List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6626604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrile hydrogenation to secondary amines under ambient conditions over palladium–platinum random alloy nanoparticles. Catalysis Science and Technology, 2022, 12, 4128-4137.	4.1	7
2	Slow Synthesis Methodologyâ€Directed Immiscible Octahedral Pd _{<i>x</i>} Rh _{1â^'<i>x</i>} Dualâ€Atomâ€6ite Catalysts for Superior Threeâ€Way Catalytic Activities over Rh. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
3	Slow Synthesis Methodologyâ€Directed Immiscible Octahedral Pd _{<i>x</i>} Rh _{1â^'<i>x</i>} Dualâ€Atomâ€Site Catalysts for Superior Threeâ€Way Catalytic Activities over Rh. Angewandte Chemie, 2022, 134, .	2.0	4
4	Comprehensive study of the light-off performance and surface properties of engine-aged Pd-based three-way catalysts. Catalysis Science and Technology, 2021, 11, 912-922.	4.1	14
5	A study of ageing effect: Migration of rhodium under air atmosphere. Catalysis Today, 2021, 376, 81-86.	4.4	5
6	Boosting reverse water-gas shift reaction activity of Pt nanoparticles through light doping of W. Journal of Materials Chemistry A, 2021, 9, 15613-15617.	10.3	17
7	Influence of crystal structure of Y-doped ZrO ₂ as support oxide on the three-way catalytic performance of supported Rh catalyst. Journal of the Ceramic Society of Japan, 2021, 129, 168-174.	1.1	3
8	Reaction mechanism of NO direct decomposition over K-promoted Co-Mn-Al mixed oxides – DRIFTS, TPD and transient state studies. Journal of the Taiwan Institute of Chemical Engineers, 2021, 120, 257-266.	5.3	9
9	Effect of Ageing Atmosphere on Three-way Catalytic Performance of Supported Rh Catalysts. Journal of the Japan Petroleum Institute, 2021, 64, 219-225.	0.6	0
10	Fabrication of Integrated Copperâ€Based Nanoparticles/Amorphous Metal–Organic Framework by a Facile Sprayâ€Drying Method: Highly Enhanced CO 2 Hydrogenation Activity for Methanol Synthesis. Angewandte Chemie, 2021, 133, 22457-22462.	2.0	4
11	Novel hydrogen chemisorption properties of amorphous ceramic compounds consisting of p-block elements: exploring Lewis acid–base Al–N pair sites formed in situ within polymer-derived silicon–aluminum–nitrogen-based systems. Journal of Materials Chemistry A, 2021, 9, 2959-2969.	10.3	5
12	Coreduction methodology for immiscible alloys of CuRu solid-solution nanoparticles with high thermal stability and versatile exhaust purification ability. Chemical Science, 2020, 11, 11413-11418.	7.4	13
13	Growth mechanism and CO oxidation catalytic activity of raspberry-shaped Co ₃ O ₄ nanoparticles. Journal of the Ceramic Society of Japan, 2020, 128, 291-297.	1.1	3
14	Spiky-shaped niobium pentoxide nano-architecture: highly stable and recoverable Lewis acid catalyst. Nanotechnology, 2020, 31, 325705.	2.6	9
15	Highly active, robust and reusable micro-/mesoporous TiN/Si3N4 nanocomposite-based catalysts for clean energy: Understanding the key role of TiN nanoclusters and amorphous Si3N4 matrix in the performance of the catalyst system. Applied Catalysis B: Environmental, 2020, 272, 118975.	20.2	28
16	Three-way catalytic performance of Fe-doped Pd/CeO2-ZrO2 under lean/rich perturbation conditions. Applied Catalysis A: General, 2019, 587, 117268.	4.3	14
17	Deactivation Mechanism of Pd/CeO ₂ –ZrO ₂ Three-Way Catalysts Analyzed by Chassis-Dynamometer Tests and <i>in Situ</i> Diffuse Reflectance Spectroscopy. ACS Catalysis, 2019, 9, 6415-6424.	11.2	40
18	Frontispiz: A CO Adsorption Site Change Induced by Copper Substitution in a Ruthenium Catalyst for Enhanced CO Oxidation Activity. Angewandte Chemie, 2019, 131, .	2.0	0

