François-Xavier Felpin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6630989/publications.pdf

Version: 2024-02-01

126 papers 8,428 citations

42 h-index 89 g-index

168 all docs 168 docs citations

168 times ranked 10316 citing authors

#	Article	IF	CITATIONS
1	An investigation of palladium-catalyzed Stille-type cross-coupling of nitroarenes in perylenediimide series. Organic and Biomolecular Chemistry, 2022, 20, 362-365.	2.8	6
2	Developing flow photo-thiol–ene functionalizations of cinchona alkaloids with an autonomous self-optimizing flow reactor. Reaction Chemistry and Engineering, 2022, 7, 1346-1357.	3.7	10
3	Flow Conditionsâ€Controlled Divergent Oxidative Cyclization of Reticulineâ€Type Alkaloids to Aporphine and Morphinandienone Natural Products. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3
4	Analytical Tools Integrated in Continuous-Flow Reactors: Which One for What?. Organic Process Research and Development, 2022, 26, 1766-1793.	2.7	23
5	Direct Câ^'H Arylation of Indoleâ€3â€Acetic Acid Derivatives Enabled by an Autonomous Selfâ€Optimizing Flow Reactor. Advanced Synthesis and Catalysis, 2021, 363, 791-799.	4.3	14
6	Ultra-fast covalent molecular printing on cellulose paper by photo-strain-triggered click ligation: UV LED versus laser irradiations. Journal of Materials Science, 2021, 56, 5006-5014.	3.7	6
7	Development of a continuous flow synthesis of FGIN-1-27 enabled by in-line ¹⁹ F NMR analyses and optimization algorithms. Reaction Chemistry and Engineering, 2021, 6, 1983-1992.	3.7	3
8	Curve fitting complex X-ray photoelectron spectra of graphite-supported copper nanoparticles using informed line shapes. Applied Surface Science, 2020, 505, 143841.	6.1	21
9	Merging Gradientâ€Based Methods to Improve Benchtop NMR Spectroscopy: A New Tool for Flow Reaction Optimization. ChemPhysChem, 2020, 21, 2311-2319.	2.1	4
10	Synthesis of 5-Substituted $1 < i > H < / i > - Tetrazoles$ from Nitriles by Continuous Flow: Application to the Synthesis of Valsartan. Organic Process Research and Development, 2020, 24, 752-761.	2.7	19
11	Comparing Gas–Liquid Segmented and Tube-in-Tube Setups for the Aerobic Dimerization of Desmethoxycarpacine with an Automated Flow Platform. Organic Process Research and Development, 2020, 24, 745-751.	2.7	14
12	Heptylmannose-functionalized cellulose for the binding and specific detection of pathogenic <i>E. coli</i> . Chemical Communications, 2019, 55, 10158-10161.	4.1	13
13	Reconfigurable Flow Platform for Automated Reagent Screening and Autonomous Optimization for Bioinspired Lignans Synthesis. Journal of Organic Chemistry, 2019, 84, 14101-14112.	3.2	26
14	Biaryl synthesis with arenediazonium salts: cross-coupling, CH-arylation and annulation reactions. Chemical Society Reviews, 2019, 48, 1150-1193.	38.1	156
15	A fully bio-sourced adsorbent of heavy metals in water fabricated by immobilization of quinine on cellulose paper. Journal of Environmental Sciences, 2019, 84, 174-183.	6.1	18
16	An autonomous self-optimizing flow machine for the synthesis of pyridine–oxazoline (PyOX) ligands. Reaction Chemistry and Engineering, 2019, 4, 1608-1615.	3.7	19
17	Fabrication of Robust Spatially Resolved Photochromic Patterns on Cellulose Papers by Covalent Printing for Anticounterfeiting Applications. ACS Applied Polymer Materials, 2019, 1, 1240-1250.	4.4	30
18	Cellulose paper azide as a molecular platform for versatile click ligations: application to the preparation of hydrophobic paper surface. Cellulose, 2018, 25, 1395-1411.	4.9	22

