Kimberly Ennico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6629328/publications.pdf

Version: 2024-02-01

126907 3,413 75 33 citations h-index papers

g-index 75 75 75 2001 docs citations times ranked citing authors all docs

144013

57

#	Article	IF	CITATIONS
1	The Pluto system: Initial results from its exploration by New Horizons. Science, 2015, 350, aad1815.	12.6	407
2	Surface compositions across Pluto and Charon. Science, 2016, 351, aad9189.	12.6	242
3	The geology of Pluto and Charon through the eyes of New Horizons. Science, 2016, 351, 1284-1293.	12.6	219
4	The atmosphere of Pluto as observed by New Horizons. Science, 2016, 351, aad8866.	12.6	201
5	Impact craters on Pluto and Charon indicate a deficit of small Kuiper belt objects. Science, 2019, 363, 955-959.	12.6	116
6	Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer. Icarus, 2017, 287, 229-260.	2.5	99
7	Pluto's global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data. Icarus, 2017, 287, 218-228.	2.5	95
8	Structure and composition of Pluto's atmosphere from the New Horizons solar ultraviolet occultation. Icarus, 2018, 300, 174-199.	2.5	90
9	Global albedos of Pluto and Charon from LORRI New Horizons observations. Icarus, 2017, 287, 207-217.	2.5	82
10	Dunes on Pluto. Science, 2018, 360, 992-997.	12.6	81
11	The small satellites of Pluto as observed by New Horizons. Science, 2016, 351, aae0030.	12.6	78
12	The photochemistry of Pluto's atmosphere as illuminated by New Horizons. Icarus, 2017, 287, 110-115.	2.5	75
13	Radio occultation measurements of Pluto's neutral atmosphere with New Horizons. Icarus, 2017, 290, 96-111.	2.5	74
14	Haze in Pluto's atmosphere. Icarus, 2017, 290, 112-133.	2.5	72
15	Pluto's interaction with its space environment: Solar wind, energetic particles, and dust. Science, 2016, 351, aad9045.	12.6	60
16	Craters of the Pluto-Charon system. Icarus, 2017, 287, 187-206.	2.5	59
17	Long-term surface temperature modeling of Pluto. Icarus, 2017, 287, 37-46.	2.5	55
18	Past epochs of significantly higher pressure atmospheres on Pluto. Icarus, 2017, 287, 47-53.	2.5	54

#	Article	IF	CITATIONS
19	TheÂnitrogenÂcyclesÂonÂPlutoÂoverÂseasonalÂand astronomicalÂtimescales. Icarus, 2018, 309, 277-296.	2.5	54
20	Geological mapping of Sputnik Planitia on Pluto. Icarus, 2017, 287, 261-286.	2.5	52
21	Sublimation as a landform-shaping process on Pluto. Icarus, 2017, 287, 320-333.	2.5	51
22	Pluto's haze as a surface material. Icarus, 2018, 314, 232-245.	2.5	50
23	Composition of Pluto's small satellites: Analysis of New Horizons spectral images. Icarus, 2018, 315, 30-45.	2.5	49
24	Detection of ammonia on Pluto's surface in a region of geologically recent tectonism. Science Advances, 2019, 5, eaav5731.	10.3	49
25	Bladed Terrain on Pluto: Possible origins and evolution. Icarus, 2018, 300, 129-144.	2.5	47
26	Slowing of the Solar Wind in the Outer Heliosphere. Astrophysical Journal, 2019, 885, 156.	4.5	47
27	Recent cryovolcanism in Virgil Fossae on Pluto. Icarus, 2019, 330, 155-168.	2.5	45
28	The formation of Charon's red poles from seasonally cold-trapped volatiles. Nature, 2016, 539, 65-68.	27.8	44
29	Present and past glaciation on Pluto. Icarus, 2017, 287, 287-300.	2.5	43
30	Modeling glacial flow on and onto Pluto's Sputnik Planitia. Icarus, 2017, 287, 301-319.	2.5	38
31	Ices on Charon: Distribution of H2O and NH3 from New Horizons LEISA observations. Icarus, 2018, 300, 21-32.	2.5	38
32	The CH4 cycles on Pluto over seasonal and astronomical timescales. Icarus, 2019, 329, 148-165.	2.5	38
33	The rapid formation of Sputnik Planitia early in Pluto's history. Nature, 2016, 540, 97-99.	27.8	34
34	Climate zones on Pluto and Charon. Icarus, 2017, 287, 30-36.	2.5	34
35	Pluto's interaction with the solar wind. Journal of Geophysical Research: Space Physics, 2016, 121, 4232-4246.	2.4	32
36	New Horizons constraints on Charon's present day atmosphere. Icarus, 2017, 287, 124-130.	2.5	32