#	Article	IF	CITATIONS
19	Frontispiece: A CO Adsorption Site Change Induced by Copper Substitution in a Ruthenium Catalyst for Enhanced CO Oxidation Activity. Angewandte Chemie - International Edition, 2019, 58, .	13.8	1
20	A CO Adsorption Site Change Induced by Copper Substitution in a Ruthenium Catalyst for Enhanced CO Oxidation Activity. Angewandte Chemie, 2019, 131, 2252-2257.	2.0	11
21	A CO Adsorption Site Change Induced by Copper Substitution in a Ruthenium Catalyst for Enhanced CO Oxidation Activity. Angewandte Chemie - International Edition, 2019, 58, 2230-2235.	13.8	48
22	Catalytic performance of supported Ir catalysts for NO reduction with C 3 H 6 and CO in slight lean conditions. Catalysis Today, 2018, 303, 8-12.	4.4	11
23	Promoting Effect of Cerium Oxide on the Catalytic Performance of Yttrium Oxide for Oxidative Coupling of Methane. Frontiers in Chemistry, 2018, 6, 581.	3.6	9
24	Complex Three-Dimensional Co3O4 Nano-Raspberry: Highly Stable and Active Low-temperature CO Oxidation Catalyst. Nanomaterials, 2018, 8, 662.	4.1	16
25	Oxidative coupling of methane over Ba-doped Y2O3 catalyst—Similarity with active site for direct decomposition of NO. Molecular Catalysis, 2018, 457, 74-81.	2.0	7
26	Effect of Pd dispersion on the catalytic activity of Pd/Al2O3 for C3H6 and CO oxidation. Catalysis Today, 2017, 281, 447-453.	4.4	62
27	Core-shell type ceria zirconia support for platinum and rhodium three way catalysts. Catalysis Today, 2017, 281, 482-489.	4.4	64
28	Synthesis of ordered porous zirconia containing sulfate ions and evaluation of its surface acidic properties. Journal of Materials Science, 2017, 52, 5835-5845.	3.7	15
29	Three-way catalytic performance and change in the valence state of Rh in Y- and Pr-doped Rh/ZrO2 under lean/rich perturbation conditions. Catalysis Communications, 2017, 90, 1-4.	3.3	16
30	CoO <i>_x</i> –FeO <i>_x</i> composite oxide prepared by hydrothermal method as a highly active catalyst for low-temperature CO oxidation. Journal of the Ceramic Society of Japan, 2017, 125, 135-140.	1.1	5
31	Influence of Ce/Zr ratio on CO oxidation activity of ceria–zirconia supported Cu catalyst. Japanese Journal of Applied Physics, 2016, 55, 01AE05.	1.5	3
32	Preparation, characterization, and activity of SnO2 nanoparticles supported on Al2O3 as a catalyst for the selective reduction of NO with C3H6. Journal of Materials Science, 2016, 51, 10949-10959.	3.7	13
33	Effect of Rare Earth Additives on the Catalytic Performance of Rh/ZrO2 Three-Way Catalyst. Topics in Catalysis, 2016, 59, 1059-1064.	2.8	12
34	Recent progress in catalytic NO decomposition. Comptes Rendus Chimie, 2016, 19, 1254-1265.	0.5	40
35	Influence of particle morphology on catalytic performance of CeO ₂ /ZrO ₂ for soot oxidation. Journal of the Ceramic Society of Japan, 2015, 123, 414-418.	1.1	12
36	Promoting Effect of CeO2 on the Catalytic Activity of Ba–Y2O3 for Direct Decomposition of NO. Bulletin of the Chemical Society of Japan, 2015, 88, 117-123.	3.2	5

#	Article	IF	CITATIONS
37	Development of Diesel Hydrocarbon Oxidation Catalysts Aimed at Reducing Platinum Group Metals Usage. Journal of the Japan Petroleum Institute, 2015, 58, 205-217.	0.6	5
38	Improved three-way catalytic activity of bimetallic Ir–Rh catalysts supported on CeO ₂ –ZrO ₂ . Catalysis Science and Technology, 2015, 5, 1792-1800.	4.1	45
39	Propene oxidation over palladium catalysts supported on zirconium rich ceria–zirconia. Catalysis Today, 2015, 241, 100-106.	4.4	30
40	Three way catalytic activity of thermally degenerated Pt/Al2O3 and Pt/CeO2–ZrO2 modified Al2O3 model catalysts. Catalysis Today, 2015, 242, 329-337.	4.4	61
41	Catalytic performance of supported Ag nano-particles prepared by liquid phase chemical reduction for soot oxidation. Catalysis Today, 2015, 242, 351-356.	4.4	41
