, 2013, , 83-107.	0.1	0
63	E-Cadherin Alterations in Hereditary Disorders with Emphasis on Hereditary Diffuse Gastric Cancer. Progress in Molecular Biology and Translational Science, 2013, 116, 337-359.	1.7	52
64	E-cadherin and adherens-junctions stability in gastric carcinoma: Functional implications of glycosyltransferases involving N-glycan branching biosynthesis, N-acetylglucosaminyltransferases III and V. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2690-2700.	2.4	101
65	E-Cadherin Radial Distribution Characterization for Mutation Detection Purposes. Lecture Notes in Computer Science, 2013, , 173-180.	1.3	2
66	Crosstalk between Helicobacter pylori and Gastric Epithelial Cells Is Impaired by Docosahexaenoic Acid. PLoS ONE, 2013, 8, e60657.	2.5	26
67	Somatic Mutations and Deletions of the E-Cadherin Gene Predict Poor Survival of Patients With Gastric Cancer. Journal of Clinical Oncology, 2013, 31, 868-875.	1.6	145
68	CCAAT/Enhancer Binding Protein β (C/EBPβ) Isoforms as Transcriptional Regulators of the Pro-Invasive CDH3/P-Cadherin Gene in Human Breast Cancer Cells. PLoS ONE, 2013, 8, e55749.	2.5	20
69	The Bacterial Protein Azurin Impairs Invasion and FAK/Src Signaling in P-Cadherin-Overexpressing Breast Cancer Cell Models. PLoS ONE, 2013, 8, e69023.	2.5	30
70	Germline Missense Mutants in Hereditary Diffuse Gastric Cancer. , 2013, , 77-86.		7
71	CLMP Is Essential for Intestinal Development, but Does Not Play a Key Role in Cellular Processes Involved in Intestinal Epithelial Development. PLoS ONE, 2013, 8, e54649.	2.5	17
72	Insulin/IGF-I Signaling Pathways Enhances Tumor Cell Invasion through Bisecting GlcNAc N-glycans Modulation. An Interplay with E-Cadherin. PLoS ONE, 2013, 8, e81579.	2.5	33

#	Article	IF	CITATIONS
73	Non-CDH1-Associated Familial Gastric Cancer and Epigenetics Factors. , 2013, , 111-125.		0
74	Transcription initiation arising from E-cadherin/CDH1 intron2: a novel protein isoform that increases gastric cancer cell invasion and angiogenesisâ€. Human Molecular Genetics, 2012, 21, 4253-4269.	2.9	16
75	E-cadherin impairment increases cell survival through Notch-dependent upregulation of Bcl-2. Human Molecular Genetics, 2012, 21, 334-343.	2.9	44
76	Eâ€cadherin dysfunction in gastric cancer ―Cellular consequences, clinical applications and open questions. FEBS Letters, 2012, 586, 2981-2989.	2.8	74
77	<i>CPEB1</i> , a novel gene silenced in gastric cancer: a <i>Drosophila</i> approach. Gut, 2012, 61, 1115-1123.	12.1	41
78	Mutant BRAF Induces DNA Strand Breaks, Activates DNA Damage Response Pathway, and Up-Regulates Glucose Transporter-1 in Nontransformed Epithelial Cells. American Journal of Pathology, 2012, 180, 1179-1188.	3.8	29
79	Highlights of the EORTC St. Gallen International Expert Consensus on the primary therapy of gastric, gastroesophageal and oesophageal cancer – Differential treatment strategies for subtypes of early gastroesophageal cancer. European Journal of Cancer, 2012, 48, 2941-2953.	2.8	129
80	CLMP Is Required for Intestinal Development, and Loss-of-Function Mutations Cause Congenital Short-Bowel Syndrome. Gastroenterology, 2012, 142, 453-462.e3.	1.3	49
81	Loss and Recovery of Mgat3 and GnT-III Mediated E-cadherin N-glycosylation Is a Mechanism Involved in Epithelial-Mesenchymal-Epithelial Transitions. PLoS ONE, 2012, 7, e33191.	2.5	93
