Ephraim J Fuchs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6630733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HLA-Haploidentical Bone Marrow Transplantation for Hematologic Malignancies Using Nonmyeloablative Conditioning and High-Dose, Posttransplantation Cyclophosphamide. Biology of Blood and Marrow Transplantation, 2008, 14, 641-650.	2.0	1,525
2	Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood, 2015, 126, 1033-1040.	1.4	565
3	Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood, 2011, 118, 282-288.	1.4	549
4	Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-κB. Nature Cell Biology, 2001, 3, 409-416.	10.3	316
5	Modern approaches to HLA-haploidentical blood or marrow transplantation. Nature Reviews Clinical Oncology, 2016, 13, 10-24.	27.6	262
6	Risk-stratified outcomes of nonmyeloablative HLA-haploidentical BMT with high-dose posttransplantation cyclophosphamide. Blood, 2015, 125, 3024-3031.	1.4	259
7	Reduced-Intensity Transplantation for Lymphomas Using Haploidentical Related Donors Versus HLA-Matched Sibling Donors: A Center for International Blood and Marrow Transplant Research Analysis. Journal of Clinical Oncology, 2016, 34, 3141-3149.	1.6	212
8	Improved Survival with Inhibitory Killer Immunoglobulin Receptor (KIR) Gene Mismatches and KIR Haplotype B Donors after Nonmyeloablative, HLA-Haploidentical Bone Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2010, 16, 533-542.	2.0	168
9	Single-agent GVHD prophylaxis with posttransplantation cyclophosphamide after myeloablative, HLA-matched BMT for AML, ALL, and MDS. Blood, 2014, 124, 3817-3827.	1.4	165
10	Comparable composite endpoints after HLA-matched and HLA-haploidentical transplantation with post-transplantation cyclophosphamide. Haematologica, 2017, 102, 391-400.	3.5	152
11	Double unrelated umbilical cord blood vs HLA-haploidentical bone marrow transplantation: the BMT CTN 1101 trial. Blood, 2021, 137, 420-428.	1.4	119
12	Haploidentical bone marrow and stem cell transplantation: experience with post-transplantation cyclophosphamide. Seminars in Hematology, 2016, 53, 90-97.	3.4	118
13	Partially Mismatched Transplantation and Human Leukocyte Antigen Donor-Specific Antibodies. Biology of Blood and Marrow Transplantation, 2013, 19, 647-652.	2.0	113
14	Effect of increased dose of total body irradiation on graft failure associated with HLA-haploidentical transplantation in patients with severe haemoglobinopathies: a prospective clinical trial. Lancet Haematology,the, 2019, 6, e183-e193.	4.6	111
15	Adoptive transfer of activated marrow-infiltrating lymphocytes induces measurable antitumor immunity in the bone marrow in multiple myeloma. Science Translational Medicine, 2015, 7, 288ra78.	12.4	104
16	Prospective study of nonmyeloablative, HLA-mismatched unrelated BMT with high-dose posttransplantation cyclophosphamide. Blood Advances, 2017, 1, 288-292.	5.2	84
17	How do we choose the best donor for T-cell-replete, HLA-haploidentical transplantation?. Journal of Hematology and Oncology, 2016, 9, 35.	17.0	78
18	Low immunosuppressive burden after HLA-matched related or unrelated BMT using posttransplantation cyclophosphamide. Blood, 2017, 129, 1389-1393.	1.4	69

Ephraim J Fuchs

#	Article	IF	CITATIONS
19	Effect of donor characteristics on haploidentical transplantation with posttransplantation cyclophosphamide. Blood Advances, 2018, 2, 299-307.	5.2	69
20	Nonmyeloablative Haploidentical Bone Marrow Transplantation with Post-Transplantation Cyclophosphamide for Pediatric and Young Adult Patients with High-Risk Hematologic Malignancies. Biology of Blood and Marrow Transplantation, 2017, 23, 325-332.	2.0	61
21	Haploidentical Bone Marrow Transplantation with Post-Transplant Cyclophosphamide Using Non–First-Degree Related Donors. Biology of Blood and Marrow Transplantation, 2018, 24, 1099-1102.	2.0	61
22	Grade II Acute Graft-versus-Host Disease and Higher Nucleated Cell Graft Dose Improve Progression-Free Survival after HLA-Haploidentical Transplant with Post-Transplant Cyclophosphamide. Biology of Blood and Marrow Transplantation, 2018, 24, 343-352.	2.0	61
23	5-Azacytidine as Salvage Treatment in Relapsed Myeloid Tumors after Allogeneic Bone Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2011, 17, 754-758.	2.0	58
24	Myeloablative haploidentical BMT with posttransplant cyclophosphamide for hematologic malignancies in children and adults. Blood Advances, 2020, 4, 3913-3925.	5.2	52
25	HLA informs risk predictions after haploidentical stem cell transplantation with posttransplantation cyclophosphamide. Blood, 2022, 139, 1452-1468.	1.4	52
26	Haploidentical Bone Marrow Transplantation with Post-Transplant Cyclophosphamide for Children and Adolescents with Fanconi Anemia. Biology of Blood and Marrow Transplantation, 2017, 23, 310-317.	2.0	50
27	Mismatched Related and Unrelated Donors for Allogeneic Hematopoietic Cell Transplantation for Adults with Hematologic Malignancies. Biology of Blood and Marrow Transplantation, 2014, 20, 1485-1492.	2.0	43
28	Development of Grade II Acute Graft-versus-Host Disease Is Associated with Improved Survival after Myeloablative HLA-Matched Bone Marrow Transplantation using Single-Agent Post-Transplant Cyclophosphamide. Biology of Blood and Marrow Transplantation, 2019, 25, 1128-1135.	2.0	38
29	Single-Agent Post-Transplantation Cyclophosphamide as Graft-versus-Host Disease Prophylaxis after Human Leukocyte Antigen–Matched Related Bone Marrow Transplantation for Pediatric and Young Adult Patients with Hematologic Malignancies. Biology of Blood and Marrow Transplantation, 2016, 22, 112-118.	2.0	37
30	Related donor transplants: has posttransplantation cyclophosphamide nullified the detrimental effect of HLA mismatch?. Blood Advances, 2018, 2, 1180-1186.	5.2	35
31	Combining immune check-point blockade and cryoablation in an immunocompetent hormone sensitive murine model of prostate cancer. Prostate Cancer and Prostatic Diseases, 2018, 21, 126-136.	3.9	33
32	Early Fever after Haploidentical Bone Marrow Transplantation Correlates with Class II HLA-Mismatching and Myeloablation but Not Outcomes. Biology of Blood and Marrow Transplantation, 2018, 24, 2056-2064.	2.0	32
33	Related haploidentical donors are a better choice than matched unrelated donors: Point. Blood Advances, 2017, 1, 397-400.	5.2	30
34	Shortened-Duration Tacrolimus after Nonmyeloablative, HLA-Haploidentical Bone Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2018, 24, 1022-1028.	2.0	29
35	Phase II Study of Nonmyeloablative Allogeneic Bone Marrow Transplantation for B Cell Lymphoma with Post-Transplantation Rituximab and Donor Selection Based First on Non-HLA Factors. Biology of Blood and Marrow Transplantation, 2015, 21, 2115-2122.	2.0	26
36	The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia. , 2016, 4, 90.		17