42	Microstructure and oxygen evolution of Fe–Ce mixed oxides by redox treatment. Applied Surface Science, 2014, 289, 378-383.	6.1	37
43	Direct decomposition of NO on Ba catalysts supported on rare earth oxides. Journal of Molecular Catalysis A, 2014, 383-384, 70-76.	4.8	19
44	Catalytic performance of bimetallic PtPd/Al2O3 for diesel hydrocarbon oxidation and its implementation by acidic additives. Applied Catalysis A: General, 2014, 475, 109-115.	4.3	29
45	Enhancement of OSC property of Zr rich ceria–zirconia by loading a small amount of platinum. Catalysis Today, 2014, 232, 179-184.	4.4	25
46	Effects of the Extent of Silica Doping and the Mesopore Size of an Alumina Support on Activity as a Diesel Oxidation Catalyst. Industrial & Engineering Chemistry Research, 2014, 53, 7992-7998.	3.7	11
47	Bimetallic IrRh/CeO2–ZrO2 as a Highly Active Catalyst for NO–CO–C3H6–H2–O2 Reactions under Stoichiometric Conditions. Chemistry Letters, 2014, 43, 1852-1854.	1.3	0
48	Synthesis and Evaluation of Optical Properties of Iron Oxide-Doped Ceria-Zirconia Materials. Zairyo/Journal of the Society of Materials Science, Japan, 2014, 63, 432-436.	0.2	4
49	Oxygen release–absorption properties and structural stability of Ce0.8Fe0.2O2â^'x. Journal of Materials Science, 2013, 48, 5733-5743.	3.7	11
50	Effect of Acid–Base Properties on the Catalytic Activity of Pt/Al2O3 Based Catalysts for Diesel NO Oxidation. Topics in Catalysis, 2013, 56, 205-209.	2.8	12
51	Effect of Pt Dispersion on the Catalytic Activity of Supported Pt Catalysts for Diesel Hydrocarbon Oxidation. Topics in Catalysis, 2013, 56, 249-254.	2.8	12
52	Effect of platinum dispersion on the catalytic activity of Pt/Al2O3 for the oxidation of carbon monoxide and propene. Applied Catalysis B: Environmental, 2013, 142-143, 8-14.	20.2	82
53	Total oxidation of toluene and oxygen storage capacity of zirconia-sol modified ceria zirconia. Catalysis Communications, 2013, 30, 32-35.	3.3	19
54	Effect of Y-stabilized ZrO2 as support on catalytic performance of Pt for n-butane oxidation. Catalysis Today, 2013, 201, 25-31.	4.4	11

#	Article	IF	CITATIONS
55	CO oxidation over Pt/Ce–Zr oxide catalysts with low content of platinum and cerium components. Catalysis Today, 2013, 201, 79-84.	4.4	51
56	Modification of CeO2 on the redox property of Fe2O3. Materials Letters, 2013, 93, 129-132.	2.6	45
57	Dispersion of Oleate-modified CeO2 Nanocrystals in Non-Polar Solvent and Aqueous Solution. ECS Transactions, 2013, 50, 39-49.	0.5	8
58	Promoting Effect of CeO2 on the Catalytic Activity of Rhodium Supported on Y-Stabilized ZrO2 for NO–CO–C3H6–O2 Reactions. Chemistry Letters, 2013, 42, 60-62.	1.3	9
59	Oxygen Release Property of Ceria/Alumina Composite Powder in Reducing Atmosphere at Low Temperatures. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2013, 60, 55-59.	0.2	3
60	Synthesis, Colour and Optical Evaluation of Ceramic Powders in the System of Ceria-Zirconia-Terbia. Zairyo/Journal of the Society of Materials Science, Japan, 2013, 62, 377-381.	0.2	2
61	Phase analysis and optical evaluation of ceria-zirconia-terbia prepared by coprecipitation method. Journal of Physics: Conference Series, 2012, 379, 012018.	0.4	1
62	Dispersion state and oxygen storage capacity properties of ceria and zirconia nanoparticles supported on alumina by the impregnation process. Journal of Physics: Conference Series, 2012, 379, 012014.	0.4	0
63	Synthesis and Optical Characteristics Evaluation for Ceria-zirconia Powders by Coprecipitation Method. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2012, 59, 75-79.	0.2	2
64	Effect of Lanthanum Addition on Thermal Stability and Benzene Removal Activity of Iron Oxide/Alumina Composite Powders. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2012, 59, 80-84.	0.2	1