82	E-Cadherin Destabilization Accounts for the Pathogenicity of Missense Mutations in Hereditary Diffuse Gastric Cancer. PLoS ONE, 2012, 7, e33783.	2.5	53
83	Pâ€Cadherin Is Coexpressed with CD44 and CD49f and Mediates Stem Cell Properties in Basalâ€like Breast Cancer. Stem Cells, 2012, 30, 854-864.	3.2	64
84	Lack of microRNAâ€101 causes Eâ€cadherin functional deregulation through EZH2 upâ€regulation in intestinal gastric cancer. Journal of Pathology, 2012, 228, 31-44.	4.5	125
85	Epithelial E- and P-cadherins: Role and clinical significance in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1826, 297-311.	7.4	137
86	Candidate driver genes in microsatelliteâ€unstable colorectal cancer. International Journal of Cancer, 2012, 130, 1558-1566.	5.1	99
87	Docosahexaenoic Acid Inhibits Helicobacter pylori Growth In Vitro and Mice Gastric Mucosa Colonization. PLoS ONE, 2012, 7, e35072.	2.5	90
88	Bacterial protein azurin as a new candidate drug to treat untreatable breast cancers. , 2011, , .		3
89	Oncogenic mutations in gastric cancer with microsatellite instability. European Journal of Cancer, 2011, 47, 443-451.	2.8	92
90	E-cadherin genetic screening and clinico-pathologic characteristics of early onset gastric cancer. European Journal of Cancer, 2011, 47, 631-639.	2.8	69

#	Article	IF	CITATIONS
91	P-cadherin role in normal breast development and cancer. International Journal of Developmental Biology, 2011, 55, 811-822.	0.6	64
92	ADP-Ribosylation Factor 6 Mediates E-Cadherin Recovery by Chemical Chaperones. PLoS ONE, 2011, 6, e23188.	2.5	21
93	Modulation of E-cadherin function and dysfunction by N-glycosylation. Cellular and Molecular Life Sciences, 2011, 68, 1011-1020.	5.4	132
94	MSI phenotype and MMR alterations in familial and sporadic gastric cancer. International Journal of Cancer, 2011, 128, 1606-1613.	5.1	65
95	Helicobacter pylori infection generates genetic instability in gastric cells. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1806, 58-65.	7.4	59
96	De novo expression of CD44 variants in sporadic and hereditary gastric cancer. Laboratory Investigation, 2010, 90, 1604-1614.	3.7	66
97	C/EBPα expression is associated with homeostasis of the gastric epithelium and with gastric carcinogenesis. Laboratory Investigation, 2010, 90, 1132-1139.	3.7	23
98	ICI 182,780 induces P-cadherin overexpression in breast cancer cells through chromatin remodelling at the promoter level: a role for C/EBPA in CDH3 gene activation. Human Molecular Genetics, 2010, 19, 2554-2566.	2.9	18
99	Allele-specific CDH1 downregulation and hereditary diffuse gastric cancer. Human Molecular Genetics, 2010, 19, 943-952.	2.9	100
100	Methylation tolerance due to an O6-methylguanine DNA methyltransferase (MGMT) field defect in the colonic mucosa: an initiating step in the development of mismatch repair-deficient colorectal cancers. Gut, 2010, 59, 1516-1526.	12.1	51
101	Mixed lineage kinase 3 gene mutations in mismatch repair deficient gastrointestinal tumours. Human Molecular Genetics, 2010, 19, 697-706.	2.9	26
102	Microbial-based therapy of cancer: Current progress and future prospects. Bioengineered Bugs, 2010, 1, 178-190.	1.7	72
103	Pathology and Genetics of Familial Gastric Cancer. International Journal of Surgical Pathology, 2010, 18, 33-36.	0.8	15
104	KRAS Signaling Pathway Alterations in Microsatellite Unstable Gastrointestinal Cancers. Advances in Cancer Research, 2010, 109, 123-143.	5.0	13