#	Article	IF	Citations
19	Ultra-fast Suzuki and Heck reactions for the synthesis of styrenes and stilbenes using arenediazonium salts as super-electrophiles. Organic Chemistry Frontiers, 2018, 5, 41-45.	4.5	18
20	An Autonomous Self-Optimizing Flow Reactor for the Synthesis of Natural Product Carpanone. Journal of Organic Chemistry, 2018, 83, 14286-14299.	3.2	86
21	Cellulose paper grafted with polyamines as powerful adsorbent for heavy metals. Cellulose, 2018, 25, 4043-4055.	4.9	37
22	Hydrophobic Covalent Patterns on Cellulose Paper through Photothiol-X Ligations. ACS Omega, 2018, 3, 9155-9159.	3.5	19
23	Flow reactors integrated with in-line monitoring using benchtop NMR spectroscopy. Reaction Chemistry and Engineering, 2018, 3, 399-413.	3.7	82
24	A highly selective colorimetric and fluorescent chemosensor for Cr2+ in aqueous solutions. Tetrahedron Letters, 2017, 58, 505-508.	1.4	11
25	Biodiesel production from palm oil using sulfonated graphene catalyst. Renewable Energy, 2017, 106, 135-141.	8.9	121
26	Oxidative Neutralization of Mustardâ€Gas Simulants in an Onâ€Board Flow Device with Inâ€Line NMR Monitoring. Angewandte Chemie, 2017, 129, 7676-7680.	2.0	11
27	Oxidative Neutralization of Mustardâ€Gas Simulants in an Onâ€Board Flow Device with Inâ€Line NMR Monitoring. Angewandte Chemie - International Edition, 2017, 56, 7568-7572.	13.8	42
28	Photoresponsive cellulose paper as a molecular printboard for covalent printing. Journal of Materials Chemistry C, 2017, 5, 5154-5162.	5 . 5	19
29	Chemically Modified Cellulose Filter Paper for Heavy Metal Remediation in Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 1965-1973.	6.7	192
30	Copper(II)-phenanthroline hybrid material as efficient catalyst for the multicomponent synthesis of 1,2,3-triazoles via sequential azide formation/1,3-dipolar cycloaddition. Molecular Catalysis, 2017, 437, 150-157.	2.0	20
31	Heterogeneous Palladium Catalysts for Suzuki–Miyaura Coupling Reactions Involving Aryl Diazonium Salts. ChemCatChem, 2016, 8, 1998-2009.	3.7	46
32	Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews, 2016, 116, 3722-3811.	47.7	2,051
33	Writing and erasing hidden optical information on covalently modified cellulose paper. Chemical Communications, 2016, 52, 7672-7675.	4.1	19
34	A paper-based biomimetic device for the reduction of Cu(⟨scp⟩ii⟨ scp⟩) to Cu(⟨scp⟩i⟨ scp⟩) – application to the sensing of Cu(⟨scp⟩ii⟨ scp⟩). Chemical Communications, 2016, 52, 6569-6572.	4.1	39
35	Harnessing the Dual Properties of Thiolâ€Grafted Cellulose Paper for Click Reactions: A Powerful Reducing Agent and Adsorbent for Cu. Angewandte Chemie, 2016, 128, 13747-13750.	2.0	4
36	Harnessing the Dual Properties of Thiolâ€Grafted Cellulose Paper for Click Reactions: A Powerful Reducing Agent and Adsorbent for Cu. Angewandte Chemie - International Edition, 2016, 55, 13549-13552.	13.8	27