65	Enhancement of Reducibility and Oxygen Storage Capacity (OSC) of Ce–Fe Mixed Oxides by Repetitive Redox Treatment. Chemistry Letters, 2012, 41, 837-838.	1.3	2
66	The Synthesis of Iron Oxides with Different Phases or Exposure Crystal Planes and their Catalytic Property for Propene Oxidation. Advanced Materials Research, 2012, 463-464, 189-193.	0.3	1
67	Development of Iridium Catalysts for Selective Reduction of NO with CO. Journal of the Japan Petroleum Institute, 2012, 55, 87-98.	0.6	1
68	Effect of addition on Y2O3 in ZrO2 support on n-butane Pt catalyzed oxidation. Catalysis Communications, 2012, 19, 74-79.	3.3	10
69	A review of selective catalytic reduction of nitrogen oxides with hydrogen and carbon monoxide. Applied Catalysis A: General, 2012, 421-422, 1-13.	4.3	138
70	Characterization and Reactivity Analysis of Hydrogen Adspecies on Platinum Nano-particles Supported on Alumina. Journal of the Japan Petroleum Institute, 2012, 55, 191-196.	0.6	2
71	Effect of heat treatment on oxygen storage capacity and oxygen release kinetics of alumina-supported ceria. IOP Conference Series: Materials Science and Engineering, 2011, 18, 182010.	0.6	2
72	The Effect of Heat Treatment on Interaction, Microstructure and Oxygen Storage Capacity of Pt Added CeO2 on Alumina. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2011, 58, 511-515.	0.2	2

#	Article	IF	CITATIONS
73	Direct Decomposition of NO over Ba–Y2O3 Catalyst Prepared by Coprecipitation. Bulletin of the Chemical Society of Japan, 2011, 84, 1383-1389.	3.2	8
74	In Situ FT-IR Study of Diesel Hydrocarbon Oxidation Over Pt/Al2O3 Catalyst. Catalysis Letters, 2011, 141, 1262-1267.	2.6	13
75	Platinum-Based Catalyst for Diesel Hydrocarbon Oxidation. Chinese Journal of Catalysis, 2011, 32, 777-781.	14.0	18
76	Selective catalytic reduction of NOx with NH3 over different copper exchanged zeolites in the presence of decane. Catalysis Today, 2011, 164, 495-499.	4.4	94
77	Catalytic performance of Ir/CeO2 for NO–C3H6–O2 reaction in a stoichiometric condition. Applied Catalysis A: General, 2011, 394, 239-244.	4.3	14
78	Promotional role of H2O in the selective catalytic reduction of NO with CO over Ir/WO3/SiO2 catalyst. Journal of Catalysis, 2010, 273, 39-49.	6.2	29
79	Influence of co-cations on the formation of Cu+ species in Cu/ZSM-5 and its effect on selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2010, 101, 61-67.	20.2	111
80	Improved activity of Rh/CeO2–ZrO2 three-way catalyst by high-temperature ageing. Catalysis Communications, 2010, 11, 317-321.	3.3	32
81	Effect of Organics on Activity of Cu/ZSM-5 Catalyst for Selective Reduction of NO with NH ₃ . Journal of the Japan Petroleum Institute, 2010, 53, 355-358.	0.6	0
82	Selective Catalytic Reduction of NO with Fatty Acid Methyl Ester as Reductant over Ag/Al ₂ O ₃ Catalyst. Journal of the Japan Petroleum Institute, 2009, 52, 60-64.	0.6	1
83	Practical Evaluation of the Catalytic Performance of Ir/SiO2-based Catalysts for Selective Reduction of NO with CO. Topics in Catalysis, 2009, 52, 1803-1807.	2.8	9
84	High Resistance of Cu–Ferrierite to Coke Formation During NH3-SCR in the Presence of n-Decane. Topics in Catalysis, 2009, 52, 1766-1770.	2.8	14
85	Catalytic Performance of Aged Rh/CeO2–ZrO2 for NO–C3H6–O2 Reaction Under a Stoichiometric Condition. Topics in Catalysis, 2009, 52, 1868-1872.	2.8	26
86	NOx abatement for lean-burn engines under lean–rich atmosphere over mixed NSR-SCR catalysts: Influences of the addition of a SCR catalyst and of the operational conditions. Applied Catalysis A: General, 2009, 365, 187-193.	4.3	54
87	A new concept of combined NH3-CO-SCR system for efficient NO reduction in excess oxygen. Applied Catalysis B: Environmental, 2009, 88, 180-184.	20.2	11
