Nuli Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6628459/publications.pdf

Version: 2024-02-01

24 papers 1,758 citations

20 h-index 24 g-index

24 all docs

24 docs citations

times ranked

24

2068 citing authors

#	Article	IF	CITATIONS
1	FRET Nanoflares for Intracellular mRNA Detection: Avoiding False Positive Signals and Minimizing Effects of System Fluctuations. Journal of the American Chemical Society, 2015, 137, 8340-8343.	6.6	285
2	Gold Nanoparticle Loaded Split-DNAzyme Probe for Amplified miRNA Detection in Living Cells. Analytical Chemistry, 2017, 89, 8377-8383.	3.2	140
3	Gold Nanoparticle Based Hairpin-Locked-DNAzyme Probe for Amplified miRNA Imaging in Living Cells. Analytical Chemistry, 2017, 89, 5850-5856.	3.2	124
4	DNA tetrahedron nanostructures for biological applications: biosensors and drug delivery. Analyst, The, 2017, 142, 3322-3332.	1.7	115
5	Ratiometric Fluorescent Sensing of pH Values in Living Cells by Dual-Fluorophore-Labeled i-Motif Nanoprobes. Analytical Chemistry, 2015, 87, 8724-8731.	3.2	113
6	Aptazyme–Gold Nanoparticle Sensor for Amplified Molecular Probing in Living Cells. Analytical Chemistry, 2016, 88, 5981-5987.	3.2	106
7	A DNA tetrahedron-based molecular beacon for tumor-related mRNA detection in living cells. Chemical Communications, 2016, 52, 2346-2349.	2.2	94
8	Fluorescence resonance energy transfer-based hybridization chain reaction for in situ visualization of tumor-related mRNA. Chemical Science, 2016, 7, 3829-3835.	3.7	85
9	MnO ₂ nanosheet mediated "DD–A―FRET binary probes for sensitive detection of intracellular mRNA. Chemical Science, 2017, 8, 668-673.	3.7	76
10	Dual-microRNA-controlled double-amplified cascaded logic DNA circuits for accurate discrimination of cell subtypes. Chemical Science, 2019, 10, 1442-1449.	3.7	73
11	Amplified FRET Nanoflares: An Endogenous mRNAâ€Powered Nanomachine for Intracellular MicroRNA Imaging. Angewandte Chemie - International Edition, 2020, 59, 20104-20111.	7.2	61
12	Competition-Mediated FRET-Switching DNA Tetrahedron Molecular Beacon for Intracellular Molecular Detection. ACS Sensors, 2016, 1, 1445-1452.	4.0	56
13	Powerful Amplification Cascades of FRET-Based Two-Layer Nonenzymatic Nucleic Acid Circuits. Analytical Chemistry, 2016, 88, 5857-5864.	3.2	56
14	Aptamer-based FRET nanoflares for imaging potassium ions in living cells. Chemical Communications, 2016, 52, 11386-11389.	2.2	55
15	A cell-surface-anchored ratiometric i-motif sensor for extracellular pH detection. Chemical Communications, 2016, 52, 7818-7821.	2.2	54
16	Detection of Nucleic Acids in Complex Samples via Magnetic Microbead-Assisted Catalyzed Hairpin Assembly and "DD–A―FRET. Analytical Chemistry, 2018, 90, 7164-7170.	3.2	54
17	Scallop-Inspired DNA Nanomachine: A Ratiometric Nanothermometer for Intracellular Temperature Sensing. Analytical Chemistry, 2017, 89, 12115-12122.	3.2	48
18	Three-Dimensional Molecular Transfer from DNA Nanocages to Inner Gold Nanoparticle Surfaces. ACS Nano, 2019, 13, 4174-4182.	7.3	43

Nuli Xie

#	Article	IF	CITATION
19	Two-Color-Based Nanoflares for Multiplexed MicroRNAs Imaging in Live Cells. Nanotheranostics, 2018, 2, 96-105.	2.7	38
20	A supersandwich fluorescence in situ hybridization strategy for highly sensitive and selective mRNA imaging in tumor cells. Chemical Communications, 2016, 52, 370-373.	2.2	26
21	Liveâ€Cell MicroRNA Imaging through MnO ₂ Nanosheetâ€Mediated DDâ€A Hybridization Chain Reaction. ChemBioChem, 2018, 19, 147-152.	1.3	20
22	Gold nanoparticle-based 2′-O-methyl modified DNA probes for breast cancerous theranostics. Talanta, 2018, 183, 11-17.	2.9	16
23	Amplified FRET Nanoflares: An Endogenous mRNAâ€Powered Nanomachine for Intracellular MicroRNA Imaging. Angewandte Chemie, 2020, 132, 20279-20286.	1.6	12
24	Self-assembled DNA-Based geometric polyhedrons: Construction and applications. TrAC - Trends in Analytical Chemistry, 2020, 126, 115844.	5.8	8