105	Germline CDH1 deletions in hereditary diffuse gastric cancer families. Human Molecular Genetics, 2009, 18, 1545-1555.	2.9	185
106	<i>KRAS</i> Mutations and Anti–Epidermal Growth Factor Receptor Therapy in Colorectal Cancer With Lymph Node Metastases. Journal of Clinical Oncology, 2009, 27, 158-159.	1.6	16
107	<i>Helicobacter pylori</i> Infection Induces Genetic Instability of Nuclear and Mitochondrial DNA in Gastric Cells. Clinical Cancer Research, 2009, 15, 2995-3002.	7.0	123
108	Analysis of microsatellite instability in medulloblastoma. Neuro-Oncology, 2009, 11, 458-467.	1.2	18

#	Article	IF	CITATIONS
109	The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin. Human Molecular Genetics, 2009, 18, 2599-2608.	2.9	100
110	Proliferation and survival molecules implicated in the inhibition of BRAF pathway in thyroid cancer cells harbouring different genetic mutations. BMC Cancer, 2009, 9, 387.	2.6	24
111	E-cadherin mutations and cell motility: A genotype–phenotype correlation. Experimental Cell Research, 2009, 315, 1393-1402.	2.6	64
112	Estrogens, MSI and Lynch syndrome-associated tumors. Biochimica Et Biophysica Acta: Reviews on Cancer, 2009, 1796, 194-200.	7.4	14
113	The mechanisms underlying MMR deficiency in immunodeficiencyâ€related nonâ€Hodgkin lymphomas are different from those in other sporadic microsatellite instable neoplasms. International Journal of Cancer, 2009, 125, 2360-2366.	5.1	17
114	Hereditary gastric cancer. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2009, 23, 147-157.	2.4	66
115	Evidence of tumor microsatellite instability in gastric cancer with familial aggregation. Familial Cancer, 2009, 8, 215-220.	1.9	44
116	TP53 germline mutations in Portugal and genetic modifiers of age at cancer onset. Familial Cancer, 2009, 8, 383-390.	1.9	14
117	Gastric Cardia Carcinoma is Associated with the Promoter -77T>C Gene Polymorphism of X-Ray Cross-Complementing Group 1 (XRCC1). Journal of Gastrointestinal Surgery, 2009, 13, 2233-2238.	1.7	18
118	Mononucleotide precedes dinucleotide repeat instability during colorectal tumour development in Lynch syndrome patients. Journal of Pathology, 2009, 219, 96-102.	4.5	22
119	CagA Associates with câ€Met, Eâ€Cadherin, and p120â€Catenin in a Multiproteic Complex That Suppresses <i>Helicobacter pylori</i> –Induced Cellâ€Invasive Phenotype. Journal of Infectious Diseases, 2009, 200, 745-755.	4.0	89
120	Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells. Cancer Letters, 2009, 281, 162-170.	7.2	153
121	Quantification of Epigenetic and Genetic 2nd Hits in CDH1 During Hereditary Diffuse Gastric Cancer Syndrome Progression. Gastroenterology, 2009, 136, 2137-2148.	1.3	142
122	Unmasking the role of <i>KRAS</i> and <i>BRAF</i> pathways in MSI colorectal tumors. Expert Review of Gastroenterology and Hepatology, 2009, 3, 5-9.	3.0	12
123	PIK3CA Gene Alterations in Human Cancers. , 2009, , 1-20.		Ο
124	BRAF provides proliferation and survival signals in MSI colorectal carcinoma cells displaying <i>BRAF</i> ^{<i>V</i>600<i>E</i>} but not <i>KRAS</i> mutations. Journal of Pathology, 2008, 214, 320-327.	4.5	53
125	Epidermal growth factor receptor structural alterations in gastric cancer. BMC Cancer, 2008, 8, 10.	2.6	45