#	Article	IF	CITATIONS
37	Graphene-catalyzed transacetalization under acid-free conditions. Tetrahedron Letters, 2016, 57, 4637-4639.	1.4	2
38	The promoting effect of pyridine ligands in the Pd-catalysed Heck–Matsuda reaction. New Journal of Chemistry, 2016, 40, 8855-8862.	2.8	12
39	Optimizing the Heck–Matsuda Reaction in Flow with a Constraint-Adapted Direct Search Algorithm. Organic Process Research and Development, 2016, 20, 1979-1987.	2.7	67
40	Ultrafast 2D NMR on a benchtop spectrometer: Applications and perspectives. TrAC - Trends in Analytical Chemistry, 2016, 83, 65-75.	11.4	67
41	Chemically-modified cellulose paper as smart sensor device for colorimetric and optical detection of hydrogen sulfate in water. Chemical Communications, 2016, 52, 2525-2528.	4.1	76
42	Practical and scalable synthesis of sulfonated graphene. Carbon, 2016, 96, 342-350.	10.3	67
43	Graphene-promoted acetalisation of glycerol under acid-free conditions. Green Chemistry, 2016, 18, 1531-1537.	9.0	26
44	Palladium Nanoparticles Supported on Sulfonic Acid Functionalized Silica as Trifunctional Heterogeneous Catalysts for Heck and Suzuki Reactions. ChemCatChem, 2015, 7, 2085-2094.	3.7	23
45	Graphite-supported ultra-small copper nanoparticles $\hat{a} \in \mathbb{C}$ Preparation, characterization and catalysis applications. Carbon, 2015, 93, 974-983.	10.3	55
46	Handling diazonium salts in flow for organic and material chemistry. Organic Chemistry Frontiers, 2015, 2, 590-614.	4.5	59
47	Real-time reaction monitoring by ultrafast 2D NMR on a benchtop spectrometer. Analyst, The, 2015, 140, 7854-7858.	3.5	52
48	Heck-Matsuda Reaction Catalyzed by Heterogeneous Palladium Catalysts. Current Organic Chemistry, 2015, 19, 695-707.	1.6	13
49	Design, synthesis and biological evaluation of Pontin ATPase inhibitors through a molecular docking approach. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2512-2516.	2.2	14
50	Copper-catalyzed free-radical C–H arylation of pyrroles. Chemical Communications, 2014, 50, 5236-5238.	4.1	76
51	Palladium and copper-supported on charcoal: A heterogeneous multi-task catalyst for sequential Sonogashira–Click and Click–Heck reactions. Journal of Organometallic Chemistry, 2014, 755, 78-85.	1.8	34
52	Heck–Matsuda Arylation of Olefins Through a Bicatalytic Approach: Improved Procedures and Rationalization. Advanced Synthesis and Catalysis, 2014, 356, 1065-1071.	4.3	36
53	Transition Metalâ€Mediated Direct CH Arylation of Heteroarenes Involving Aryl Radicals. Advanced Synthesis and Catalysis, 2014, 356, 645-671.	4.3	121
54	Using Aryl Diazonium Salts in Palladium-Catalyzed Reactions under Safer Conditions. Organic Process Research and Development, 2014, 18, 1786-1801.	2.7	108

#	Article	IF	Citations
55	Vibronic spectra of organic electronic chromophores. RSC Advances, 2014, 4, 55466-55472.	3.6	14
56	Continuous-Flow Heck–Matsuda Reaction: Homogeneous versus Heterogeneous Palladium Catalysts. Journal of Organic Chemistry, 2014, 79, 8255-8262.	3.2	41
57	Ten Years of Adventures with Pd/C Catalysts: From Reductive Processes to Coupling Reactions. Synlett, 2014, 25, 1055-1067.	1.8	41
58	Direct C sp ² H and C sp ³ H Arylation Enabled by Heterogeneous Palladium Catalysts. ChemCatChem, 2014, 6, 2175-2187.	¹ 3.7	81
59	On the peculiar recycling properties of charcoal-supported palladium oxide nanoparticles in Sonogashira reactions. Applied Catalysis A: General, 2014, 482, 157-162.	4.3	18
60	Stabilisation of Carbonâ€Supported Palladium Nanoparticles through the Formation of an Alloy with Gold: Application to the Sonogashira Reaction. Chemistry - A European Journal, 2013, 19, 14024-14029.	3.3	38
61	C–H Arylation of Benzoquinone in Water through Aniline Activation: Synergistic Effect of Graphite-Supported Copper Oxide Nanoparticles. Journal of Organic Chemistry, 2013, 78, 4604-4609.	3.2	76
62	Chelationâ€Assisted Crossâ€Coupling of Anilines through In Situ Activation as Diazonium Salts with Boronic Acids under Ligandâ€, Baseâ€, and Saltâ€Free Conditions. Chemistry - A European Journal, 2013, 19, 9291-9296.	3.3	21
63	Practical synthesis of indoles and benzofurans in water using a heterogeneous bimetallic catalyst. Beilstein Journal of Organic Chemistry, 2013, 9, 1426-1431.	2.2	20
64	Direct C-H Arylation of Quinones with Anilines. Synlett, 2012, 23, 1621-1624.	1.8	29
65	A Sustainable Procedure Combining the Advantages of Both Homogeneous and Heterogeneous Catalysis for the Heck-Matsuda Reaction. Synthesis, 2012, 44, 37-41.	2.3	16
66	Synthesis of C3-arylated-3-deazauridine derivatives with potent anti-HSV-1 activities. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7461-7464.	2.2	2
67	Practical Pd/Câ€Catalysed Suzuki–Miyaura Reactions for the Preparation of 3â€Arylâ€4â€oxypyridinâ€2(1 <i>H</i>)â€ones, 3â€Arylâ€2,4â€oxypyridines and 3â€Arylâ€2,4â€oxyquinolines as Intermediates for the Synthesis of Biologically Active Compounds. European Journal of Organic Chemistry, 2012, 2012, 5525-5533.	Useful 2.4	14
68	Direct C–H Alkylation of Naphthoquinones with Amino Acids Through a Revisited Kochi–Anderson Radical Decarboxylation: Trends in Reactivity and Applications. European Journal of Organic Chemistry, 2012, 2012, 5774-5788.	2.4	24
69	Sustainable Heck–Matsuda Reaction with Catalytic Amounts of Diazonium Salts: An Experimental and Theoretical Study. Chemistry - A European Journal, 2012, 18, 7210-7218.	3.3	41
70	Synthesis and biological evaluation of hydrophilic embelin derivatives. Tetrahedron, 2012, 68, 4655-4663.	1.9	12
71	Synthesis of indanones by sequential Heck-reduction–cyclization–alkylation (HRCA) reactions. Tetrahedron Letters, 2012, 53, 338-341.	1.4	24
72	Unprecedented Substoichiometric Use of Hazardous Aryl Diazonium Salts in the Heck-Matsuda Reaction via a Double Catalytic Cycle. Organic Letters, 2011, 13, 2646-2649.	4.6	80