88	SCR of NO with NH3 over Cu/NaZSM-5 and Cu/HZSM-5 in the presence of decane. Catalysis Communications, 2009, 10, 1859-1863.	3.3	38
89	Activity Enhancement of WO3-Promoted Ir/SiO2 Catalysts by High-Temperature Calcination for the Selective Reduction of NO with CO. Bulletin of the Chemical Society of Japan, 2009, 82, 1023-1029.	3.2	9
90	Role of zeolite structure on NO reduction with diesel fuel over Pt supported zeolite catalysts. Microporous and Mesoporous Materials, 2008, 111, 488-492.	4.4	14

#	Article	IF	CITATIONS
91	Kinetics and mechanism of NO reduction with CO on Ir surfaces. Journal of Catalysis, 2008, 253, 139-147.	6.2	29
92	Catalytic performance of rhodium supported on ceria–zirconia mixed oxides for reduction of NO by propene. Journal of Catalysis, 2008, 259, 223-231.	6.2	71
93	Cooperative effect of Pt–Rh/Ba/Al and CuZSM-5 catalysts for NO reduction during periodic lean-rich atmosphere. Catalysis Communications, 2008, 10, 137-141.	3.3	41
94	Promoting Effect of Coexisting H2O on the Activity of Ir/WO3/SiO2 Catalyst for the Selective Reduction of NO with CO. Chemistry Letters, 2008, 37, 830-831.	1.3	12
95	Performance of Ba-doped Ir/WO ₃ -SiO ₂ Catalyst for Selective Catalytic Reduction of NO _{<i>x</i>} with CO in Diesel Exhaust. Journal of the Japan Petroleum Institute, 2008, 51, 356-360.	0.6	3
96	Reaction properties of NO and CO over an Ir(211) surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 1143-1146.	2.1	10
97	Catalytic Performance of Monolithic Ir/SiO ₂ Based Catalysts for Selective Reduction of NO with CO. Journal of the Japan Petroleum Institute, 2007, 50, 94-101.	0.6	4
98	Promotive effect of Nb2O5 on the catalytic activity of Ir/SiO2 for NO reduction with CO under oxygen-rich conditions. Catalysis Communications, 2007, 8, 885-888.	3.3	24
99	Adsorption and reactivity of SO2 on Ir(111) and Rh(111). Surface Science, 2007, 601, 1615-1622.	1.9	19
100	Selective reduction of NO2 with acetaldehyde over Co/Al2O3 in lean conditions. Journal of Molecular Catalysis A, 2007, 261, 6-11.	4.8	10
101	Influence of Al2O3 support on the activity of Ag/Al2O3 catalysts for SCR of NO with decane. Catalysis Letters, 2007, 114, 96-102.	2.6	39
102	Enhancing Effect of H2 on the Selective Reduction of NO with CO over Ba-doped Ir/WO3/SiO2 Catalyst. Catalysis Letters, 2007, 118, 159-164.	2.6	7
103	Enhanced activity of Ba-doped Ir/SiO2 catalyst for NO reduction with CO in the presence of O2 and SO2. Catalysis Communications, 2006, 7, 423-426.	3.3	32
104	Excellent Promoting Effect of Ba Addition on the Catalytic Activity of Ir/WO3–SiO2for the Selective Reduction of NO with CO. Chemistry Letters, 2006, 35, 420-421.	1.3	17
105	Direct decomposition of nitrogen monoxide over a K-deposited Co(0001) surface: Comparison to K-doped cobalt oxide catalysts. Journal of Electron Spectroscopy and Related Phenomena, 2006, 150, 150-154.	1.7	10
106	Effect of iridium dispersion on the catalytic activity of Ir/SiO2 for the selective reduction of NO with CO in the presence of O2 and SO2. Journal of Molecular Catalysis A, 2006, 256, 143-148.	4.8	41
107	Promotion of surface SOx on the selective catalytic reduction of NO by hydrocarbons over Ag/Al2O3. Applied Surface Science, 2006, 252, 6390-6393.	6.1	5
108	Role of tungsten in promoting selective reduction of NO with CO over Ir/WO3–SiO2 catalysts. Catalysis Letters, 2006, 112, 133-138.	2.6	23

#	Article	IF	CITATIONS
109	Selective Catalytic Reduction of Nitrogen Monoxide with H ₂ or CO as Reductant in Presence of SO ₂ . Journal of the Japan Petroleum Institute, 2006, 49, 219-230.	0.6	6
110	Direct Decomposition of NO over Supported-alkaline Earth Metal Oxide Catalysts. Journal of the Japan Petroleum Institute, 2005, 48, 53-59.	0.6	16