126	BRAF, KRAS and PIK3CA mutations in colorectal serrated polyps and cancer: Primary or secondary genetic events in colorectal carcinogenesis?. BMC Cancer, 2008, 8, 255.	2.6	124

#	Article	IF	CITATIONS
127	Somatic mutations in mismatch repair genes in sporadic gastric carcinomas are not a cause but a consequence of the mutator phenotype. Cancer Genetics and Cytogenetics, 2008, 180, 110-114.	1.0	26
128	B-RafV600E Cooperates With Alternative Spliced Rac1b to Sustain Colorectal Cancer Cell Survival. Gastroenterology, 2008, 135, 899-906.	1.3	65
129	Molecular targets and biological modifiers in gastric cancer. Seminars in Diagnostic Pathology, 2008, 25, 274-287.	1.5	30
130	Endoplasmic reticulum quality control: a new mechanism of E-cadherin regulation and its implication in cancer. Human Molecular Genetics, 2008, 17, 3566-3576.	2.9	62
131	Tumor Necrosis Factor Alpha Extended Haplotypes and Risk of Gastric Carcinoma. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 2416-2420.	2.5	35
132	The interleukin-8-251*T/*A polymorphism is not associated with risk for gastric carcinoma development in a Portuguese population. European Journal of Cancer Prevention, 2008, 17, 28-32.	1.3	47
133	EGFR regulates RhoA-GTP dependent cell motility in E-cadherin mutant cells. Human Molecular Genetics, 2007, 16, 1639-1647.	2.9	81
134	Specific Clinical and Biological Features Characterize Inflammatory Bowel Disease–Associated Colorectal Cancers Showing Microsatellite Instability. Journal of Clinical Oncology, 2007, 25, 4231-4238.	1.6	68
135	In vitro demonstration of intra-locus compensation using the ornithine transcarbamylase protein as model. Human Molecular Genetics, 2007, 16, 2209-2214.	2.9	15
136	High Incidence of Familial Gastric Cancer in Tuscany, a Region in Italy. Oncology, 2007, 72, 243-247.	1.9	25
137	A subset of colorectal carcinomas express c-KIT protein independently of BRAF and/or KRAS activation. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2007, 450, 619-626.	2.8	14
138	Genetics, Pathology, and Clinics of Familial Gastric Cancer. International Journal of Surgical Pathology, 2006, 14, 21-33.	0.8	141
139	E-cadherin missense mutations, associated with hereditary diffuse gastric cancer (HDGC) syndrome, display distinct invasive behaviors and genetic interactions with the Wnt and Notch pathways in Drosophila epithelia. Human Molecular Genetics, 2006, 15, 1704-1712.	2.9	35
140	A model to infer the pathogenic significance of CDH1 germline missense variants. Journal of Molecular Medicine, 2006, 84, 1023-1031.	3.9	66
141	Sequence Diversity at the Proximal 14q32.1 SERPIN Subcluster: Evidence for Natural Selection Favoring the Pseudogenization of SERPINA2. Molecular Biology and Evolution, 2006, 24, 587-598.	8.9	20
142	Genetics of hereditary diffuse gastric cancer: progress and future challenges. Future Oncology, 2006, 2, 363-370.	2.4	13
143	Tumour selection advantage of non-dominant negative P53 mutations in homozygotic MDM2-SNP309 colorectal cancer cells. Journal of Medical Genetics, 2006, 44, 75-80.	3.2	25
144	Helicobacter pylori Induces Gastric Epithelial Cell Invasion in a c-Met and Type IV Secretion System-dependent Manner. Journal of Biological Chemistry, 2006, 281, 34888-34896.	3.4	92

#	Article	IF	CITATIONS
145	BRAF-V600E is not involved in the colorectal tumorigenesis of HNPCC in patients with functional MLH1 and MSH2 genes. Oncogene, 2005, 24, 3995-3998.	5.9	155