#	Article	IF	CITATIONS
73	Aryl Diazonium <i>versus</i> lodonium Salts: Preparation, Applications and Mechanisms for the Suzuki–Miyaura Crossâ€Coupling Reaction. Advanced Synthesis and Catalysis, 2011, 353, 3063-3084.	4.3	114
74	A Fully Palladiumâ€Mediated Construction of Phenanthrenes and Naphthoxindoles. European Journal of Organic Chemistry, 2011, 2011, 4616-4622.	2.4	37
75	Recent advances in the Heck–Matsuda reaction in heterocyclic chemistry. Tetrahedron, 2011, 67, 2815-2831.	1.9	221
76	Reliable and Safe, Gram-Scale Hydrogenation and Hydrogenolysis of O-Benzyl Ether Groups with In Situ PdO/C Catalyst. Synthesis, 2011, 2011, 2893-2896.	2.3	8
77	Recyclable Heterogeneous Palladium Catalysts in Pure Water: Sustainable Developments in Suzuki, Heck, Sonogashira and Tsuji–Trost Reactions. Advanced Synthesis and Catalysis, 2010, 352, 33-79.	4.3	618
78	Roomâ€Temperature, Ligand―and Baseâ€Free Heck Reactions of Aryl Diazonium Salts at Low Palladium Loading: Sustainable Preparation of Substituted Stilbene Derivatives. Chemistry - A European Journal, 2010, 16, 5191-5204.	3.3	94
79	A Useful, Reliable and Safer Protocol for Hydrogenation and the Hydrogenolysis of ⟨i⟩O⟨ i⟩â€Benzyl Groups: The In Situ Preparation of an Active Pd⟨sup⟩0⟨ sup⟩ C Catalyst with Wellâ€Defined Properties. Chemistry - A European Journal, 2010, 16, 12440-12445.	3.3	92
80	Synthesis of Novel Haptens and Conjugates for Antibody Production against Kainoid Family. Synlett, 2010, 2010, 1943-1946.	1.8	0
81	A Multi-Task Palladium Catalyst Involved in Heck-Reduction-Cyclization Sequences for the Preparation of 4-Benzyl-1,2-dihydroisoquinolin-3-ones: An Unusual Homogeneous-Heterogeneous Sustainable Approach. Synlett, 2010, 2010, 1539-1543.	1.8	7
82	Synthesis of a Racemic Nicotine-Lobeline Hybrid. Synlett, 2010, 2010, 1631-1634.	1.8	0
83	Improved Suzuki–Miyaura Reactions of Aryldiazonium Salts with Boronic Acids by Tuning Palladium on Charcoal Catalyst Properties. Advanced Synthesis and Catalysis, 2009, 351, 649-655.	4.3	81
84	Preparation of 2â€Quinolones by Sequential Heck Reduction–Cyclization (HRC) Reactions by Using a Multitask Palladium Catalyst. Chemistry - A European Journal, 2009, 15, 7238-7245.	3.3	84
85	1,1′â€Binaphthylâ€2â€methylpyridiniumâ€Based Peroxophosphotungstate Salts: Synthesis, Characterization, a Their Use as Oxidation Catalysts. European Journal of Inorganic Chemistry, 2009, 2009, 5148-5155.	and 2.0	7
86	Hydrogenâ€Bond Accepting Strength of Fiveâ€Membered Nâ€Heterocycles:The Case of Substituted Phenylpyrrolines and Myosmines. European Journal of Organic Chemistry, 2009, 2009, 4939-4948.	2.4	9
87	Synthesis of spiro-pyridones and spiro-quinolones by sequential palladium on carbon-catalyzed allylation and ring closing metathesis reactions. Tetrahedron Letters, 2009, 50, 506-508.	1.4	20
88	Heterogeneous palladium multi-task catalyst for sequential Heck-reduction–cyclization (HRC) reactions: influence of the support. Tetrahedron Letters, 2009, 50, 5071-5074.	1.4	42
89	Synthesis of Oxindoles by Tandem Heck-Reduction-Cyclization (HRC) from a Single Bifunctional, in Situ Generated Pd/C Catalyst. Journal of Organic Chemistry, 2009, 74, 1349-1352.	3.2	90
90	Heterogeneous Multifunctional Catalysts for Tandem Processes: An Approach toward Sustainability. ChemSusChem, 2008, 1, 718-724.	6.8	176