111	Promotional effect of SO2 on the activity of Ir/SiO2 for NO reduction with CO under oxygen-rich conditions. Journal of Catalysis, 2005, 229, 197-205.	6.2	83
112	Reaction mechanism of NO decomposition over alkali metal-doped cobalt oxide catalysts. Applied Catalysis B: Environmental, 2005, 55, 169-175.	20.2	59
113	Zn-promoted Rh/SiO2 catalyst for the selective reduction of NO with H2 in the presence of O2 and SO2. Applied Catalysis B: Environmental, 2005, 60, 41-47.	20.2	21
114	Catalytic Active Site for NO Decomposition Elucidated by Surface Science and Real Catalyst. Catalysis Surveys From Asia, 2005, 9, 207-215.	2.6	22
115	Adsorption and Reactions of NO on Clean and CO-Precovered Ir(111). Journal of Physical Chemistry B, 2005, 109, 17603-17607.	2.6	48
116	Direct Decomposition of NO Over Alkaline Earth Metal Oxide Catalysts Supported on Cobalt Oxide. Catalysis Letters, 2004, 97, 145-150.	2.6	31
117	N2O Removal by Catalytic Decomposition and Reduction with CH4 over Fe/Al2O3 ChemInform, 2004, 35, no.	0.0	0
118	FT-IR Spectroscopic Study of the Reaction Mechanism for Selective Reduction of NO over Sol-gel Prepared In ₂ O ₃ -Ga ₂ O ₃ -Al ₂ O ₃ Catalysts. Journal of the Japan Petroleum Institute, 2004, 47, 197-204.	0.6	0
119	Positive effect of coexisting SO2 on the activity of supported iridium catalysts for NO reduction in the presence of oxygen. Applied Catalysis B: Environmental, 2003, 41, 157-169.	20.2	52
120	Mechanistic study of the effect of coexisting H2O on the selective reduction of NO with propene over sol–gel prepared In2O3-Al2O3 catalyst. Applied Catalysis B: Environmental, 2003, 42, 57-68.	20.2	41
121	Remarkable promoting effect of rhodium on the catalytic performance of Ag/Al2O3 for the selective reduction of NO with decane. Applied Catalysis B: Environmental, 2003, 44, 67-78.	20.2	94
122	Alkali metal-doped cobalt oxide catalysts for NO decomposition. Applied Catalysis B: Environmental, 2003, 46, 473-482.	20.2	168
123	Study by in situ FTIR spectroscopy of the SCR of NOx by ethanol on Ag/Al2O3—Evidence of the role of isocyanate species. Journal of Catalysis, 2003, , .	6.2	43
124	Effect of surface structure of supported palladium catalysts on the activity for direct decomposition of nitrogen monoxide. Journal of Catalysis, 2003, 218, 405-410.	6.2	33
125	Uniform distribution of copper and cobait during the synthesis of SiNFI-5 from Ranemite through solid-state transformationElectronic supplementary information (ESI) available: XRD patterns for CoSiMFI and CuSiMFI samples synthesised by SST at various stages in the process and containing different metal loadings. See http://www.rsc.org/suppdata/jm/b2/b207539n/. Journal of Materials	6.7	11
126	Rh-post-doped Ag/Al2O3 as a highly active catalyst for the selective reduction of NO with decane. Catalysis Communications, 2003, 4, 315-319.	3.3	19

#	Article	IF	CITATIONS
127	Ir/SiO2 as a highly active catalyst for the selective reduction of NO with CO in the presence of O2 and SO2. Chemical Communications, 2003, , 2814.	4.1	38
128	Rh/SiO ₂ Catalysts for Selective Reduction of NO with H ₂ in the Presence of SO ₂ and O ₂ . Journal of the Japan Petroleum Institute, 2003, 46, 264-271.	0.6	4
129	N2O Removal by Catalytic Decomposition and Reduction with CH4over Fe/Al2O3. Bulletin of the Chemical Society of Japan, 2003, 76, 2329-2333.	3.2	7
130	Surface reactivity of prereduced rare earth oxides with nitric oxide: New approach for NO decomposition. Physical Chemistry Chemical Physics, 2002, 4, 3146-3151.	2.8	40
131	Comprehensive study combining surface science and real catalyst for NO direct decomposition. Chemical Communications, 2002, , 2816-2817.	4.1	22