146	Concomitant RASSF1A hypermethylation and KRAS/BRAF mutations occur preferentially in MSI sporadic colorectal cancer. Oncogene, 2005, 24, 7630-7634.	5.9	45
147	NOD2/CARD15 and TNFA, But Not ILLB and ILLRN, are Associated With Crohn's Disease. Inflammatory Bowel Diseases, 2005, 11, 331-339.	1.9	54
148	?-Catenin (CTNNB1) gene amplification: A new mechanism of protein overexpression in cancer. Genes Chromosomes and Cancer, 2005, 42, 238-246.	2.8	34
149	Role of pathology in the identification of hereditary diffuse gastric cancer: report of a Portuguese family. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2005, 446, 181-184.	2.8	38
150	Characterization of a Recurrent Germ Line Mutation of the E-Cadherin Gene: Implications for Genetic Testing and Clinical Management. Clinical Cancer Research, 2005, 11, 5401-5409.	7.0	187
151	Loss of functional E-cadherin renders cells more resistant to the apoptotic agent taxol in vitro. Experimental Cell Research, 2005, 310, 99-104.	2.6	51
152	The prevalence of PIK3CA mutations in gastric and colon cancer. European Journal of Cancer, 2005, 41, 1649-1654.	2.8	314
153	Distinct patterns of KRAS mutations in colorectal carcinomas according to germline mismatch repair defects and hMLH1 methylation status. Human Molecular Genetics, 2004, 13, 2303-2311.	2.9	127
154	Intragenic deletion of CDH1 as the inactivating mechanism of the wild-type allele in an HDGC tumour. Oncogene, 2004, 23, 2236-2240.	5.9	92
155	Model of the early development of diffuse gastric cancer in Eâ€cadherin mutation carriers and its implications for patient screening. Journal of Pathology, 2004, 203, 681-687.	4.5	242
156	ActivatedBRAFtargets proximal colon tumors with mismatch repair deficiency andMLH1inactivation. Genes Chromosomes and Cancer, 2004, 39, 138-142.	2.8	87
157	E-Cadherin (CDH1) and p53 rather than SMAD4 and Caspase-10 germline mutations contribute to genetic predisposition in Portuguese gastric cancer patients. European Journal of Cancer, 2004, 40, 1897-1903.	2.8	97
158	Genetic Screening for Familial Gastric Cancer. Hereditary Cancer in Clinical Practice, 2004, 2, 51.	1.5	34
159	MBD4 mutations are rare in gastric carcinomas with microsatellite instability. Cancer Genetics and Cytogenetics, 2003, 145, 103-107.	1.0	16
160	Promoter methylation of TGFβ receptor I and mutation of TGFβ receptor II are frequent events in MSI sporadic gastric carcinomas. Journal of Pathology, 2003, 200, 32-38.	4.5	53
161	The intracellular E-cadherin germline mutation V832 M lacks the ability to mediate cell–cell adhesion and to suppress invasion. Oncogene, 2003, 22, 5716-5719.	5.9	81
162	BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene, 2003, 22, 4578-4580.	5.9	616

#	Article	IF	CITATIONS
163	BRAF mutations characterize colon but not gastric cancer with mismatch repair deficiency. Oncogene, 2003, 22, 9192-9196.	5.9	132
164	Frequent ki-ras mutations in gastric tumors of the MSI phenotype. Gastroenterology, 2003, 125, 1282-1283.	1.3	21
165	E-cadherin germline missense mutations and cell phenotype: evidence for the independence of cell invasion on the motile capabilities of the cells. Human Molecular Genetics, 2003, 12, 3007-3016.	2.9	79
166	A proinflammatory genetic profile increases the risk for chronic atrophic gastritis and gastric carcinoma. Gastroenterology, 2003, 125, 364-371.	1.3	450