#	Article	IF	CITATIONS
91	Efficient and Practical Crossâ€Coupling of Arenediazonium Tetrafluoroborate Salts with Boronic Acids Catalyzed by Palladium(0)/Barium Carbonate. Advanced Synthesis and Catalysis, 2008, 350, 863-868.	4.3	58
92	Fast and Scalable Route to Aryl Polyallyl Dendrons and Dendrimers. Advanced Synthesis and Catalysis, 2008, 350, 1419-1424.	4.3	9
93	Heck Crossâ€Coupling of Aryldiazonium Tetrafluoroborate with Acrylates Catalyzed by Palladium on Charcoal. Advanced Synthesis and Catalysis, 2008, 350, 2559-2565.	4.3	80
94	Suzukiâ^'Miyaura Reactions of Arenediazonium Salts Catalyzed by Pd(0)/C. One-Pot Chemoselective Double Cross-Coupling Reactionsâ€. Organic Letters, 2007, 9, 2911-2914.	4.6	97
95	Practical and efficient entry to isoflavones by Pd(0)/C-mediated Suzuki–Miyaura reaction. Total synthesis of geranylated isoflavones. Tetrahedron, 2007, 63, 3010-3016.	1.9	39
96	Oxidation of 4-arylphenol trimethylsilyl ethers to p-arylquinols using hypervalent iodine(III) reagents. Tetrahedron Letters, 2007, 48, 409-412.	1.4	60
97	Optimised NMR detection of 13C–2H double labelling in small molecules. Comptes Rendus Chimie, 2006, 9, 514-519.	0.5	4
98	Free-Radical-5-exo-Trig Cyclization of Chiral 3-Silylhepta-1,6-dienes: Concise Approach to the Aâ€"Bâ€"C Ring Core of Hexacyclinic Acid ChemInform, 2006, 37, no.	0.0	0
99	Pd/C: An Old Catalyst for New Applications – Its Use for the Suzuki–Miyaura Reaction. European Journal of Organic Chemistry, 2006, 2006, 2679-2690.	2.4	267
100	Nicotine demethylation in Nicotiana cell suspension cultures: N′-formylnornicotine is not involved. Phytochemistry, 2005, 66, 2432-2440.	2.9	22
101	Stereoselectivity of the demethylation of nicotine piperidine homologues by Nicotiana plumbaginifolia cell suspension cultures. Phytochemistry, 2005, 66, 1890-1897.	2.9	8
102	History, Chemistry and Biology of Alkaloids from Lobelia inflata ChemInform, 2005, 36, no.	0.0	0
103	Practical Pd/C-Mediated Allylic Substitution in Water ChemInform, 2005, 36, no.	0.0	0
104	Practical Pd/C-Mediated Allylic Substitution in Water. Journal of Organic Chemistry, 2005, 70, 6441-6446.	3.2	105
105	Free-Radical-5-exo-Trig Cyclization of Chiral 3-Silylhepta-1,6-dienes:Â Concise Approach to the Aâ^'Bâ^'C Ring Core of Hexacyclinic Acidâ€. Journal of Organic Chemistry, 2005, 70, 7985-7995.	3.2	29
106	Practical and Efficient Suzukiâ^'Miyaura Cross-Coupling of 2-Iodocycloenones with Arylboronic Acids Catalyzed by Recyclable Pd(0)/Câ€. Journal of Organic Chemistry, 2005, 70, 8575-8578.	3.2	105
107	Synthesis of 2,6-Dialkyl-1,2,5,6-Tetrahydropyridines and Their Applications in Total Synthesis. Current Organic Synthesis, 2004, 1, 83-109.	1.3	59
108	Recent Advances in the Total Synthesis of Piperidine and Pyrrolidine Natural Alkaloids with Ring-Closing Metathesis as a Key Step. ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	Citations
109	Synthesis of 2,6-Dialkyl-1,2,5,6-tetrahydropyridines and Their Applications in Total Synthesis. ChemInform, 2004, 35, no.	0.0	O