132	In Situ Fourier Transform Infrared Study of the Selective Reduction of NO with Propene over Ga2O3–Al2O3. Journal of Catalysis, 2002, 206, 114-124.	6.2	66
133	Additive Effect of Rh on the Catalytic Activity of Ag/Al2O3 for the Selective Reduction of NO Journal of the Japan Petroleum Institute, 2002, 45, 123-126.	0.6	2
134	Catalytic Activities of Single Component Metal Oxides for Selective Reduction of NO with Ethene Journal of the Japan Petroleum Institute, 2002, 45, 288-294.	0.6	3
135	Effect of Mechanical Mixture of Alumina and Silver Supported Catalysts on the Activity for the Selective Reduction of NO Journal of the Japan Petroleum Institute, 2002, 45, 368-374.	0.6	0
136	Surface characterization of alumina-supported catalysts prepared by sol–gel method. Part I. Acid–base properties. Physical Chemistry Chemical Physics, 2001, 3, 1366-1370.	2.8	33
137	Remarkable promoting effect of coexisting SO2 on the catalytic activity of Ir/SiO2 for NO reduction in the presence of oxygen. Catalysis Communications, 2001, 2, 155-158.	3.3	39
138	Catalyst activity of alumina–galia aerogels for selective reduction of NOx. Journal of Non-Crystalline Solids, 2001, 285, 333-337.	3.1	6
139	Surface characterization of alumina-supported catalysts prepared by sol–gel method. Part II. Surface reactivity with CO. Physical Chemistry Chemical Physics, 2001, 3, 1371-1375.	2.8	13
140	CeO2ââ,¬â€œZrO2 binary oxides for NO x removal by sorption. Physical Chemistry Chemical Physics, 2001, 3, 4696-4700.	2.8	44
141	Sol–Gel Prepared Sn–Al2O3Catalysts for the Selective Reduction of NO with Propene. Bulletin of the Chemical Society of Japan, 2001, 74, 2075-2081.	3.2	12
142	Reaction intermediates in the selective reduction of NO with propene over Ga2O3-Al2O3 and In2O3-Al2O3 catalysts. Journal of Molecular Catalysis A, 2001, 175, 179-188.	4.8	37
143	Structure of Ga2O3-Al2O3 prepared by sol–gel method and its catalytic performance for NO reduction by propene in the presence of oxygen. Applied Catalysis B: Environmental, 2001, 31, 81-92.	20.2	55
144	Effect of SO2 on the catalytic activity of Ga2O3–Al2O3 for the selective reduction of NO with propene in the presence of oxygen. Applied Catalysis B: Environmental, 2001, 31, 251-261.	20.2	43

#	Article	IF	CITATIONS
145	Evidence for the Formation of Hydrogen by Surface Reaction between Hydroxyl Groups and CO Molecule over Ga2O3–Al2O3. Chemistry Letters, 2000, 29, 974-975.	1.3	2
146	Selective Reduction of NO with Methane over Alumina-Supported Palladium Catalysts Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 2000, 2000, 467-474.	0.1	6
147	Selective Reduction of NO with Propene over Ga2O3–Al2O3: Effect of Sol–Gel Method on the Catalytic Performance. Journal of Catalysis, 2000, 192, 137-148.	6.2	79
148	Enhanced activity of metal oxide-doped Ga2O3–Al2O3 for NO reduction by propene. Catalysis Today, 1999, 54, 391-400.	4.4	23
149	Activity enhancement of SnO2-doped Ga2O3–Al2O3 catalysts by coexisting H2O for the selective reduction of NO with propene. Applied Catalysis B: Environmental, 1999, 20, 289-300.	20.2	64
150	Title is missing!. Catalysis Letters, 1998, 55, 47-55.	2.6	40
151	Enhanced activity of in and Ga-supported sol-gel alumina catalysts for NO reduction by hydrocarbons in lean conditions. Applied Catalysis B: Environmental, 1998, 15, 291-304.	20.2	86
152	Infrared study of catalytic reduction of nitrogen monoxide by propene over Ag/TiO2–ZrO2. Catalysis Today, 1998, 42, 127-135.	4.4	112
153	Synergistic Effect between Pd and Nonstoichiometric Cerium Oxide for Oxygen Activation in Methane Oxidation. Journal of Physical Chemistry B, 1998, 102, 6579-6587.	2.6	49
154	Ga2O3/Al2O3Prepared by Sol-Gel Method as a Highly Active Metal Oxide-Based Catalyst for NO Reduction by Propene in the Presence of Oxygen, H2O and SO2. Chemistry Letters, 1998, 27, 181-182.	1.3	19