167	Role of site-specific promoter hypomethylation in aberrant MUC2 mucin expression in mucinous gastric carcinomas. Cancer Letters, 2003, 189, 129-136.	7.2	35
168	WNT-inducible signaling pathway protein 3, WISP-3, is mutated in microsatellite unstable gastrointestinal carcinomas but not in endometrial carcinomas. Gastroenterology, 2003, 124, 270-271.	1.3	11
169	Identification of CDH1 germline missense mutations associated with functional inactivation of the E-cadherin protein in young gastric cancer probands. Human Molecular Genetics, 2003, 12, 575-582.	2.9	167
170	Genetic screening for hereditary diffuse gastric cancer. Expert Review of Molecular Diagnostics, 2003, 3, 201-215.	3.1	46
171	Patterns of β-Catenin Expression in Gastric Carcinoma: Clinicopathological Relevance and Mutation Analysis. International Journal of Surgical Pathology, 2003, 11, 1-9.	0.8	27
172	Helicobacter pylori and Interleukin 1 Genotyping: An Opportunity to Identify High-Risk Individuals for Gastric Carcinoma. Journal of the National Cancer Institute, 2002, 94, 1680-1687.	6.3	563
173	Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology, 2002, 123, 1804-1811.	1.3	535
174	Screening E-cadherin in gastric cancer families reveals germline mutations only in hereditary diffuse gastric cancer kindred. Human Mutation, 2002, 19, 510-517.	2.5	153
175	Loss of Heterozygosity and Promoter Methylation, but not Mutation, May Underlie Loss of TFF1 in Gastric Carcinoma. Laboratory Investigation, 2002, 82, 1319-1326.	3.7	88
176	Target gene mutation profile differs between gastrointestinal and endometrial tumors with mismatch repair deficiency. Cancer Research, 2002, 62, 1609-12.	0.9	53
177	Interleukin 1B and interleukin 1RN polymorphisms are associated with increased risk of gastric carcinoma. Gastroenterology, 2001, 121, 823-829.	1.3	402
178	Early Gastric Cancer in Young, Asymptomatic Carriers of Germ-Line E-Cadherin Mutations. New England Journal of Medicine, 2001, 344, 1904-1909.	27.0	420
179	Abnormalities of the E-cadherin/catenin adhesion complex in classical papillary thyroid carcinoma and in its diffuse sclerosing variant. Journal of Pathology, 2001, 194, 358-366.	4.5	65
180	Microsatellite instability, mitochondrial DNA large deletions, and mitochondrial DNA mutations in gastric carcinoma. Genes Chromosomes and Cancer, 2001, 32, 136-143.	2.8	99

#	Article	IF	CITATIONS
181	Allelic gains and losses in distinct regions of chromosome 6 in gastric carcinoma. Cancer Genetics and Cytogenetics, 2001, 131, 54-59.	1.0	11
182	Detection of <i>N-myc</i> Amplification in Neuroblastomas Using Southern Blotting on Fine Needle Aspirates. Acta Cytologica, 2001, 45, 169-173.	1.3	28
183	Extended structural variation of a pentanucleotide repeat in the CSTP1 gene: characterisation in a normal population and in thyroid and gastric tumours. European Journal of Human Genetics, 2000, 8, 540-544.	2.8	11
184	MSI-L Gastric Carcinomas Share the hMLH1 Methylation Status of MSI-H Carcinomas but Not Their Clinicopathological Profile. Laboratory Investigation, 2000, 80, 1915-1923.	3.7	43
185	Mitochondrial DNA alteration in gastric cancer. Gastroenterology, 2000, 119, 1808-1809.	1.3	12
186	Substantial reduction of the gastric carcinoma critical region at 6q16.3-q23.1. , 1999, 26, 29-34.		18
187	Microsatellite instability in hyperplastic and adenomatous polyps of the stomach. , 1999, 86, 1649-1656.		37