110	Mitomycin Synthetic Studies:  Stereocontrolled and Convergent Synthesis of a Fully Elaborated Aziridinomitosane. Journal of Organic Chemistry, 2004, 69, 7309-7316.	3.2	40
111	First Total Synthesis of 1-O-Î ² -d-Glucopyranosyl-5-deoxyadenophorine and Its Aglycon Congener:Â Determination of the Absolute Configuration. Journal of Organic Chemistry, 2004, 69, 1497-1503.	3.2	28
112	History, chemistry and biology of alkaloids from Lobelia inflata. Tetrahedron, 2004, 60, 10127-10153.	1.9	120
113	Recent Advances in the Total Synthesis of Piperidine and Pyrrolidine Natural Alkaloids with Ringâ€Closing Metathesis as a Key Step. European Journal of Organic Chemistry, 2003, 2003, 3693-3712.	2.4	421
114	A Novel Route to Chiraltrans-6-Alkyl-2-hydroxymethyl-1,2,5,6-tetrahydropyridines by Allylation of Chiral Imines and Ring-Closing Metathesisâ^ Total Synthesis of (â^)-3-epi-Deoxoprosopinine. European Journal of Organic Chemistry, 2003, 2003, 4518-4527.	2.4	22
115	Enantioselective Reduction of Heteroaromatic \hat{l}^2 , \hat{l}^3 -Unsaturated Ketones as an Alternative to Allylboration of Aldehydes. Application: Asymmetric Synthesis of SIB-1508Y ChemInform, 2003, 34, no.	0.0	O
116	Efficient Access to Chiral trans-2,6-Dialkyl-1,2,5,6-tetrahydropyridines via Allylation of Chiral Imines and Ring-Closing Metathesis ChemInform, 2003, 34, no.	0.0	0
117	Efficient access to chiral trans-2,6-dialkyl-1,2,5,6-tetrahydropyridines via allylation of chiral imines and ring-closing metathesis. Tetrahedron Letters, 2003, 44, 527-530.	1.4	24
118	The first crystal structure of a free neutral form of a nicotine derivative. Zeitschrift Fur Kristallographie - Crystalline Materials, 2003, 218, 753-760.	0.8	6
119	A Highly Stereoselective Asymmetric Synthesis of (â^')-Lobeline and (â^')-Sedamineâ€. Journal of Organic Chemistry, 2002, 67, 9192-9199.	3.2	119
120	Enantioselective reduction of heteroaromatic \hat{l}^2 , \hat{l}^3 -unsaturated ketones as an alternative to allylboration of aldehydes Tetrahedron, 2002, 58, 7381-7389.	1.9	28
121	Enantiospecific and stereoselective synthesis of (â^')-allosedamine. Tetrahedron Letters, 2002, 43, 225-227.	1.4	24
122	Efficient Enantiomeric Synthesis of Pyrrolidine and Piperidine Alkaloids from Tobacco. Journal of Organic Chemistry, 2001, 66, 6305-6312.	3.2	123
123	Rearrangement of α-Amino Cyclopropanone Hydrate:  A Novel Route to Labeled Amino Acids. Journal of Organic Chemistry, 2001, 66, 305-308.	3.2	26
124	The first enantioselective synthesis of (S)-5-bromo-3-(1-methyl-2-pyrrolidinyl)pyridine: a key intermediate for the preparation of SIB-1508Y. Tetrahedron: Asymmetry, 2001, 12, 1121-1124.	1.8	27
125	Synthesis of 15N-labelled nornicotine and 15N-labelled nicotine. Journal of Labelled Compounds and Radiopharmaceuticals, 2001, 44, 881-888.	1.0	4
126	Synthesis of γ-Amino Acids by Rearrangement of α-Cyanocyclopropanone Hydrates:  Application to the Regioselective Labeling of Amino Acids. Journal of Organic Chemistry, 2001, 66, 6487-6489.	3.2	18