155	Studies on Active Species for Selective Catalytic Reduction of NO on Alumina-Supported Cobalt Oxide Catalysts. Bulletin of the Chemical Society of Japan, 1998, 71, 2331-2337.	3.2	24
156	Oxygen Storage Capacity(OSC) and Active Oxygen Species of Alumina-Supported Nonstoichiometric Cerium Oxide Catalysts Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1997, 1997, 169-179.	0.1	7
157	Additive Effect of Palladium on the Catalytic Activity of In/TiO2–ZrO2for the Selective Reduction of Nitrogen Monoxide in the Presence of Water Vapor. Bulletin of the Chemical Society of Japan, 1997, 70, 2171-2178.	3.2	8
158	Effects of Co Ion Dispersion upon Selective Catalytic Reduction of NO on CoO/Al2O3Catalysts. Chemistry Letters, 1997, 26, 887-888.	1.3	8
159	Additive Effect of Silver on the Catalytic Activity of TiO2–ZrO2for the Selective Reduction of NO with Propene, 2-Propanol, and Acetone. Bulletin of the Chemical Society of Japan, 1997, 70, 499-508.	3.2	25
160	Catalytic performance of silver ion-exchanged saponite for the selective reduction of nitrogen monoxide in the presence of excess oxygen. Applied Catalysis B: Environmental, 1997, 13, 27-33.	20.2	22
161	Catalytic performance of silver- and indium-supported TiO2î—,ZrO2 binary oxide for the selective reduction of nitrogen monoxide with propene. Applied Surface Science, 1997, 121-122, 391-395.	6.1	23
162	Intensifying Effect of H2O on the Activity of Proton-exchanged Saponite for the Selective Reduction of NOx Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 1997, 40, 510-515.	0.1	2

#	Article	IF	CITATIONS
163	High Catalytic Activity of Silver Supported TiO2-ZrO2 Catalysts for the Selective Catalytic Reduction of NO in the Presence of Oxygen Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1996, 1996, 212-214.	0.1	0
164	Silica-supported cobalt catalysts for the selective reduction of nitrogen monoxide with propene. Catalysis Letters, 1996, 39, 269-274.	2.6	45
165	Behaviour of oxygen species adsorbed on Al2O3-supported cerium oxide catalysts for methane oxidation. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 4459.	1.7	30
166	Catalytic and Thermal Behavior of Cerium Oxide Supported onSiO2and Al2O3for Methane Combustion. Bulletin of the Chemical Society of Japan, 1994, 67, 2617-2620.	3.2	9
167	Preparation of niobium oxide films as a humidity sensor. Catalysis Today, 1993, 16, 495-501.	4.4	25
168	Cerium Oxides Supported on Alumina-Crystallite Structures and Catalytic Activity. Studies in Surface Science and Catalysis, 1993, , 2079-2082.	1.5	0
169	Structural Characterization and Catalytic Behavior of Al2O3-Supported Cerium Oxides. Bulletin of the Chemical Society of Japan, 1993, 66, 1279-1288.	3.2	46
170	Oxygen storage capacity of alumina-supported Rh/CeO2 catalyst Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1990, 1990, 820-823.	0.1	16
171	Enhanced oxygen storage capacity of cerium oxides in cerium dioxide/lanthanum sesquioxide/alumina containing precious metals. The Journal of Physical Chemistry, 1990, 94, 6464-6467.	2.9	216
172	Hydrothermal Synthesis of CeO ₂ Nanocrystals Using Oleate-Modified Precipitation Method. Advanced Materials Research, 0, 463-464, 1501-1505.	0.3	3
173	Preparation of Organic-Modified Ceria Nanocrystals with Hydrothermal Treatment. Ceramic Transactions, 0, , 193-204.	0.1	0
174	Effect of B Site Substitution on the Catalytic Activity of Laâ€Based Perovskite for Oxidative Coupling of Methane. Physica Status Solidi (B): Basic Research, 0, , 2100544.	1.5	4
175	Synthesis and Acid Catalytic Activity of Alâ€Doped Spikyâ€Shaped Niobium Pentoxide. Physica Status Solidi (B): Basic Research, 0, , 2100667.	1.5	1