188	Microsatellite instability in medullary breast carcinomas. , 1999, 82, 644-647.		24
189	Microsatellite instability in hyperplastic and adenomatous polyps of the stomach. Cancer, 1999, 86, 1649-1656.	4.1	1
190	PCR amplification of DNA obtained from archived hematoxylin-eosin– and giemsa-stained breast cancer aspirates. Diagnostic Cytopathology, 1998, 19, 395-397.	1.0	10
191	Determination of the replication error phenotype in human tumors without the requirement for matching normal DNA by analysis of mononucleotide repeat microsatellites. , 1998, 21, 101-107.		203
192	Bilateral apocrine carcinoma of the breast Molecular and immunocytochemical evidence for two independent primary tumours. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 1998, 433, 505-509.	2.8	12
193	The Clinicopathological Features of Gastric Carcinomas with Microsatellite Instability May Be Mediated by Mutations of Different "Target Genes― American Journal of Pathology, 1998, 153, 1211-1219.	3.8	144
194	Tetra-and pentanucleotide short tandem repeat instability in gastric cancer. Electrophoresis, 1997, 18, 1633-1636.	2.4	19
195	LETTER TO THE EDITOR. Relationship between the expression of p53 and the aggressiveness of gastric carcinoma. , 1997, 181, 349-349.		1
196	Assessment of microsatellite alterations in young patients with gastric adenocarcinoma. Cancer, 1997, 80, 1357-1362.	4.1	2
197	Sporadic gastric carcinomas with microsatellite instability display a particular clinicopathologic profile. International Journal of Cancer, 1995, 64, 32-36.	5.1	110
198	Identification of two distinct regions of deletion at 6q in gastric carcinoma. Genes Chromosomes and Cancer, 1995, 14, 28-34.	2.8	45

#	Article	IF	CITATIONS
199	Increasing levels of MYC and MET co-amplification during tumor progression of a case of gastric cancer. Cancer Genetics and Cytogenetics, 1995, 82, 140-145.	1.0	45
200	p53 alterations in gastric carcinoma:. Cancer Genetics and Cytogenetics, 1994, 75, 45-50.	1.0	14
201	Hyperplastic polyposis and diffuse carcinoma of the stomach. A study of a family. Cancer, 1993, 72, 323-329.	4.1	53
202	Cytogenetic findings in eleven gastric carcinomas. Cancer Genetics and Cytogenetics, 1993, 68, 42-48.	1.0	53
203	Loss of Y chromosome in gastric carcinoma. Cancer Genetics and Cytogenetics, 1992, 61, 39-41.	1.0	18
204	Clonal cytogenetic abnormalities and telomeric associations in a fibroxanthoma of the stomach. Genes Chromosomes and Cancer, 1992, 5, 407-409.	2.8	10
205	Familial gastric polyposis revisited. Cancer Genetics and Cytogenetics, 1991, 53, 97-100.	1.0	28
206	Cytogenetic study of a sclerosing stromal tumor of the ovary. Cancer Genetics and Cytogenetics, 1990, 49, 103-106.	1.0	12
207	A malignant mixed gonadal stromal tumor of the testis with heterologous components and i(12p) in one of its metastases. Cancer Genetics and Cytogenetics, 1989, 41, 105-114.	1.0	26
208	Karyotyping and DNA flow cytometry of an orchidoblastoma. Cancer Genetics and Cytogenetics, 1988, 36, 7-11.	1.0	30
209	Cytogenetic study of a combined germ cell tumor of the testis. Cancer Genetics and Cytogenetics, 1988, 35, 159-165.	1.0	15
210	i(12p)-negative testicular germ cell tumors. Cancer Genetics and Cytogenetics, 1988, 35, 171-178.	1.0	48
211	Cytogenetics of a case of osteosarcoma. Cancer Genetics and Cytogenetics, 1988, 32, 149-151.	1.0	21