Daria Guseva, Pd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6627746/publications.pdf

Version: 2024-02-01

28 papers 1,056

471509 17 h-index 28 g-index

29 all docs 29 docs citations

29 times ranked 1634 citing authors

#	Article	IF	Citations
1	Amelioration of Tau pathology and memory deficits by targeting 5-HT7 receptor. Progress in Neurobiology, 2021, 197, 101900.	5.7	15
2	Prokinetic actions of luminally acting 5â€HT ₄ receptor agonists. Neurogastroenterology and Motility, 2021, 33, e14026.	3.0	10
3	<i>In Vitro</i> Development of Human iPSC-Derived Functional Neuronal Networks on Laser-Fabricated 3D Scaffolds. ACS Applied Materials & Development of Human iPSC-Derived Functional Neuronal Networks on Laser-Fabricated 3D Scaffolds. ACS Applied Materials & Development of Human iPSC-Derived Functional Neuronal Networks on Laser-Fabricated 3D Scaffolds. ACS Applied Materials & Development of Human iPSC-Derived Functional Neuronal Networks on Laser-Fabricated 3D Scaffolds. ACS Applied Materials & Development of Human iPSC-Derived Functional Neuronal Networks on Laser-Fabricated 3D Scaffolds. ACS Applied Materials & Development of Human iPSC-Derived Functional Neuronal Networks on Laser-Fabricated 3D Scaffolds. ACS Applied Materials & Development of Human iPSC-Derived Functional Neuronal Networks on Laser-Fabricated 3D Scaffolds. ACS Applied Materials & Development iPSC-Derived Functional Neuronal Neuronal Networks on Laser-Fabricated 3D Scaffolds. ACS Applied Materials & Development iPSC-Derived Functional Neuronal Neurona N	8.0	34
4	The 5-HT4 receptor interacts with adhesion molecule L1 to modulate morphogenic signaling in neurons. Journal of Cell Science, 2021, 134, .	2.0	4
5	Regulation of the gut barrier by carbohydrates from diet – Underlying mechanisms and possible clinical implications. International Journal of Medical Microbiology, 2021, 311, 151499.	3.6	12
6	DHHC7-mediated palmitoylation of the accessory protein barttin critically regulates the functions of CIC-K chloride channels. Journal of Biological Chemistry, 2020, 295, 5970-5983.	3.4	9
7	Neuronal branching of sensory neurons is associated with BDNFâ€positive eosinophils in atopic dermatitis. Clinical and Experimental Allergy, 2020, 50, 577-584.	2.9	40
8	Cell Adhesion Molecule Close Homolog of L1 (CHL1) Guides the Regrowth of Regenerating Motor Axons and Regulates Synaptic Coverage of Motor Neurons. Frontiers in Molecular Neuroscience, 2018, 11, 174.	2.9	15
9	Serotonin 5â€ <scp>HT</scp> 7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons. Journal of Neurochemistry, 2017, 141, 647-661.	3.9	66
10	Synaptic Remodeling Depends on Signaling between Serotonin Receptors and the Extracellular Matrix. Cell Reports, 2017, 19, 1767-1782.	6.4	92
11	Myelin Basic Protein Cleaves Cell Adhesion Molecule L1 and Improves Regeneration After Injury. Molecular Neurobiology, 2016, 53, 3360-3376.	4.0	42
12	Serotonin receptor 5-HT7 regulates morphology and migratory properties of dendritic cells. Journal of Cell Science, 2015, 128, 2866-80.	2.0	32
13	Human CLC-K Channels Require Palmitoylation of Their Accessory Subunit Barttin to Be Functional. Journal of Biological Chemistry, 2015, 290, 17390-17400.	3.4	18
14	Symptomatic Improvement, Increased Life-Span and Sustained Cell Homing in Amyotrophic Lateral Sclerosis After Transplantation of Human Umbilical Cord Blood Cells Genetically Modified with Adeno-Viral Vectors Expressing a Neuro-Protective Factor and a Neural Cell Adhesion Molecule. Current Gene Therapy, 2015, 15, 266-276.	2.0	40
15	Function-Triggering Antibodies to the Adhesion Molecule L1 Enhance Recovery after Injury of the Adult Mouse Femoral Nerve. PLoS ONE, 2014, 9, e112984.	2.5	10
16	Cellular mechanisms of the 5-HT ₇ receptor-mediated signaling. Frontiers in Behavioral Neuroscience, 2014, 8, 306.	2.0	67
17	Serotonin 5-HT7 Receptor Is Critically Involved in Acute and Chronic Inflammation of the Gastrointestinal Tract. Inflammatory Bowel Diseases, 2014, 20, 1516-1529.	1.9	57
18	Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo. Biochemical and Biophysical Research Communications, 2014, 451, 503-509.	2.1	6

#	Article	IF	CITATIONS
19	Dermatan 4-O-sulfotransferase1 ablation accelerates peripheral nerve regeneration. Experimental Neurology, 2013, 247, 517-530.	4.1	36
20	5-HT ₇ R/G ₁₂ Signaling Regulates Neuronal Morphology and Function in an Age-Dependent Manner. Journal of Neuroscience, 2012, 32, 2915-2930.	3.6	107
21	Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking. Journal of Cell Science, 2012, 125, 2486-99.	2.0	163
22	Adhesion molecule L1 overexpressed under the control of the neuronal Thy-1 promoter improves myelination after peripheral nerve injury in adult mice. Experimental Neurology, 2011, 229, 339-352.	4.1	31
23	Expression Pattern of Kv 11 (Ether Ã-go-go-Related Gene; erg) K+ Channels in the Mouse Retina. PLoS ONE, 2011, 6, e29490.	2.5	9
24	Identification and validation of a Lewisx glycomimetic peptide. European Journal of Cell Biology, 2010, 89, 77-86.	3.6	11
25	The extracellular-matrix protein matrilin 2 participates in peripheral nerve regeneration. Journal of Cell Science, 2009, 122, 1471-1471.	2.0	2
26	Ablation of adhesion molecule L1 in mice favours Schwann cell proliferation and functional recovery after peripheral nerve injury. Brain, 2009, 132, 2180-2195.	7.6	62
27	The extracellular-matrix protein matrilin 2 participates in peripheral nerve regeneration. Journal of Cell Science, 2009, 122, 995-1004.	2.0	47
28	The Plasticity of the DRG Neurons Belonging to Different Subpopulations After Dorsal Rhizotomy. Cellular and Molecular Neurobiology, 2006, 26, 1223-1232.	3.3	19