#	Article	IF	CITATIONS
37	SOFIA at Full Operation Capability: Technical Performance. Journal of Astronomical Instrumentation, 2018, 07, .	1.5	32
38	Charon tectonics. Icarus, 2017, 287, 161-174.	2.5	30
39	An upper limit on Pluto's ionosphere from radio occultation measurements with New Horizons. Icarus, 2018, 307, 17-24.	2.5	30
40	The nature and origin of Charon's smooth plains. Icarus, 2019, 323, 16-32.	2.5	26
41	Prebiotic Chemistry of Pluto. Astrobiology, 2019, 19, 831-848.	3.0	26
42	The Global Color of Pluto from New Horizons. Astronomical Journal, 2017, 154, 258.	4.7	25
43	FORCAST: A Mid-Infrared Camera for SOFIA. Journal of Astronomical Instrumentation, 2018, 07, .	1.5	23
44	The Lymanâ€Î± Sky Background as Observed by New Horizons. Geophysical Research Letters, 2018, 45, 8022-8028.	4.0	19
45	Pluto's Far Side. Icarus, 2021, 356, 113805.	2.5	18
46	Albedo matters: Understanding runaway albedo variations on Pluto. Icarus, 2018, 303, 1-9.	2.5	17
47	Pluto's Beating Heart Regulates the Atmospheric Circulation: Results From Highâ€Resolution and Multiyear Numerical Climate Simulations. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006120.	3.6	16
48	Suprathermal lons in the Outer Heliosphere. Astrophysical Journal, 2019, 876, 46.	4.5	15
49	Inflight radiometric calibration of New Horizons' Multispectral Visible Imaging Camera (MVIC). Icarus, 2017, 287, 140-151.	2.5	14
50	Methane distribution on Pluto as mapped by the New Horizons Ralph/MVIC instrument. Icarus, 2018, 314, 195-209.	2.5	14
51	INTERPLANETARY MAGNETIC FIELD SECTOR FROM SOLAR WIND AROUND PLUTO (SWAP) MEASUREMENTS OF HEAVY ION PICKUP NEAR PLUTO. Astrophysical Journal Letters, 2016, 823, L30.	8.3	13
52	A search for temporal changes on Pluto and Charon. Icarus, 2018, 302, 273-284.	2.5	12
53	Pluto's Ultraviolet Spectrum, Surface Reflectance, and Airglow Emissions. Astronomical Journal, 2020, 159, 274.	4.7	12
54	Evidence for Possible Clouds in Pluto's Present-day Atmosphere. Astronomical Journal, 2017, 154, 43.	4.7	11

#	Article	IF	CITATIONS
55	The New Horizons and Hubble Space Telescope search for rings, dust, and debris in the Pluto-Charon system. Icarus, 2018, 301, 155-172.	2.5	11
56	Geologic Landforms and Chronostratigraphic History of Charon as Revealed by a Hemispheric Geologic Map. Journal of Geophysical Research E: Planets, 2019, 124, 155-174.	3.6	11
57	Determining the Alpha to Proton Density Ratio for the New Horizons Solar Wind Observations. Astrophysical Journal, 2018, 866, 85.	4.5	10
58	Washboard and fluted terrains on Pluto as evidence for ancient glaciation. Nature Astronomy, 2019, 3, 62-68.	10.1	10
59	Investigation of Charon's Craters With Abrupt Terminus Ejecta, Comparisons With Other Icy Bodies, and Formation Implications. Journal of Geophysical Research E: Planets, 2018, 123, 20-36.	3.6	9
60	Cryovolcanic flooding in Viking Terra on Pluto. Icarus, 2021, 356, 113786.	2.5	9
61	Global compositional cartography of Pluto from intensity-based registration of LEISA data. Icarus, 2021, 356, 113833.	2.5	9
62	New Horizons Photometry of Pluto's Moon Charon. Astrophysical Journal Letters, 2019, 874, L3.	8.3	8
63	Radio thermal emission from Pluto and Charon during the New Horizons encounter. Icarus, 2019, 322, 192-209.	2.5	8
64	New Horizons Upper Limits on O ₂ in Pluto's Present Day Atmosphere. Astronomical Journal, 2017, 154, 55.	4.7	7
65	Distribution and energy balance of Pluto's nitrogen ice, as seen by New Horizons in 2015. Icarus, 2021, 356, 113633.	2.5	6
66	An Overview of the Stratospheric Observatory for Infrared Astronomy Since Full Operation Capability. Journal of Astronomical Instrumentation, 2018, 07, .	1.5	5
67	Pluto's Interaction With Energetic Heliospheric Ions. Journal of Geophysical Research: Space Physics, 2019, 124, 7413-7424.	2.4	4
68	Charon: A Brief History of Tides. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006449.	3.6	4
69	New Horizons Observations of an Ultraviolet Stellar Occultation and Appulse by Pluto's Atmosphere. Astronomical Journal, 2020, 159, 26.	4.7	3
70	Charon's light curves, as observed by New Horizons' Ralph color camera (MVIC) on approach to the Pluto system. Icarus, 2017, 287, 152-160.	2.5	2
71	Constraining the IMF at Pluto Using New Horizons SWAP Data and Hybrid Simulations. Journal of Geophysical Research: Space Physics, 2019, 124, 1568-1581.	2.4	2
72	Charon's Far Side Geomorphology. Planetary Science Journal, 2021, 2, 141.	3.6	2

KIMBERLY ENNICO

#	Article	IF	CITATIONS
73	The Dark Side of Pluto. Planetary Science Journal, 2021, 2, 214.	3.6	2
74	High-resolution radiometry of Pluto at 4.2Âcm with New Horizons. Icarus, 2021, 363, 114430.	2.5	1
75	Tracing seasonal trends across Pluto's craters: New Horizons Ralph/MVIC results. Icarus, 2022, 373, 114771.	2.5	1