Ephraim J Fuchs

#	Article	IF	CITATIONS
37	Post-Transplantation Cyclophosphamide after Bone Marrow Transplantation Is Not Associated with an Increased Risk of Donor-Derived Malignancy. Biology of Blood and Marrow Transplantation, 2017, 23, 612-617.	2.0	17
38	Reduced-Intensity Haploidentical Bone Marrow Transplantation with Post-Transplant Cyclophosphamide for Solid Tumors in Pediatric and Young Adult Patients. Biology of Blood and Marrow Transplantation, 2017, 23, 2127-2136.	2.0	17
39	Human papilloma virus–specific T cells can be generated from naÃ⁻ve T cells for use as an immunotherapeutic strategy for immunocompromised patients. Cytotherapy, 2018, 20, 385-393.	0.7	15
40	Umbilical Cord Blood or HLA-Haploidentical Transplantation: Real-World Outcomes versus Randomized Trial Outcomes. Transplantation and Cellular Therapy, 2022, 28, 109.e1-109.e8.	1.2	12
41	Post-Transplantation Cyclophosphamide-Based Graft- versus-Host Disease Prophylaxis with Nonmyeloablative Conditioning for Blood or Marrow Transplantation for Myelofibrosis. Transplantation and Cellular Therapy, 2022, 28, 259.e1-259.e11.	1.2	11
42	Haplotype Counting for Sensitive Chimerism Testing. Journal of Molecular Diagnostics, 2017, 19, 427-436.	2.8	10
43	Post-transplantation cyclophosphamide to facilitate HLA-haploidentical hematopoietic cell transplantation: Mechanisms and results. Seminars in Hematology, 2019, 56, 183-189.	3.4	8
44	The Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of acute leukemia. , 2020, 8, e000810.		5
45	Graft-Versus-Host Disease (GVHD) and Survival Outcomes after HLA-Haploidentical (Haplo) Bone Marrow Transplant (BMT) Compare Favorably with Matched Related Donor (MRD), and Matched Unrelated Donor (MUD) BMT Utilizing High-Dose Posttransplantation Cyclophosphamide (PTCy). Blood. 2014. 124. 730-730.	1.4	5
46	Allogeneic Blood or Marrow Transplantation with Nonmyeloablative Conditioning and High-Dose Cyclophosphamide-Based Graft-versus-Host Disease Prophylaxis for Secondary Central Nervous System Lymphoma. Transplantation and Cellular Therapy, 2021, 27, 863.e1-863.e5.	1.2	4
47	Nonmyeloablative Allogeneic Transplantation With Post-Transplant Cyclophosphamide for Acute Myeloid Leukemia With IDH Mutations: A Single Center Experience. Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, 260-269.	0.4	4
48	Impact of Center Experience with Donor Type on Outcomes: A Secondary Analysis, Blood and Marrow Transplant Clinical Trials Network 1101Open for Accrual June 2012Open for Accrual June 2012. Transplantation and Cellular Therapy, 2022, 28, 406.e1-406.e6.	1.2	4
49	Shortened-Duration Tacrolimus after Nonmyeloablative HLA-Haploidentical (NMA haplo) BMT with High-Dose Posttransplantation Cyclophosphamide (PTCy) Facilitates Strategies for Relapse Reduction. Blood, 2016, 128, 831-831.	1.4	3
50	Haplo graft engineering: sculpting to a T. Blood, 2015, 125, 2315-2316.	1.4	1
51	Engraftment of Double Cord Blood Transplantation after Nonmyeloablative Conditioning with Escalated Total Body Irradiation Dosing to Facilitate Engraftment in Immunocompetent Patients. Transplantation and Cellular Therapy, 2021, 27, 879.e1-879.e3.	1.2	0